Image forming apparatus capable of shortening start up time of fixing device

Information

  • Patent Grant
  • 6674980
  • Patent Number
    6,674,980
  • Date Filed
    Tuesday, April 9, 2002
    22 years ago
  • Date Issued
    Tuesday, January 6, 2004
    20 years ago
Abstract
An image forming apparatus includes a fixing section, an energy saving power supply section supplied with power when a power switch is turned on, an energy saving control device activated by the power supplied from the energy saving power supply section, a main power supply source controlled by an on and off operation of an output by the energy saving control device, a main body control device activated by the power supplied by the main power supply source, an energy saving control release device to generate an energy saving control release signal, a fixing control section to control a temperature of the fixing section, a switching device to start and stop supplying the power to the fixing section, and an on and off device to start and stop supplying the power to the fixing control section.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to an image forming apparatus, and more particularly to the image forming apparatus in which a start up time of a fixing device is shortened.




2. Discussion of the Background




An electrophotographic or ink jet image forming apparatus generally fixes a developer onto a transfer sheet by heating the developer, such as toner or ink, by using a fixing device. In the electrophotographic image forming apparatus, a heater such as a heat roll is generally used as the fixing device. Various studies have been made to stably supply the fixing device with power.




Japanese Patent Laid-Open Publication No. 8-339134 discloses an image forming apparatus having a toner image forming device that forms a toner image on a transfer sheet, a fixing device that fixes the toner image onto the transfer sheet by an electromagnetic induction heating, a temperature controller that controls a temperature of the fixing device, and at least two protectors that stop energization of the fixing device when the fixing device reaches to a temperature equal to or out of a predetermined temperature range. Thus, the image forming apparatus includes two devices (i.e., control systems) that control the temperature of the fixing device to increase reliability of the fixing device.




Japanese Patent Laid-Open Publication No. 9-197856 discloses an induction heating fixing device that includes a heated member formed of a conductive member, a coil to inductively heat the heated member, a inverter circuit to supply the coil with a high frequency, a thermistor that detects a temperature of the heated member, an output control circuit (which is electrically insulated from the inverter circuit) to control the inverter circuit based on a temperature detected by the thermistor such that the temperature of the heated member is maintained within a predetermined range, and an insulating interface that transmits a control signal input from the output control circuit to the inverter circuit while electrically insulating the control signal. Thus, the induction heating fixing device is configured to control a temperature with a low temperature ripple by electrically insulating a first circuit from a second circuit.




In a conventional image forming apparatus, because a temperature is detected with single sensor, an abnormal temperature condition occurs. Moreover, in recent years, a demand for energy savings is increasing in an image forming apparatus. Thus, attempts have been made to save energy. For example, energization of a fixing device is cut off in a standby state, or the fixing device is maintained at a temperature lower than a fixing temperature in the standby state. The present inventors have recognized that in such an image forming apparatus having an energy saving function, a quick start up is required when an image forming operation is performed. However, no technology for shortening the start up time is discussed in the above-described Japanese Patent Laid-Open Publications.




SUMMARY OF THE INVENTION




The present invention has been made in view of the above-mentioned and other problems, and addresses the above-discussed and other problems.




The present invention advantageously provides a novel image forming apparatus in which a start up time is shortened, while supplying a fixing device with power from an auxiliary power supply source when starting up the fixing device.




According to an example of the present invention, an image forming apparatus includes a fixing section configured to fix a developer transferred on a transfer sheet onto the transfer sheet by heating the transfer sheet, an energy saving power supply section configured to be supplied with power when a power switch is turned on, an energy saving control device configured to be activated by the power supplied from the energy saving power supply section, a main power supply source configured to be controlled by an on and off operation of an output by the energy saving control device, a main body control device configured to be activated by the power supplied by the main power supply source, an energy saving control release device configured to generate an energy saving control release signal so as to input the signal to the energy saving control device, and a fixing control section configured to control a temperature of the fixing section. The image forming apparatus also includes a switching device configured to start and stop supplying the power to the fixing section, and an on and off device configured to start and stop supplying the power to the fixing control section in response to the switching device. The energy saving power supply section includes an auxiliary power supply source that supplies the fixing control section with the power through the on and off device.











BRIEF DESCRIPTION OF THE DRAWINGS




A more complete appreciation of the present invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:





FIG. 1

is a diagram illustrating a main circuit of an image forming apparatus according to an example of the present invention;





FIG. 2

is a diagram illustrating a circuit of an energy saving power supply section;





FIG. 3

is a flow chart illustrating an overall process performed in the image forming apparatus in

FIG. 1

;





FIG. 4

is a flow chart illustrating a process in an energy saving mode;





FIG. 5

is a flow chart illustrating a process in a start up mode;





FIG. 6

is a flow chart illustrating a process of temperature detection;





FIG. 7

is a flow chart illustrating a process in a print mode; and





FIG. 8

is a flow chart illustrating a process when a cover of the image forming apparatus is opened.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, an example of the present invention is described.





FIGS. 1 through 8

illustrate an image forming apparatus as an example of the present invention.

FIG. 1

is a diagram illustrating a circuit of an electrophotographic image forming apparatus


1


as an example of the image forming apparatus according to the present invention. In the image forming apparatus


1


, power supplied to the image forming apparatus


1


is effectively utilized such that the time required to have the image forming apparatus


1


in an operational state from a standby state is shortened while reducing consumed electric power during standby.




In

FIG. 1

, the image forming apparatus


1


includes a circuit breaker


2


, a noise filter


3


, a main switch


4


, a DC power source


5


, an energy saving control section


6


, a main body control section


7


, a door switch


8


, an energy saving control release switch


9


, and a fixing section


30


.




The DC power source


5


includes an energy saving power supply section


21


, a main power supply relay


22


, and a main power supply source


23


. The energy saving power supply section


21


includes an auxiliary power supply source


24


. The main power supply source


23


includes an active filter


25


and a multi-output converter (DC/DC)


26


.




The fixing section


30


includes a fixing roller


31


, a fixing control section


32


, an AC detecting section (i.e., ACS), a diode bridge


34


, a filter


36


, temperature detection sensors


37


and


38


(i.e., inverter thermistors), and an overcurrent detector


39


(i.e., OCS). The filter


36


includes a DC/DC converter


35


, a coil L


1


, and a capacitor C


1


. The fixing section


30


further includes a switching element


40


, a temperature detection sensor


41


(i.e., TS) for the switching element


40


, a power relay


42


, a photo coupler


43


, a latching circuit


44


, and seven comparators


45


through


51


. The fixing roller


31


internally includes a coil L


2


for an induction heating. A capacitor C


2


that constitutes a resonance circuit is connected in parallel with the coil L


2


. A reference voltage of V


0


through V


6


is input to the comparators


45


through


51


, respectively.




Power (i.e., AC power) is applied to the image forming apparatus


1


through the circuit breaker


2


and noise filter


3


. The AC power is then divided into two branches to be supplied to the DC power source


5


via the main switch


4


(i.e., a power switch), and the power relay


42


of the fixing section


30


.




The DC power source


5


internally branches to supply the AC power (which is supplied via the main switch


4


) to the energy saving power supply section


21


, and main power supply source


23


through the main power supply relay


22


. The main power supply source


23


filters the AC power supplied through the main power supply relay


22


with the active filter


25


. The multi-output converter


26


converts the AC power into a predetermined voltage and outputs the voltage to the main body control section


7


(i.e., a main body control device).




The energy saving control section


6


(i.e., an energy saving control device) is connected to the energy saving power supply section


21


to receive an output from the energy saving power supply section


21


. The energy saving control release switch


9


(i.e., an energy saving control release device) is connected to the energy saving control section


6


. The energy saving control release switch


9


generates an energy saving control release signal. A coil of the power relay


42


′ is connected to the energy saving control section


6


via the door switch


8


. In addition, a coil of the main power supply relay


22


′ is connected to the energy saving control section


6


. The door switch


8


turns on and off in response to an open/close operation of a cover (not shown) of the image forming apparatus


1


.




In the fixing section


30


, the AC power is supplied to the filter


36


including the coil L


1


and capacitor C


1


through contacts


42




a


,


42




b


(i.e., a switching device) of the power relay


42


, AC detecting section


33


, and diode bridge


34


. The AC power is then supplied to the switching element


40


through the coil L


2


, which provides induction heating, a resonance circuit of a condenser C


2


, and the overcurrent detector


39


. The switching element


40


is connected to the fixing control section


32


to receive an output from the fixing control section


32


. The fixing control section


32


includes a timing circuit


61


, a PWM circuit


62


, and a driving circuit


63


(i.e., a driver). The timing circuit


61


generates an “ON” signal that drives switching element


40


.




The auxiliary power supply source


24


, included inside the energy saving power supply section


21


of the DC power source


5


, supplies the fixing control section


32


with driving power via a contact


42




c


(i.e., an on/off device) of the power relay


42


. Namely, contact


42




a


,


42




b


, and


42




c


of the power relay


42


control a supply/shutdown of the power supplied to the fixing section


30


and the power supplied to the fixing control section


32


from the auxiliary power supply source


24


. The on/off device (i.e., contact


42




c


) operates in response to the switching device (i.e., contacts


42




a


and


42




b


) because contacts


42




a


,


42




b


, and


42




c


are operated by a same coil.




An output of AC detecting section


33


and an applied voltage of the switching element


40


are input to the timing circuit


61


. Respective output control signals are input to the PWM circuit


62


through the comparator


45


. The comparator


45


is connected to the three comparators


46


through


48


to receive an output from the three comparators


46


through


48


. The temperature detection sensor


38


for the fixing roller


31


is connected to the comparator


46


. The overcurrent detector


39


and the temperature detection sensor


41


for the switching element


40


are connected to the comparators


47


and


48


, respectively. The reference voltages V


0


through V


3


are input to the comparators


45


through


48


, respectively. Two lines of signals (i.e., power restriction signals S


1


and S


2


) are connected to the PWM circuit


62


. The power restriction signal S


2


is input from the energy saving control section


6


via the photo coupler


43


. The power restriction signal S


1


is input from the comparator of


51


via the latching circuit


44


.




The temperature detection sensor (thermistor)


37


for the fixing roller


31


is connected to the energy saving control section


6


via the comparators


49


and


50


.




The energy saving power supply section


21


is configured as illustrated in FIG.


2


. The energy saving power supply section


21


includes a starting circuit


71


, a diode bridge


72


, a control circuit


73


, a switching element


74


, a transformer


75


, a rectifier circuit


76


, a diode D


2


, and the auxiliary power supply source


24


. The starting circuit


71


includes a diode D


1


and resistor R


1


. A winding N


21


, and winding N


22


for the auxiliary power supply source


24


are provided in the secondary side of the transformer


75


. The rectifier circuit


76


, including a diode D


3


and capacitor C


11


, is connected to the winding N


21


. A rectifier circuit


24




a


, including a diode D


4


and capacitor C


12


, and a resistor R


2


are connected to the winding N


22


.




When AC power is supplied through the main switch


4


, the starting circuit


71


supplies a power supply terminal of the control circuit


73


with driving power to activate the energy saving power supply section


21


. The energy saving power supply section


21


outputs a power supply voltage through the transformer


75


and rectifier circuit


76


while controlling an operation of the switching element


74


. The energy saving power supply section


21


supplies the power of the control circuit


73


through the resistor R


2


of the auxiliary power supply source


24


after the diode bridge


72


is activated. As illustrated in

FIG. 2

, the auxiliary power supply source


24


supplies the fixing control section


32


of the fixing section


30


with power via the power relay


42


. The energy saving power supply section


21


supplies the energy saving control section


6


with the power to activate the energy saving control section


6


.




Operation of the present invention is now described.

FIG. 3

is a flow chart illustrating an overall process performed in the image forming apparatus


1


. When the main switch


4


is turned on at step S


100


, an energy saving mode process (during standby), a start up mode process (in a start up operation), and a print mode process (in a printing operation) are performed in sequence at steps S


200


, S


300


and S


400


, respectively. Namely, when the main switch


4


is turned on at step S


100


, the image forming apparatus


1


is put into the energy saving mode (i.e., standby state) at step S


200


. When the energy saving control release switch


9


is depressed while the image forming apparatus


1


is in the energy saving mode, the image forming apparatus


1


is put into the start up mode at step S


300


. Then, the start up operation, in which the fixing roller


31


is heated to a predetermined temperature (i.e., a reloading), is performed to get the fixing section


30


up and running. When the energy saving control section


6


detects the reloading, main power of the image forming apparatus


1


is activated. When the start up operation of the fixing section


30


is completed, the image forming apparatus


1


is placed into the print mode to perform a printing process at step S


400


. After the printing process is performed, if a condition to proceed to the standby state is satisfied (for example, when a following printing process is not performed within a predetermined period of time after a printing process has been finished), the image forming apparatus is placed into the energy saving mode (i.e., a standby state).




As indicated above, the image forming apparatus


1


includes the fixing section


30


, which is an induction heating system. The temperature detection sensors


37


and


38


are provided in both the fixing section


30


and energy saving control section


6


(the temperature detection sensors


37


and


38


in the energy saving control section


6


are not shown) to assure safety.




As illustrated in

FIG. 4

, when the main switch


4


is turned on at step S


100


while the image forming apparatus is in the energy saving mode, AC power is supplied to the energy saving power supply section


21


of the DC power source


5


. The energy saving power supply section


21


is thus activated at step S


201


. The energy saving control section


6


is activated by an output of the energy saving power supply section


21


at step S


202


. Thus, the image forming apparatus


1


is put into the energy saving mode.




The energy saving control section


6


determines whether or not the energy saving control release switch


9


is depressed at step S


203


based on whether or not a energy saving control release signal is input. When the energy saving control release signal is input, the energy saving control section


6


determines that the energy saving control release switch


9


is depressed. Thus, the energy saving mode is released and the image forming apparatus


1


is put into the start up mode at step S


300


. Namely, in the energy saving mode, the image forming apparatus


1


stays in a standby state until the energy saving control release switch


9


is depressed either by an operator or a signal to perform a copy or print process.




As illustrated in

FIG. 5

, in the start up mode, the energy saving control section


6


starts a temperature detection process (which is an interrupting process) at step S


301


. When the temperature detection process is performed, the temperature detection process is maintained until the main switch


4


is turned off. When the energy saving control section


6


starts the temperature detection process, the power relay


42


is turned on at step S


302


to supply the fixing section


30


with AC power. At the same time, auxiliary power is supplied to the fixing section


30


from the auxiliary power supply source


24


of the energy saving power supply section


21


. In the fixing section


30


, the AC power is supplied to the diode bridge


34


through the AC detecting section


33


. Thus, the fixing control section


32


is activated to control a fixing operation. The fixing section


30


is then activated at step S


303


. The fixing control section


32


generates an “ON” signal for the switching element


40


so that an output of the comparator


45


(which is input to the PWM circuit


62


) reaches to a predetermined value. The fixing control section


32


then outputs the “ON” signal to the switching element


40


via the driving circuit


63


.




When the switching element


40


starts a switching operation, a driving current of several tens of KHz passes through the coil L


2


provided inside the fixing roller


31


. Thus, a magnetic flux linked with the fixing roller


31


is generated, and an eddy current flows to a conductive portion of the fixing roller


31


. The fixing roller


31


is then heated by the Joule heat at step S


304


.




The temperature detection sensor


38


provided to the fixing roller


31


detects a temperature of the fixing roller


31


. A detection signal of the temperature of the fixing roller


31


is compared with the reference voltage V


1


(i.e., a target fixing temperature). A difference caused in the comparison result is input to the PWM circuit


62


through the comparator


45


. The PWM circuit


62


generates a driving signal having a pulse width corresponding to the voltage difference. The driving signal is output to the switching element


40


through the driving circuit


63


to control the temperature of the fixing roller


31


. A maximum pulse width of the driving signal, which is generated by the PWM circuit


62


, is set at two different values according to power consumed by the fixing section


30


during startup operation and other operations.




A first pulse width that occurs during startup is set such that power input to the fixing section


30


becomes the maximum value allowed as an input power of the image forming apparatus


1


. More specifically, when the maximum input power of the image forming apparatus


1


is 1500 W, the maximum pulse width is previously set such that the fixing section consumes 1450 W of power, with the remaining 50 W of power consumed by the energy saving power supply section


21


and energy saving control section


6


. Thus, a large portion of the total power is directed to heating the coil L


1


during startup. A second pulse width is set such that a value of the power consumed by the fixing section


30


becomes lower than a value of the power consumed for a start up operation of the fixing section


30


, after the start up of the fixing section


30


has been completed.




In the fixing section


30


, the respective reference voltages of the comparators


46


,


47


, and


48


are set such that priority control is given to the comparator


46


over the comparators


47


and


48


. The comparators


47


and


48


regulate the pulse width of the driving signal only when unusual events occur in the fixing section


30


. Whether or not the fixing roller


31


is heated to a temperature capable of a fixing operation (for example, 185° C.) and the reload is detected in the fixing section


30


is determined at step S


305


. When the fixing roller


31


is heated to the temperature capable of the fixing operation, the comparator


51


produces an output to activate the latching circuit


44


. The power restriction signal S


1


is then output to the PWM circuit


62


at step S


306


.




A pulse width of the driving signal generated by the PWM circuit


62


is regulated such that a power value input to the image forming apparatus


1


is not greater than a second power value so as to regulate the power consumed by the fixing section


30


. More specifically, when a maximum input power of the image forming apparatus


1


is 1500 W, a maximum pulse width is previously set such that the fixing section


30


consumes 900 W of power except for 600 W of power consumed by the DC power source


5


, energy saving control section


6


, and main body control section


7


.




The comparator


47


detects an overcurrent of the switching element


40


, while the comparator


48


detects a temperature of the switching element


40


. The reference voltages V


2


and V


3


of the respective comparators


47


and


48


are set such that the driving signal of the switching element


40


is turned off when a flow of an overcurrent or an abnormal temperature of the switching element


40


is detected. In addition, the temperature detection sensor


37


detects the temperature of the fixing roller


31


. A detection result of the temperature detection sensor


37


is input to the energy saving control section


6


. As seen in

FIG. 1

, two lines of temperature information are input to the energy saving control section


6


from the comparators


49


and


50


, respectively, and a temperature detection level of the comparators


49


and


50


is set to a different value each other.




The comparator


49


also detects an occurrence of an abnormal condition. If the temperature information of the fixing roller


31


input to the comparator


49


indicates that the temperature of the fixing roller


31


exceeds a previously set reference value, the energy saving control section


6


determines that something unusual occurred in the fixing section


30


. Thus, the power relay


42


is turned off to stop power supply to the fixing section


30


. The comparator


50


detects the reload of the fixing roller (i.e., whether of not the fixing roller


31


is heated to a temperature capable of performing a fixing operation).




When the energy saving control section


6


detects the reload based on an output of the comparator


50


, the energy saving control section


6


outputs the power restriction signal S


2


to the PWM circuit


62


via the photo coupler


43


. When the PWM circuit


62


receives the power restriction signal S


2


, the PWM circuit


62


sets the second pulse width.




The energy saving control section


6


turns the main power supply relay


22


on at step S


308


. Thus, the main power supply source


23


is activated to supply the main body control section


7


with low-voltage power at step S


309


. When the low-voltage power is supplied to the main body control section


7


from the main power supply source


23


, the main body control section


7


is activated at step S


310


. The image forming apparatus


1


then completes the start up mode and proceeds to the print mode at step S


400


.





FIG. 6

illustrates the temperature detection process of step S


301


in FIG.


5


. As seen in

FIG. 6

, whether or not the temperature of the fixing roller


31


is abnormal is determined at step S


501


. If the temperature of the fixing roller


31


is abnormal (for example, the temperature is not less than 220° C.), the power relay


42


is turned off at step S


502


(which is an interrupting process) to stop energization of the fixing section


30


. An abnormal detection signal is transmitted from the energy saving control section


6


to the main body control section


7


. When the main body control section


7


receives the signal, the main body control section


7


handles an abnormal condition at step S


503


(for example, displaying the abnormal condition).




When the temperature of the fixing roller


31


is detected to be normal at step S


501


, the energy saving control section


6


turns the power relay


42


on at step S


302


to activate the fixing section


30


at step S


303


. Thus, the fixing roller


31


is heated at step S


304


as shown in FIG.


5


.




As illustrated in

FIG. 7

, in the print mode, the image forming apparatus


1


performs a printing process at step S


401


when the image forming apparatus enters a state in which a printing process is performed. As seen in

FIG. 7

, the printing process occurs after the image forming apparatus is placed in the start up mode (step S


300


) from the energy saving mode (step S


200


) and after the start up process is performed. As noted above, the image forming apparatus


1


is placed in the energy saving mode (step S


200


) after performing the printing process, if a previously set standby condition is satisfied. In the print mode, a power restriction signal is input to the PWM circuit


62


of the fixing control section


32


. Thus, the fixing roller


31


is controlled such that a temperature thereof detected by the temperature detection sensor


38


is maintained at a predetermined fixing temperature, while regulating a pulse width of a driving signal generated by the PWM circuit


62


such that the pulse width is not greater than the second pulse width of the driving signal which is output to the switching element


40


.




An operational process performed when the door switch


8


is opened/closed is now described referring to FIG.


8


. When the door switch


8


detects that a cover of the image forming apparatus


1


is opened, the energy saving control section


6


stops energization of the fixing section


30


to prevent an operator from receiving an electric shock. Namely, when the cover of the image forming apparatus


1


is opened and the door switch


8


is turned off at step S


601


, the energy saving control section


6


stops energization of a coil of the power relay


42


′ to turn the power relay


42


off at step S


602


. When the power relay


42


is turned off, energization of the fixing section


30


is stopped. Thus, a heating of the fixing roller


31


is stopped at step S


603


.




When the cover of the image forming apparatus


1


is closed and the door switch


8


is turned on at step S


604


, the energy saving control section


6


starts energization of the coil of the power relay


42


′ to turn the power relay


42


on. Thus, the fixing section


30


is activated again at step S


605


. At this time, the energy saving control section


6


determines whether the power restriction signal S


2


is “ON” at step S


606


. If the power restriction signal S


2


is input via the photo coupler


43


in the reload state, the heating of the fixing roller


31


is restarted while regulating the maximum pulse width of the driving signal input to the switching element


40


to be equal to the second pulse width. Namely, when the heating of the fixing roller


31


is restarted at step S


607


, low fixing power, which is lower than the power supplied during a start up operation, is supplied.




During a start up operation, when the power restriction signal S


2


is “OFF” at step S


606


, the heating of the fixing roller


31


is restarted while the pulse width of the driving signal is switched to the first pulse width. Namely, maximum power consumed in the fixing section


30


(i.e., maximum fixing power) is supplied at step S


608


for heating the fixing roller


31


.




The image forming apparatus


1


includes the auxiliary power supply source


24


in the energy saving power supply section


21


such that power is supplied from the auxiliary power supply source


24


to the fixing control section


32


via the power relay


42


. The image forming apparatus


1


is configured to proceed to the print mode from the energy saving mode after the apparatus goes into the start up mode. Thus, limited power input to the image forming apparatus


1


is effectively used, resulting in shortening a start up time of the image forming apparatus


1


having the energy saving mode. More specifically, in the start up mode, a consumption of power in components other than the fixing section


30


is maintained low. Thus, an allocation of the power to the fixing section


30


is increased, resulting in a short start up time.




In the image forming apparatus


1


, the energy saving control section


6


controls an on/off operation of the power relay


42


based on an energy saving control release signal output from the energy saving control release switch


9


. Thus, when the power relay


42


is turned off, a flowing current of the power relay


42


is turned off after controlling power of the fixing section


30


is turned off, thereby increasing a reliability of the power relay


42


. Hence, a construction of a circuit is simplified and a consumption of power is reduced, resulting in an increased reliability of the circuit.




In addition, an on/off operation of the power relay


42


is performed based on a control signal output either from the energy saving control section


6


or main body control section


7


. Thus, when abnormal conditions are encountered in the fixing section


30


, the main body control section


7


also can stop energization of the fixing control section


32


, resulting in a simplified construction and reduced consumption of power of a circuit. Further, an occurrence of an electric shock and abnormal condition is prevented.




Obviously, numerous additional modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the present invention may be practiced otherwise than as specifically described herein.




This document claims priority and contains subject matter related to Japanese Patent Application No. 2001-109882, filed on Apr. 9, 2001, and the entire contents thereof are herein incorporated by reference.



Claims
  • 1. An image forming apparatus, comprising:a fixing section configured to fix a developer transferred on a transfer sheet onto the transfer sheet by heating the transfer sheet; an energy saving power supply section configured to be supplied with power when a power switch is turned on; an energy saving control device configured to be activated by the power supplied from the energy saving power supply section; a main power supply source configured to be controlled by an on and off operation of an output by the energy saving control device; a main body control device configured to be activated by the power supplied by the main power supply source; an energy saving control release device configured to generate an energy saving control release signal and input the energy saving control release signal to the energy saving control device; a fixing control section configured to control a temperature of the fixing section; a switching device configured to start and stop supplying the power to the fixing section; and an on and off device configured to start and stop supplying the power to the fixing control section in response to the switching device, wherein the energy saving power supply section includes an auxiliary power supply source, and wherein the auxiliary power supply source supplies the fixing control section with the power through the on and off device.
  • 2. The image forming apparatus according to claim 1, wherein the energy saving control device controls an on and off operation of the on and off device based on the energy saving control release signal output from the energy saving control release device.
  • 3. The image forming apparatus according to claim 1, wherein the on and off operation of the on and off device is performed based on one of two control signals output from the energy saving control device and main body control device.
  • 4. The image forming apparatus according to claim 1, wherein the fixing device is supplied with a first level of power in a startup mode and a second level of power less than said first level in a non-startup mode.
  • 5. An image forming apparatus, comprising:means for fixing a developer transferred on a transfer sheet onto the transfer sheet; an energy saving power supply section configured to be supplied with power when a power switch is turned on; an energy saving control device configured to be activated by the power supplied from the energy saving power supply section; a main power supply source configured to be controlled by an on and off operation of an output by the energy saving control device; a main body control device configured to be activated by the power supplied by the main power supply source; means for generating an energy saving control release signal and inputting the energy saving control release signal to the energy saving control device; means for controlling a temperature of the means for fixing; means for switching a start and stop of supplying the power to the means for fixing; and means for turning on and off the supply of power to the fixing control section in response to the means for switching, wherein the energy saving power supply section includes an auxiliary power supply source, and wherein the auxiliary power supply source supplies the means for controlling with the power through the means for turning on and off.
  • 6. The image forming apparatus according to claim 5, wherein the energy saving control device controls an on and off operation of the means for turning on and off based on the energy saving control release signal output from the means for generating.
  • 7. The image forming apparatus according to claim 5, wherein the on and off operation of the means for turning on and off is performed based on one of two control signals output from the energy saving control device and main body control device.
  • 8. The image forming apparatus according to claim 5, wherein the fixing device is supplied with a first level of power in a startup mode and a second level of power less than said first level in a non-startup mode.
  • 9. A method for supplying an image forming apparatus with power, comprising:providing a fixing section configured to fix a developer transferred on a transfer sheet onto the transfer sheet; turning on a power switch; supplying an energy saving power supply section with power when the power switch is turned on; supplying an energy saving control device with the power; controlling an on and off operation of an output of a main power supply source; supplying a main body control device with the power; generating an energy saving control release signal; controlling a temperature of the fixing section; switching a start and stop of supplying the power to the fixing section; turning on and off the supply of power to the fixing control section; providing an auxiliary power supply source to the energy saving power supply section; and supplying the power from the auxiliary power supply source in the controlling step through the turning on and off step.
  • 10. The method according to claim 9, further comprising:controlling an on and off operation in the turning on an off step based on the energy saving control release signal.
  • 11. The method according to claim 9, further comprising:generating a control signal from a main body control device; and performing an on and off operation in the turning on and off step based on one of the energy saving control signal and the control signal.
  • 12. The method according to claim 9, further comprising:supplying a first level of power to the fixing section in a startup mode of the image forming apparatus; and supplying a second level of power less than said first level in a non-startup mode of the image forming apparatus.
Priority Claims (1)
Number Date Country Kind
2001-109882 Apr 2001 JP
US Referenced Citations (2)
Number Name Date Kind
5966562 Maehara Oct 1999 A
6408148 Yamamoto Jun 2002 B1