None.
None.
None.
1. Field of the Invention
The present invention relates to triboelectric charging materials as applied to a component of an image forming apparatus. Such components may then improve the transport of image forming material such as toner and may also influence toner charging, toner charge distribution and/or the quality of the printed image.
2. Description of the Related Art
Many image forming devices, such as printers, copiers, fax machines, or multi-functional machines, utilize toner to form images on media or paper. The image forming apparatus may transfer the toner from a reservoir to the media via a developer system utilizing differential charges generated between the toner particles and the various components in the developer system. In particular, one or more toner adder rolls may be included in the developer system, which may transfer the toner from the reservoir to a developer roller. The developer roll may then apply the toner to a selectively charged photoconductive substrate forming an image thereon, which may then be transferred to the media.
The present disclosure relates to an image forming device component that includes an elastomeric material having a surface and a triboelectric charging material exposed on the elastomeric material surface. The surface may have a surface roughness in the range of about 0.1 to 5.0 micron (μm) Ra. In method form, a triboelectric charging material may be combined with a liquid coating precursor, applied to an image forming device to form a coating. This may then be followed by removal of a portion of the coating to expose a portion of the triboelectric material to again provide a surface roughness in the range of about 0.1 to 5.0 μm Ra.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
It is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
The present disclosure relates to an image forming apparatus component that utilizes a triboelectric charging material. More specifically, the triboelectric charging material may be employed in a component of the image forming apparatus to charge the image forming material (e.g. toner). A triboelectric charging material herein may therefore be understood as any material associated with a given component that provides for contact electrification wherein a charge may be developed after the component comes into contact with another component in the image forming device. Such contact may therefore include frictional engagement of image forming components that include toner disposed on a surface, such as a developer roller in an electrophotographic printer. Triboelectric charging may therefore result in toner gaining electrons and becoming more negatively charged and/or toner losing electrons and therefore becoming more positively charged.
Toner herein may be understood as any particulate material that may be employed in an electrophotographic (laser) type printer. Toner may therefore include resin, pigments, and various additives, such as wax and charge control agents. The toner may be formulated by conventional practices (e.g. melt processing and grinding or milling) or by chemical processes (i.e. suspension polymerization, emulsion polymerization or aggregation processes.) In addition, the toner may have an average particle size in the range of about 1 to 25 microns (μm), including all values and increments therein. The resins that may be employed in such toners may include polymer or copolymer resins sourced from styrene and acrylate type monomers, as well as polyester based resins. The various pigments which may be included include pigments for producing cyan, black, yellow or magenta toner particle colors.
A variety of components may be present in an image forming device or image forming device cartridge that may be suitable for incorporation of a triboelectric charging material. Such components may therefore include any component that may come in contact with toner and which is capable of generating a triboelectric charge as noted above. This then may include, but not be limited to, a toner addition roller (TAR) or developer roller which may contact with one another, wherein the TAR may be designed to feed or convey toner to the developer roller. A TAR roller may therefore be understood as any component that provides (e.g. transfers) some quantity of toner from a location in the printer or cartridge to a developer roller. The developer roller in turn may then provide toner to a photoconductive (PC) component, such as a PC drum. A developer roller may therefore by understood as any component that provides (feeds or delivers) some amount of toner to a given PC surface. Furthermore, the components herein for incorporation of a triboelectric charging material may also include relatively non-moving components. For example, this may include a doctor blade, which nonetheless engages with toner and undergoes contact with another image forming device component and may therefore be capable of generating a triboelectric charge.
In addition, the components noted above, which may include triboelectric charging material, may also be separately electrically biased to also promote toner transfer via the use of differing potentials, e.g., as between a TAR and developer roller. The toner on the developer roller, as noted, may then be conveyed and applied to the surface of the photoconductor due to a potential difference between the potential areas of the exposed image on the PC drum and the developing potential of the toner on the developer roller.
The triboelectric charging material herein may be sourced from a number of materials. As alluded to above, the materials may, e.g. tend to charge positively (lose electrons) or tend to charge negatively (and gain electrons). Exemplary triboelectric charging material herein may therefore include various polymeric materials. For example, acrylic polymers, which may be understood as polymers containing the following structure:
wherein R1 may be a hydrogen, alkyl or aromatic group and R2 may be an alkyl or aromatic group. The alkyl groups and/or aromatic groups may also be substituted, and may therefore include other functional groups, such as halogens, ether groups, hydroxy groups, etc. For example, one suitable acrylic polymer for use herein is poly(methyl methacrylate) (PMMA). Other polymers contemplated herein include polyester resins, e.g. poly(ethylene terephthalate), poly(acrylonitrile), polyamides, cellulosic polymers, melamine and/or halogenated polymers such as poly(vinyl chloride). The triboelectric charging materials herein may also be characterized as those which have an electrical volume resistivity in the range of about 1×1010 ohm-cm to 1×1016 ohm-cm.
The polymeric material that may be utilized may also be characterized as ones that may include pendant electron donating groups or pendant electron withdrawing groups that may promote contact electrification. By the term “pendant” it may be understood to define a functional group that is attached to a main chain repeat unit of a given polymer. The triboelectric charging material may also beneficially exhibit a relatively low equilibrium moisture uptake, e.g., ≦2.5% by weight. Accordingly, the polymeric triboelectric charging materials may be selected based upon those which indicate a water absorption, as measured by ASTM D570 after 24 hours, in the range of about 0.1 to about 2.5% by weight, including all values and increments therein. Particularly, the polymeric material may exhibit a water absorption in the range of about 0.1 to 0.5% after a 24 hour period as measured by ASTM D570. By way of example, this may again point to the selection of PMMA, which has an ASTM D570 water absorption of ≦0.30%. The selection of a triboelectric charging material with such relatively low moisture uptake may therefore separately improve performance when employed in a given printing device environment.
The triboelectric charging materials may also be in the form of particulate. Such particulate may be in the size range of about 0.1-50 μm, including all values and increments therein. For example, the triboelectric charging material herein may be present in particulate form at a size range between about 1-40 μm, 1-30 μm, etc. In one exemplary embodiment the size range may therefore be in the range of about 10-20 μm. Such size range is reference to the diameter of the particle, i.e. the largest linear dimension through the particle. Furthermore, the triboelectric material may be characterized by a mean particle diameter. Accordingly, with respect to a mean particle diameter, the particles may have a mean diameter by volume of between about 1-15 μm, including all values and ranges therein.
In addition, and by way of example, a developer roller and PC drum herein may define a contact or nip region of nominally 1.0 mm and range from 0.5-1.5 mm, including all values and increments therein. Such nip region may then extend substantially along the length of the roller, which may be about 22-25 cm for a letter or A4 print width. The total force between developer roll and PC drum may be nominally 4 N and range from 2 to 7.5 N, including all values and increments therein. The pressure at the nip may then be nominally 175 g/cm2 and range from 60-650 g/cm2, including all values and increments therein, which may then be suitable for the contact electrification noted herein. In the case of the contact region or nip that may be formed between a doctor blade and developer roller, such may provide a pressure of nominally 580 g/cm2 and range from 230 g/cm2 up to about 1215 g/cm2, including all values and increments therein. It may also be appreciated that the nip location between the developer roller and toner adder roller (which may be in an opposing rotational configuration) may provide a pressure of about 20 g/cm2 to about 90 g/cm2, including all values and increments therein. It is therefore contemplated herein that the pressure in a contact region suitable to provide contact electrification may be from about 20 g/cm2 to about 1500 g/cm2, including all values and increments therein.
The roller 18 may therefore be made by casting a urethane prepolymer mixed with diol (dihydroxy compound) such as a polydiene diol. The urethane prepolymer may include a polcaprolactone ester in combination with an aromatic isocyanate, such as toluene-diisocyanate. The roller may also contain a filler such as ferric chloride and the polydiene diol may include a polyisoprene diol or polybutadiene diol. The urethane developer roller may therefore be prepared by casting such urethane prepolymer mixed with the polydiene diol, along with a curing agent and filler such as ferric chloride powder, in addition to an antioxidant (e.g. a hindered phenol such as 2,2′-methylenebis (4-methyl-6-tertiarybutyl) phenol or 2,6 di-tertiary-4-methyl phenol. After curing, the roller may then be baked to oxidize the outer surface, which may then be electrically resistive. It is also contemplated herein that with respect to any such casting operation, the triboelectric charging materials may be dispersed in such casting mixtures.
In an exemplary embodiment, the roller 18 may be prepared from Hydrin RTM epichlorohydrin elastomers, available from Zeon Chemicals Incorporated. In yet another exemplary embodiment, the roller 18 may be prepared from silicone, acrylonitrile-butadiene rubber (NBR) or other elastomers available in the market known commonly to those skilled in this field. The roller may then be coated. For example, the roller may be coated with a polyurethane type liquid coating, which may therefore include one type of polyurethane resin or a mixture of such resins. Such polyurethanes may also include moisture cured systems and may be sourced from ester-based polyurethanes formed from aromatic diisocyanates, such as TDI. The urethanes may also include polysiloxane type soft segments, such as a soft segment sourced from a hydroxy-terminated poly(dimthylsiloxane) or PDMS. One exemplary polyurethane coating therefore includes Lord Chemical CHEMGLAZE V022; Chemtura's VIBRATHANE 6060; and Chisso Corporation's Silaplane FMDA21 at a 50-50/5 ratio.
Expanding upon the above, the coating layer on the roller may exhibit an electrical volume resistivity in the range of about 1×108 ohm-cm to about 1×1013 ohm-cm, over a variety of environmental conditions, including all values and increments therein. For example, the electrical volume resistivity may be in the range of about 1×1010 ohm-cm to 1×1012 ohm-cm at 15.5° C. and 20% relative humidity (RH) or 1×108 ohm-cm to 1×1010 ohm-cm at 15.5° C. and 20% RH. In addition, the roller may exhibit a Shore A hardness in the range of 20 to 80, including all values and increments therein, such as 30 to 50, 40, etc.
The triboelectric charging material may therefore be specifically combined with the liquid coating precursor prior to coating of a given roller. The tribolectric charging material may be combined with the coating precursors at a loading of between about 5-40% by weight, including all values and increments therein. For example, PMMA particulate having a size of between about 10-20 μm may be combined with a polyurethane liquid coating at about a 15-25% loading (wt) and applied to the surface of the roller to provide a coating thickness of about 140 μm. The PMMA particles can be purchased from Soken Chemical and Engineering Co. Ltd. (for instance MX1500-H), or similar grades from other manufacturers. This may then be followed by a finishing operation, in which the surface of the roller may be ground to remove about 30 μm which may then expose all or a portion of the triboelectric particulate material. Such grinding (physical removal of material) may include centerless grinding, wherein the outer diameter of the roller may be adjusted (ground or reduced) to a desired dimension utilizing a grinding wheel, workblade and regulating wheel, wherein the roller is not mechanically constrained. Other grinding operations such as traverse or plunge grinding or sanding operations may be employed as the finishing operation. Sanding operations may be understood as either wet or dry sanding wherein roller material may be removed by the use of sandpaper that may be as wide as the roller which roller may then be loaded against the paper for material removal.
It may therefore be appreciated that for a given roller coating thickness, the finishing operation may remove 5-40% of such coating thickness in order to expose a portion of the triboelectric material. In addition, the roller herein may specifically have a final thickness (surface of shaft 22 to outer roller surface) of equal to or greater than about 3.5 mm. In addition, the thickness may be in the range of about 3.5 mm to 10.0 mm, including all values and ranges therein.
By adjustment of the above referenced coating operation, and ensuing grinding operation, the coating containing particulate triboelectric material may be configured herein to provide that the amount of triboelectric material removed due to grinding still leaves an adequate amount of surface triboelectric material that is sufficient for contact electrification of a selected toner. In such manner it may be appreciated that for a given roller surface area (SAR), the surface area of triboelectric material (SATM) may account for a portion of the roller surface area. For example, the surface area of triboelectric material (SATM) may be equal to about (0.01-0.50)×(SAR), including all values and increments therein. In addition, upon removal of triboelectric material, voids may formed on the roller surface. Accordingly, for a given roller having a surface area (SAR) the roller may also include a plurality of voids having an overall surface area (SAV) wherein SAV=(0.02-0.50)×(SAR)
It may also be appreciated that during a grinding operation, a loss of triboelectric particulate material may lead to a void formation in the roller surface (i.e. the region previously occupied by triboelectric particulate material). For example, in that situation wherein the polyurethane coating liquid contains about 20% by weight loading of a selected triboelectric particulate, the grinding operation may lead to a loss of about 50% or even more of the triboelectric particulate. This may then result in an exposed coating surface area that contains about 10% voids and 10% triboelectric particulate material. More generally, the present disclosure contemplates that about 10%-90% of the triboelectric charging material may be removed from the surface, including all values and increments therein. For example, about 30%-70% may be removed, or about 40%-60%, to provide voids in the surface.
It may therefore now be appreciated that by coating and grinding, a surface may be provided that may have triboelectric charging capability as well as a desired surface finish. Accordingly, a surface roughness of between 0.1 to 5.0 microns Ra may be provided, including all values and increments therebetween. For example, the roller may have Ra values of between about 0.25-1.5 μm. It may be appreciated therefore that Ra can measured using a contact profilometer incorporating a stylus such as a TKL-100 from HommelWerke. This stylus has a radius of 5 microns and maintains contact with the surface to be characterized at a force of 0.5 mN. The stylus is dragged across the surface with a trace length of 4.8 mm using a cutoff length of 0.8 mm. The surface profile is plotted and a mean line is generated. The Ra is the average deviation of the true surface from the theoretical mean surface across the assessment length.
Attention is therefore directed to
The fraction of triboelectric particles removed from the roller surface may therefore be dependent upon grinding conditions and the adhesion or bonding properties of the particulate in the coating material. In a preferred embodiment, the polyurethane coating liquid contains about 20% by weight loading of Soken Chemical and Engineering Co. Ltd MX1500-H PMMA beads; the grinding operation leads to a loss of about 30-80% of this triboelectric particulate. This then results in an exposed coating surface area (SAR) exhibiting a surface area of voids (SAV) equal to about (0.06-0.16)×(SAR) and surface area of PMMA material (0.04-0.14)×(SAR). Mean toner particle diameter by volume is about 6.5 μm in this embodiment. In a second preferred embodiment, the polyurethane coating liquid contains about 10% by weight loading of Soken Chemical and Engineering Co. Ltd MX1500-H PMMA 15 μm diameter beads and the grinding operation leads to a loss of about 20-90% of this triboelectric particulate. This then results in an exposed coating surface area (SAR) exhibiting a surface area of voids (SAV) equal to about (0.02-0.09)×(SAR) and surface area of PMMA material (0.01-0.08)×(SAR). Mean toner particle diameter by volume is about 6.5 μm in this exemplary embodiment.
Toner mass flow on the developer roll may then determined by a combination of the surface roughness imparted by the finishing operation as assessed by a profilometer; and by the fraction of the roller surface area covered by voids (SAV) and triboelectric material (SATM). Referring to
In such regard, it may now be appreciated that the triboelectric material herein may provide the ability to more effectively convey toner in a printer by use of electric fields as opposed to mechanical forces. For example, the use of triboelectric charging may provide the opportunity to increase the formation of properly charged toner in a given electrostatic (laser) printing device. That is, it is contemplated herein that the use of a toner adder roller 16 in contact with developer roller 18 containing the above referenced triboelectric charging material may provide toner with a charge increase of up to about 10 microcoulombs/gram (μC/g), including all values and increments therein as compared to a developer roller without the triboelectric particles. Accordingly, the triboelectric charging material in the developer roller 18 may add a charge to toner of between about 1-10 μC/g, or between 5-10 μC/g, etc. The tribo charge imparted to the toner at this nip may then improve the toner addition function by enabling an electric field between the TAR and developer roll to electrostatically drive and adhere this triboelectrically charged toner onto the developer roll.
Expanding upon the above, the triboelectric material herein as applied to the developer roller may be particularly useful to deal with problems due to relatively low charge (e.g. <20 μC/g) or wrong-sign toner. In such regard, it may be appreciated that an acceptable toner charge may be in the range of about 20-45 μC/g. Such low charge or wrong-sign toner may undesirably be developed and/or sent to the photoconductive drum cleaner, belt cleaner or paper (as background haze), which may be quantified as the variable of “toner to cleaner” or TTC, in units of milligrams per page (mg/page). The value of TTC may therefore be conveniently determined and reliably compared, based upon comparative print jobs wherein there is targeted amount of covered text (e.g 5.0% covered text) at a specified solid area coverage (e.g. about 0.44 mg/cm2 solid area coverage) with respect to a given sample of toner and a given number of toner cleaning components.
Another problem with respect to low charge or wrong-sign toner is doctor blade filming, in which low charge or wrong-sign toner may accumulate on the doctor blade at the doctor blade entry nip, thereby creating a barrier for toner to be uniformly regulated by the doctor blade. Furthermore, “speckles” may be created due to low-charge or wrong-sign toner accumulating on the exit nip of the doctor blade, which may then periodically fall free on to the surface of the developer roller. In this situation, toner accumulation may develop on the PC drum and may appear on a printed page as an objectionable toner spot.
Toner to cleaner (TTC) data was therefore generated on an exemplary roller in accordance with the present disclosure to demonstrate the effectiveness regarding the use of triboelectric charging material and contact electrification of toner as disclosed herein. Accordingly, a developer roller was prepared that employed a urethane coating along with the use of 15 micron PMMA particulate. Specifically, a urethane liquid coating was prepared that contained 20% by weight of PMMA. The urethane liquid coating was, as noted above, made available through the use of Lord Chemical CHEMGLAZE V022; Chemtura's VIBRATHANE 6060; and Chisso Corporation's Silaplane FMDA21 at a 50-50/5 ratio. The roller was then ground to provide a surface finish of Ra=0.5-1.5 microns. The value of TTC was 5 mg/page as compared to 40 mg/page in the absence of the PMMA triboelectric material. It may therefore be appreciated that in the absence of triboelectric charging material as disclosed herein, TTC can reach 10-50 mg/page for a two page print job, exceeding the 12.4 mg/page required to print a 5% coverage text page using toner at approximately 0.44 mg/cm2 solid area coverage.
In another aspect of the doctor blade filming problem, in which low charge or wrong-sign toner may accumulate on the doctor blade at the doctor blade entry nip, the voids created by the partial removal of triboelectric particulate material during a grinding operation (
The foregoing description of several methods and an embodiment of the invention has been presented for purposes of illustration. It is not intended to be exhaustive or to limit the invention to the precise steps and/or forms disclosed, and obviously many modification and variations are possible in light of the above teaching. It is intended that the scope of the invention be defined by the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
3731146 | Bettiga et al. | May 1973 | A |
4656964 | Kanno et al. | Apr 1987 | A |
5215846 | Fuller et al. | Jun 1993 | A |
5458937 | Nakamura et al. | Oct 1995 | A |
5666620 | Kobayashi | Sep 1997 | A |
5948584 | Hashimoto et al. | Sep 1999 | A |
6072975 | Kyung | Jun 2000 | A |
6123417 | Bard et al. | Sep 2000 | A |
6253052 | Cornelius et al. | Jun 2001 | B1 |
6319647 | Gutman et al. | Nov 2001 | B1 |
6360069 | Mimura et al. | Mar 2002 | B1 |
6711371 | Koyama et al. | Mar 2004 | B2 |
7727619 | Okamoto et al. | Jun 2010 | B2 |
20050154149 | Beach et al. | Jul 2005 | A1 |
20060233571 | Askren et al. | Oct 2006 | A1 |
20060275049 | Bethel et al. | Dec 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20080240810 A1 | Oct 2008 | US |