The present invention relates to an image forming apparatus such as a copying machine, a printer, a facsimile machine or a multi-function machine having a plurality of functions of these machines.
As the image forming apparatus, a constitution in which a drum cartridge including a photosensitive drum as a photosensitive member or a process cartridge is mountable and dismountable from an apparatus main assembly has been conventionally known. Further, a constitution in which an optical discharging device for removing electric charges on the photosensitive drum by irradiating a surface of the photosensitive drum with light has also been known (Japanese Laid-Open Patent Application (JP-A) 2002-278395).
JP-A 2002-278395 discloses a constitution in which a light guiding member for guiding light of a light source provided in an apparatus main assembly to the surface of the photosensitive drum is provided and in which a process cartridge mountable in and dismountable from the apparatus main assembly is provided. Further, JP-A 2002-278395 discloses a constitution in which a periphery of the light source is covered with a light blocking member comprising an elastic member and thus leakage of light of the light source to an outside is suppressed. In the case of such a constitution disclosed in JP-A 2002-278395, when the process cartridge is mounted in the apparatus main assembly, an end portion of the light guiding member contacts the light blocking member, so that the light blocking member is expanded and contracted.
When the light blocking member comprising the elastic member is contacted to the light guiding member, it is possible to suppress toner from entering the light source from the light guiding member side. However, in a constitution in which the light blocking member abuts against the light guiding member and is elastically deformed, high part accuracy is required for ensuring a region where light traveling through the light guiding member is received. Therefore, it is desired to provide a constitution in which the toner does not readily enter the light source from the light guiding member side with a simple structure.
A principal object of the present invention is to provide an image forming apparatus capable of suppressing entrance of toner from a light guiding member side into a light source with a simple structure.
According to an aspect of the present invention, there is provided an image forming apparatus comprising: a photosensitive member on which an electrostatic image is formed; a light source; a light guiding unit including a light guiding member configured to guide light from the light source so that the light enters one end portion of the light guiding unit with respect to a longitudinal direction of the light guiding unit and travels toward the photosensitive member so as to optically discharge the photosensitive member; a casing portion provided with a first through hole and configured to cover the light source; and a sheet-like elastic member which is provided on a surface of the casing portion where the first through hole is provided and which is provided with a second through hole, wherein the light guiding unit penetrates the first through hole and the second through hole, and the one end portion of the light guiding unit opposes the light source and is positioned inside the casing portion, and wherein in a flat surface of the light guiding unit perpendicular to the longitudinal direction of the light guiding unit, an area of the second through hole is smaller than an area of the light guiding unit.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
A first embodiment will be described with reference to
[Image Forming Apparatus]
An image forming apparatus 1 of this embodiment is a tandem full-color printer of an electrophotographic type in which four image forming portions 100, each including a photosensitive drum 12 as an image bearing member, are provided. The image forming apparatus 1 forms an image on a recording material in accordance with an image signal from an original reading device 110 connected to an apparatus main assembly 1A or from a host device such as a personal computer communicatably connected to the apparatus main assembly 1A. As the recording material, it is possible to cite a sheet, a plastic film, a cloth or the like. In the following, the recording material is described as the sheet. Further, the four image forming portions 100 form toner images of yellow, magenta, cyan and black, respectively. The four image forming portions 100 of the image forming apparatus 1 substantially have the same constitution except that development colors are different from each other.
The image forming portion 100 includes a drum cartridge (photosensitive (member) unit) 10 including the photosensitive drum 12 as a photosensitive member and includes a developing device 20. The photosensitive drum 12 is a cylindrical photosensitive member and rotates in the clockwise direction of
On the other hand, sheets P are fed one by one from a feeding cassette 40, and the sheet P is conveyed to a registration roller pair 50. The sheet P forms a loop by following a nip of the registration roller pair 50, so that oblique movement of the sheet P is rectified. Thereafter, the registration roller pair 50 is timed to the toner images on the intermediary transfer belt 30 and feeds the sheet P to a nip between the intermediary transfer belt 30 and an outer secondary transfer roller 33. The color toner images on the intermediary transfer belt 30 are transferred onto the sheet P under application of predetermined pressure and predetermined electrostatic load bias in the nip between the outer secondary transfer roller 33 and the intermediary transfer belt 30 through which a driving roller 32 opposes the secondary transfer roller 33. After the transfer, slight residual toner remaining on the intermediary transfer belt 30 is removed and collected by a cleaning blade 34, and the intermediary transfer belt 30 prepares for subsequent image formation. The toner images transferred on the sheet P are heated and pressed by a fixing device 60 and the sheet P is discharged onto a discharge tray 80 by a discharging roller pair 70.
[Drum Cartridge]
Next, a structure of the drum cartridge 10 will be described using
Such a drum cartridge 10 is mountable and dismountable from the apparatus main assembly 1A (
By the drum container 11, the photosensitive drum 12 is rotatably held through unshown bearings, and the photosensitive drum 12 is provided with an unshown coupling for being rotated by receiving drive (driving force) from the apparatus main assembly 1A. As shown in
Further, as shown in
Further, to the drum container 11, a light guiding unit 16 having a function as an optical discharging device 200 (
When the subsequent image formation is carried out while the residual electric charges remain on the surface of the photosensitive drum 12, the residual electric charges remain as an after-image on the image in some cases, but by removing the residual electric charges by the optical discharging device 200, image defects due to such an after-image can be suppressed. For this reason, in this embodiment, as shown in
[Photosensitive Unit]
The light guiding unit 16 is constituted, as shown in
The light guiding unit 16 is disposed along a longitudinal direction (rotational axis direction) crossing a rotational direction of the photosensitive drum 12. In this embodiment, the light guiding unit 16 is disposed at a position adjacent to the photosensitive drum 12 so as to be not only substantially parallel to the rotational axis direction of the photosensitive drum 12 but also to oppose an entire region of the photosensitive drum 12 with respect to the longitudinal direction.
Further, a part of the light guiding unit 16 at one end portion side with respect to the longitudinal direction projects outward from the drum container 11. In the case of this embodiment, the one end portion with respect to the longitudinal direction is an end portion of a rear side of the drum cartridge 10 (of the image forming apparatus 1) with respect to an insertion-extraction direction. Incidentally, a front surface (side) of the image forming apparatus 1 is a side where an operator such as a user operates the image forming apparatus 1 and is a front side on the drawing sheet of
On the one end portion side of the light guiding unit 16 with respect to the longitudinal direction, the portion projecting from the drum container 11 has a shape as shown in
The light guiding member 161 constituting the light guiding unit 16 has a substantially circular column configuration and is formed of, for example, polycarbonate, an acrylic resin, or the like which are insulating materials high in light transmissive property. The light guiding member 161 is subjected to prism processing and is formed so that light entering from an incident surface 161a is effectively guided to the surface of the photosensitive drum 12. That is, an end surface of the one end portion of the light guiding member 161 with respect to the longitudinal direction is the incident surface 161a, and the light entering the light guiding member 161 through the incident surface 161a is reflected toward the photosensitive drum 12 side.
For this purpose, as shown in
Incidentally, in the case of this embodiment, the incident surface 161a which is the one longitudinal end side end surface of the light guiding member 161 is, as shown in
Further, the light guiding member 161 may also be one which is not subjected to the prism processing and may also be constituted only by the light guiding member 161 without including the protective member 162. Further, the light source (described later) may also be provided on opposite sides with respect to the longitudinal direction and the light entering the light guiding member 161 through incident surfaces of opposite surfaces may also travel toward the photosensitive drum 12.
[Light Source Unit]
The light source unit 201 is provided in the apparatus main assembly 1A and emits the light toward the light guiding unit 16 of the drum cartridge 10. As shown in
In this embodiment, the light source unit 201 is provided only on the one longitudinal end side of the light guiding member 161, but may also be provided on opposite sides with respect to the longitudinal direction. Further, the light source may also be a light emitting source other than the LED 210, and a shape of the LED 210 is not limited to the shape shown in
As described above, the drum cartridge 10 is inserted into and extracted from the apparatus main assembly 1A along the rotational axis direction. As shown in
Here, in the drum cartridge 10, there is a liability that the toner scatters and is deposited on the LED 210. In recent years, further speed-up of a processing speed of the image forming apparatus is desired. When an image forming speed of the image forming apparatus increases, a rotational speed of the photosensitive drum also increases. In order to achieve an optically discharging effect, for the photosensitive drum rotating at high speed, equivalent to an optically discharging effect for the photosensitive drum rotating at low speed, it is required that the photosensitive drum is irradiated with light in a larger amount. For that purpose, in the case where a light emission amount of the light source is increased, a temperature of the light source in the neighborhood of a light-emitting point locally becomes high by heat generation of the light source. When a floating matter such as the toner approaches the light-emitting point, there is a liability that the toner is melted by the heat at the surface of the light source and is fixed on the light source surface. When the toner is melted and fixed on the light source surface, the light is blocked by the melt-fixed toner and an amount of the light entering the light guiding member decreases, so that optical discharge of the photosensitive drum is not sufficiently carried out and thus a lowering in image quality is invited. Therefore, in this embodiment, as described below, a gap between the LED 210 and the drum container 11 of the drum cartridge 10 is sealed by a sealing member 240.
[Sealing Member]
Next, a sealing constitution by the sealing member 240 in this embodiment will be described using
The sealing member 240 is disposed on the front side (light emission side) of the LED 210. For this reason, the LED 210 has a constitution in which a periphery thereof is substantially covered with the light source holding member 220, the sealing member holding member 230 and the sealing member 240 except for a through hole 241 described below. That is, the light source holding member 220 has a function as a supporting member for supporting the LED 210, and the sealing member holding member 230 has a function as a covering member for covering the LED 210.
The sealing member 240 is formed by an elastic member including a porous resin material such as sponge and including elastomer or the like. Further, at a position of the sealing member 240 opposing the LED 210 with respect to the longitudinal direction, as shown in
The sealing member holding member 230 includes a passage portion 231 through which a penetration portion 161b of the light guiding unit 16 is capable of passing, as shown in
When the drum cartridge 10 is inserted into the apparatus main assembly 1A, the penetration portion 161b which is a part projecting from the drum container 11 of the light guiding unit 16 toward a downstream side with respect to the insertion direction penetrates the through hole 241 of the sealing member 240 and the passage portion 231 of the sealing member holding member 230. Then, as shown in
The penetration portion 161b of the light guiding unit 16 penetrates the through hole (second through hole) 241 of the sealing member 240 when the drum cartridge 10 is inserted into the apparatus main assembly 1A. The penetration portion 161b is a part of the light guiding unit 16 further on the LED 210 side (light source side) than the one longitudinal end portion of the photosensitive drum 12. In this embodiment, of the light guiding unit 16, a part of the portion projecting from the one longitudinal end portion of the drum container 11 toward the LED 210 side is the penetration portion 161b.
An outer configuration shape of the penetration portion 161b is shown in
Such a through hole 241 is made smaller in cross-sectional shape than the penetration portion 161b of the light guiding unit 16. That is, in the case where the cross-sectional shape of the penetration portion 161b which is a part of the light guiding unit 16 is projected on the sealing member 240 with respect to the longitudinal direction, the through hole 241 in a state (free state) in which the penetration portion 161b penetrates the through hole 241 falls within a range of the cross-sectional shape of the penetration portion 161b. And, a cross-sectional area of the through hole 241 is smaller than a cross-sectional area of the light guiding unit 16 perpendicular to the longitudinal direction of the light guiding unit 16. In this embodiment, the light guiding unit 16 has the same cross-sectional area over the longitudinal direction. In the case where the light guiding unit 16 does not have the same cross-sectional area, the cross-sectional area of the through hole 241 is smaller than the cross-sectional area in a region of the above-described elastic member when the light guiding unit 16 is mounted in the image forming apparatus 1.
Specifically, the radius R2 of the through hole 241 in the free state shown in
By employing such a constitution, when the penetration portion 161b of the light guiding unit 16 penetrates the through hole 241, the sealing member 240, which is the elastic member, is deformed so as to follow the outer configuration of the penetration portion 161b. As a result, an inner peripheral surface of the through hole 241 elastically contacts an outer peripheral surface of the penetration portion 161b penetrating the through hole 241. Then, by the sealing member 240, a gap between the LED 210 and the drum cartridge 10 that is disposed further on the other longitudinal end side than the penetration portion 161b, i.e., on a side upstream of the penetration portion 161b with respect to the insertion direction, is formed. In this embodiment, the gap between the LED 210 and the drum container 11 in which the photosensitive drum 12 is disposed is sealed with the sealing member 240.
Particularly, in the case of this embodiment, the penetration portion 161b which is the part of the light guiding unit 16 penetrates the through hole 241 of the sealing member 240. For this reason, when the drum cartridge 10 is mounted in the apparatus main assembly 1A, it is possible to suppress that a part of the sealing member 240 is deformed and blocks a part of the incident surface 161a of the light guiding member 161. Further, a sealing property can be enhanced by bringing the inner peripheral surface of the through hole 241 into elastic contact with the outer peripheral surface of the through hole 241. For this reason, in the constitution in which the drum cartridge 10 is mounted in the apparatus main assembly 1A, it is possible to suppress not only deposition of the toner on the LED 210 but also a lowering in amount of the light incident on the light guiding member 161.
Further, the sealing member 240 is the elastic member and is provided with the slit 242, so that when the penetration portion 161b penetrates the through hole 241, the sealing member 240 is elastically deformed and the slit 242 opens. For this reason, a reaction force by deformation of the sealing member 240 when the penetration portion 161b is passed through the through hole 241 is very small, so that it is possible to suppress damage on an exchange operation property of the drum cartridge 10.
The passage portion 231 of the sealing member holding member 230 has a shape as shown in
In the case of this embodiment, the passage portion 231 is made larger in cross-sectional shape than the penetration portion 161b. That is, the cross-sectional shape of the penetration portion 161b which is a part of the light guiding unit 16 is projected on the sealing member holding member 230 with respect to the longitudinal direction, the cross-sectional shape of the penetration portion 161b falls within the range of the passage portion 231 and an area (cross-sectional area) of the passage portion 231 is larger than the cross-sectional area of the penetration portion 161b. Specifically, the radius R3 of the semicircular portion 231a of the passage portion 231 is made larger than the radius R1 of the semicircular portion 162a of the light guiding unit 16 shown in
By employing such a constitution, the passage portion 231 has a gap between itself and the outer peripheral surface of the light guiding unit 16 passed through the passage portion 231, i.e., the outer peripheral surface of the penetration portion 161b. As a result, when the drum cartridge 10 is mounted in and dismounted from the apparatus main assembly 1A, it is possible to suppress that the penetration portion 161b of the light guiding unit 16 interferes with the sealing member holding member 230, so that a mounting and dismounting operation of the drum cartridge 10 can be smoothly performed.
Incidentally, in the case of this embodiment, the gap between the passage portion 231 of the sealing member holding member 230 and the penetration portion 161b of the light guiding unit 16 is roughly 1.5 mm. On the other hand, a dimensional difference (thickness) between the inner peripheral surface of the passage portion 231 and the inner peripheral surface of through hole 241 of the sealing member 240 is roughly 2 mm. Accordingly, in a state in which the penetration portion 161b of the light guiding unit 16 penetrates the through hole 241 and the passage portion 231, the sealing member 240 is elastically deformed by roughly 0.5 mm and contacts the outer peripheral surface of the penetration portion 161b. For this reason, a sealing property by the sealing member 240 can be further enhanced.
By employing the above-described constitution of this embodiment, the sealing property of the LED 210 by the sealing member 240 can be enhanced without impairing the exchange operation property of the drum cartridge 10. As a result, a degree of entrance of the toner into the light emitting portion of the LED 210 is decreased, so that it is possible to suppress sticking of the toner onto the surface of the LED 210.
Incidentally, in this embodiment, the shape of the passage portion 231 and the cross-sectional shape of the light guiding unit 16 are as described above, but may also be changed to a circular shape, an elliptical shape, a combination of a plurality of arcuate shapes, or a polygonal shape. In this case, the shape of the through hole 241 of the sealing member 240 may be the shape which conforms to these shapes or may also be a circular shape irrespective of these shapes. In summary, the shape of the through hole 241 may only be required to be a shape such that the inner peripheral surface of the through hole 241 of the sealing member 240 elastically contacts the outer peripheral surface of the penetration portion 161b of the light guiding unit 16 over a substantially full circumference of the penetration portion 161b.
A second embodiment will be described with reference to
An optical discharging device 200A in this embodiment includes, as shown in
The supporting member 250 includes, as shown in
The light source holding member 260 is provided in the apparatus main assembly 1A and movably holds the supporting member 250 in the longitudinal direction. That is, also in the case of this embodiment, the drum cartridge 10 is mountable in and dismountable from the apparatus main assembly 1A in the longitudinal direction, so that the LED 210 supported by the supporting member 250 is movable in the same direction as a mounting-dismounting direction (insertion-extraction direction X of
In the case of this embodiment, the engaging guiding portion 262 is a cut-away portion cut away along the longitudinal direction of a side plate constituting the accommodating portion 261. Further, by inserting the projected guiding portion 253 into the cut-away portion, the guiding portion 253 and the engaging guiding portion 262 are engaged with each other. The engaging guiding portion 262 is formed on each of opposite sides of the supporting member 250 with respect to the widthwise direction similarly as in the case of the guiding portion 253, and is engaged with the guiding portion 253 on each of the opposite sides, and thus movably supports the supporting member 250 with respect to the longitudinal direction (insertion-extraction direction X). In this state, the supporting member 250 is in a float state from a bottom plate of the light source holding member 260 at a lower end portion thereof.
The spring 270 urges the supporting member 250 supporting the LED 210 in a direction opposite to the mounting direction of the drum cartridge 10, i.e., toward the other longitudinal end side. That is, as shown in
Thus, in the case of this embodiment, a constitution in which the LED 210 is supported by the supporting member 250 movable in the insertion-extraction direction X of the drum cartridge 10 and is urged by the spring 270 toward a side opposite to the insertion direction of the drum cartridge 10 into the apparatus main assembly 1A is employed. Here, also in the case of this embodiment, as shown in
For this reason, during mounting of the drum cartridge 10, after the abutment surface 164a of the light guiding unit 16 abuts against the free end surface 252a of the projected portion 252 of the supporting member 250 supporting the LED 210, the light guiding unit 16 and the LED 210 move integrally with each other. Further, at this time, the free end surface 252a and the abutment surface 164a contact each other so as to provide a predetermined gap (distance B) between the LED 210 and the one longitudinal end portion of the light guiding unit 16. For this reason, irrespective of a variation in mounting position of the drum cartridge 10 and a dimensional variation of the light guiding unit 16, it is possible to reduce a variation in distance (gap) between the LED 210 and the incident surface 161a of the light guiding unit 16.
In the case of the above-described first embodiment, the LED 210 is fixed, and therefore, it is desired that the distance A between the incident surface 161a and the LED 210 is set in consideration of the variation in mounting position of the drum cartridge 10 or the like. On the other hand, in the case of this embodiment, the LED 210 is movable in the longitudinal direction, and therefore, even when the mounting position of the drum cartridge 10 somewhat shifts, the LED 210 follows and moves along the drum cartridge 10. For this reason, the distance B between the incident surface 161a and the LED 210 can be made smaller than the distance A in the first embodiment.
Thus, in the case of this embodiment, it is possible to not only reduce the variation in distance B between the LED 210 and the incident surface 161a of the light guiding unit 16, but also decrease the distance B. For this reason, it is possible to not only stabilize an amount of the light emitted from the LED 210 toward the light guiding unit 16, but also decrease loss of the amount of the light. As a result, a degree of a variation in amount of optical discharge light with which the photosensitive drum 12 is irradiated through the light guiding unit 16 can be reduced, so that it is possible to not only achieve a stable (optically) discharging effect, but also realize high efficiency of the optical discharging device.
Also, in such a case of this embodiment, as shown in
Incidentally, a floating constitution of the LED 210 described in this embodiment is an example, and does not restrict a guide shape and an urging means and the like which relate to the floating constitution.
In the cases of the above-described embodiments, as the optical discharging devices, the constitutions in which the residual electric charges on the photosensitive drum are removed by irradiating the photosensitive drum surface with light in a range downstream of the primary transfer roller and upstream of the cleaning blade with respect to the rotational direction of the photosensitive drum were described. However, the present invention may also employ a constitution in which the photosensitive drum surface is irradiated with light by the optical discharging device before the toner image is transferred from the photosensitive drum onto the intermediary transfer belt. In this case, the light guiding member is disposed downstream of the developing device and upstream of the primary transfer roller with respect to the rotational direction of the photosensitive drum.
In the case of the above-described embodiments, the constitution in which the photosensitive unit is the drum cartridge was described. However, the photosensitive unit may also be a process cartridge in which the drum cartridge and the developing device are integrally assembled into a unit mountable and dismountable from the apparatus main assembly.
Further, in the above-described embodiments, the constitution in which the light guiding member is integrally assembled with the photosensitive unit was employed, but a constitution in which the light guiding unit is provided in the apparatus main assembly of the image forming apparatus in which the photosensitive unit is mountable in and dismountable from the apparatus main assembly may also be used.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2020-029865 filed on Feb. 25, 2020, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
JP2020-029865 | Feb 2020 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6678491 | Kido et al. | Jan 2004 | B2 |
8064799 | Tanaka et al. | Nov 2011 | B2 |
9367031 | Wada | Jun 2016 | B2 |
9501033 | Abe et al. | Nov 2016 | B2 |
Number | Date | Country |
---|---|---|
2002-278395 | Sep 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20210263465 A1 | Aug 2021 | US |