This application is based on and claims priority under 35 USC 119 from Japanese Patent Application No. 2007-166492 filed Jun. 25, 2007.
1. Field of the Invention
The present invention relates to an image forming apparatus and an image forming method.
2. Description of the Related Art
Generally, a so-called tandem type color image forming apparatus is known as an electrophotographic color image forming apparatus such as a color copying machine, a color printer, and a color facsimile. In the tandem type color image forming apparatus having black (K), yellow (Y), magenta (M), and cyan (C) image forming units, toner images formed by the image forming units are sequentially transferred onto an intermediate transfer member, and the toner images on the intermediate transfer member are transferred onto a recording medium, thereby forming the color image on the recording medium.
In the tandem type color image forming apparatus, when rough paper such as embossed paper having low surface smoothness is used as the recording medium, a transfer potential at a recessed portion in a surface of the recording medium is lower than that of a projected portion. Therefore, the image forming unit for forming a transparent toner image is disposed on the upper-most stream side in a process direction, the toner image formed by the transparent toner is transferred onto the intermediate transfer member, and the black (K), yellow (Y), magenta (M), and cyan (C) toner images are transferred onto the transparent toner image while superposed on one another. This enables a transfer property to be improved when the toner images on the intermediate transfer member are transferred onto the recording medium.
In the case where plain paper having the high surface smoothness is used as the recording medium in the image forming apparatus having the above configuration, namely, even in the case where the transfer of the transparent toner image onto the intermediate transfer member is not required, when a transparent-toner image forming unit (photosensitive drum) is not retracted from the intermediate transfer member but is always brought into contact with the intermediate transfer member, the transparent-toner photosensitive drum is abraded to shorten a lifetime of the image forming unit.
However, in the configuration in which the image forming unit is retracted, a gear mechanism for moving the image forming unit is easily damaged.
Additionally, the color shift is increased among each of the color toner image transferred onto the intermediate transfer member due to eccentricity of the image carrier or gear.
In accordance with an aspect of the present invention, an image forming apparatus includes a transparent image forming unit having a transparent image carrier in which a transparent toner image is formed; plural color image forming units arranged at a downstream side in a process direction of the transparent image forming unit, the color image forming units having color image carriers at which yellow, magenta, and cyan color toner images are formed respectively; a black image forming unit arranged between the transparent image forming unit and the color image forming unit or at the downstream side in the process direction of the color image forming units, the black image forming unit having a black image carrier in which a black toner image is formed; an intermediate transfer member to which the toner images formed in the transparent image carrier, the color image carriers, and the black image carrier, are transferred; a retracting mechanism that brings the transparent image carrier into contact with the intermediate transfer member and separates the transparent image carrier from the intermediate transfer member; and a moving unit that brings the intermediate transfer member into contact with the color image carrier and separates the intermediate transfer member from the color image carrier.
An image forming apparatus 10 according to an exemplary embodiment of the present invention will be described below with reference to the drawings.
The image forming apparatus 10 performs image processing based on image information transmitted from an image data input apparatus such as a personal computer (not shown), and the image forming apparatus 10 forms an image on recording paper P which is of the recording medium through an electrophotographic process. As shown in
The image forming portion 12 includes image forming units 18Y, 18M, 18C, and 18K which form the yellow (Y), magenta (M), cyan (C), and black (K) toner images in the order from the upstream side in a rotating direction of a photosensitive drum 20 (arrow A direction, hereinafter referred to as “process direction”).
An image forming unit 18CT which forms the transparent toner (clear toner, CT) image is provided on the upstream side in the process direction of the image forming unit 18Y. In the following description, one of the letters Y, M, C, K, and CT is added to the numeral when the yellow (Y), magenta (M), cyan (C), black (K), and transparent (CT) colors are distinguished from one another, and the letters Y, M, C, K, and CT are neglected when the yellow (Y), magenta (M), cyan (C), black (K), and transparent (CT) colors are not distinguished from one another. The simple “conveying direction” shall mean a conveying direction of the recording paper P.
The image forming unit 18 includes a photosensitive drum 20. A primary transfer roller 22, a cleaning device 24, a discharger 25, a charger 26, an LED array head 28, and a development device 30 are provided around the photosensitive drum 20 in the order of the rotating direction of the photosensitive drum 20.
An intermediate transfer member 31 is provided below the image forming units 18CT, 18Y, 18M, 18C, and 18K. The intermediate transfer member 31 includes a backup roller 34, tension rollers 32 and 33 provided along the process direction, and an endless intermediate transfer belt 36 entrained about the backup roller 34 and tension rollers 32 and 33.
The image forming units 18CT, 18Y, 18M, 18C, and 18K are arranged on a line in the order from the upstream side in the proceeding direction of the intermediate transfer belt 36 (arrow B direction). At this point, the primary transfer rollers 22CT, 22Y, 22M, 22C, and 22K are located at corresponding positions to the photosensitive drums 20CT, 20Y, 20M, 20C, and 20K respectively of the image forming units 18CT, 18Y, 18M, 18C, and 18K. The intermediate transfer belt 36 is provided between the primary transfer rollers 22CT, 22Y, 22M, 22C and the photosensitive drums 20CT, 20Y, 20M, 20C, and 20K.
A detailed positional relationship between the intermediate transfer member 31 and the image forming units 18CT, 18Y, 18M, 18C, and 18K will be described later.
The surface of the photosensitive drum 20 is evenly charged by the charging device 26, and line exposure is performed by the LED array head 28, whereby an electrostatic latent image is formed in the surface of the photosensitive drum 20. The development device 30 develops the electrostatic latent image to form the toner image. The toner image on the photosensitive drum 20 is primary-transferred onto the intermediate transfer belt 36 by electrostatic suction generated by a transfer bias applied to the primary transfer roller 22.
After the toner image is transferred to the intermediate transfer belt 36, the untransferred residual toner remaining on the photosensitive drum 20 is removed by the cleaning device 24. The surface of the photosensitive drum 20 is erased by the discharger 25, and the surface of the photosensitive drum 20 is charged again for the next image forming cycle by the charger 26.
In the image forming apparatus 10 of the exemplary embodiment, when the full-color image is formed, the same image forming process as noted above is performed in each of the image forming units 18CT, 18Y, 18M, 18C, and 18K at timing in which a difference in relative position is considered in the image forming units 18CT, 18Y, 18M, 18C, and 18K. That is, the toner images formed in the photosensitive drums 20CT, 20Y, 20M, 20C, and 20K are transferred onto the intermediate transfer belt 36 by the primary transfer rollers 22CT, 22Y, 22M, 22C, and 22K respectively, and the transparent, yellow, magenta, cyan, and black toner images are sequentially transferred onto the intermediate transfer belt 36 while superposed on one another, thereby forming the full-color image.
A paper feed portion 14 is disposed on a side of the image forming portion 12. Paper feed cassettes 38 and 40 in which sheets of recording paper P are accommodated are provided in the paper feed portion 14. The recording paper P is fed to a color image forming portion 12 from one of the paper feed cassettes 38 and 40, and the recording paper P is delivered to a secondary transfer position C at predetermined timing by plural conveying rollers 44 of a conveying mechanism 42.
The secondary transfer position C shall mean a position where the intermediate transfer belt 36 is nipped between the backup roller 34 supporting the intermediate transfer belt 36 and a secondary transfer roller 48 pressed against the backup roller 34. The full-color toner image formed on the intermediate transfer belt 36 is transferred to the recording paper P, conveyed to the secondary transfer position C at predetermined timing, by the electrostatic suction generated by the transfer bias applied to the secondary transfer roller 48.
At this point, by the backup roller 34 and secondary transfer roller 48, the untransferred residual toner remaining on the intermediate transfer belt 36 which is not transferred in the recording paper P is squeezed by a cleaning blade 52 of an intermediate transfer belt cleaning device 50 provided near the tension roller 32, and the residual toner is removed from the surface of the intermediate transfer belt 36.
A conveying belt 58 entrained about two rollers 54 and 56 is provided on the downstream side of the secondary transfer position C. The recording paper P to which the full-color toner image on the intermediate transfer belt 36 is transferred is conveyed by the conveying belt 58 to a fixing device 60 which is of a heat treatment portion provided on the downstream side of the conveying belt 58.
A pressurizing roller 60A and a heating roller 60B of the fixing device 60 perform a fixing process to fix the toner image to the recording paper P. That is, the image is formed in the recording paper P. The recording paper P in which the image is formed is discharged to a discharge tray 57 provided outside the image forming apparatus 10.
The positional relationship between the image forming unit 18 and the intermediate transfer member 31 will be described below.
As described above, the transparent-toner, yellow, magenta, cyan, and black image forming units 18 are arranged in the order of transparent-toner, yellow, magenta, cyan, and black such as in the order from the upstream side in the process direction while the photosensitive drum 20 faces the intermediate transfer belt 36.
As shown in
As shown in
The housing 16 is supported in the image forming apparatus 10 while being able to be vertically moved along guide rails 72 provided in a main body of the image forming apparatus 10.
An eccentric cam 76 constituting a retracting member 74 abuts on a lower surface of the housing 16. A gear (not shown) is attached to a shaft 76A of the eccentric cam 76, the gear engages a driving gear attached to a motor shaft (not shown), and the eccentric cam 76 is rotated by rotation of a motor.
The photosensitive drum 20CT, cleaning device 24CT, discharger 25, charger 26CT, LED array head 28CT, and development device 30CT which are supported by the housing 16 are vertically moved when the eccentric cam 76 is rotated to vertically move the housing 16.
The transparent-toner image forming unit 18CT is configured to be able to be brought into contact with and separated from the intermediate transfer belt 36 (see
The retracting member 74 is provided only in the transparent-toner image forming unit 18CT, while the yellow, magenta, cyan, and black image forming units 18Y, 18M, 18C, and 18K are fixed so as not to be vertically moved.
As shown in
A belt retracting member 80 is provided between the yellow photosensitive drum 20Y (primary transfer roller 22Y) and the magenta photosensitive drum 20M (primary transfer roller 22M).
Because the belt retracting members 78 and 80 have the same configuration, the configuration of the belt retracting member 78 will be described by way of example.
As shown in
The housing 82 is formed in a substantial U-shape in section, and a long hole (not shown) is made along a vertical direction in a sidewall in the longitudinal direction of the housing 82. A shaft 83A of a roller member 83 is supported in the long hole, and the roller member 83 may vertically be moved in the housing 82 along the long hole while a part of the roller member 83 is exposed from an opening side of the housing 82.
A compression spring 86 is provided between the shaft 83A of the roller member 83 and a bottom portion 82A of the housing 82, and one end of the compression spring 86 abuts on the shaft 83A of the roller member 83. Therefore, the roller member 83 is biased upward.
As shown in
As shown in
As shown in
As shown in
When the roller member 83 of the belt retracting member 80 is raised, the roller member 83 is brought into contact with the backside of the intermediate transfer belt 36 to push up the intermediate transfer belt 36 between the yellow image forming unit 18Y and the magenta image forming unit 18M as shown in
When the roller member 83 of the belt retracting member 78 and the roller member 84 of the belt retracting member 80 are raised, the roller members 83 and 84 are brought into contact with the backside of the intermediate transfer belt 36 to push up the intermediate transfer belt 36 between the yellow image forming unit 18Y and the magenta image forming unit 18M and between the transparent-toner image forming unit 18CT and the yellow image forming unit 18Y as shown in
When the photosensitive drum 20 is not brought into contact with the intermediate transfer belt 36, the rotation of the photosensitive drum 20 is stopped such that the image forming unit 18 does not perform the image forming operation.
The primary transfer roller 22 provided on the other side of the intermediate transfer belt 36 than the side where the photosensitive drum 20 of the image forming unit 18 is provided has the same configuration as the belt retracting member 78 and 80 shown in
Therefore, when the intermediate transfer belt 36 is raised by the roller members 83 and 84 of the belt retracting members 78 and 80, the primary transfer roller 22 is also raised by the signal from the control portion 41 if needed.
A control panel (not shown) is provided in the image forming apparatus 10, and a user inputs an image forming mode. The user may select a full-color image forming mode and a monochrome image forming mode on the control panel. When the user inputs the image forming mode, the control portion 41 moves the belt retracting members 78 and 80, the primary transfer roller 22, and the transparent-toner image forming unit 18CT.
As shown in
The sensors 46 and 47 are connected to the control portion 41. When the light quantity detection signal is input to the control portion 41, the control portion 41 makes a determination of the smoothness of the transfer surface of the recording paper P according to the light quantity detection signal.
For example, the light quantity reflected by the transfer surface of the recording paper P is increased when the plain paper (the difference of about 10 μm between the recessed portion and the projected portion in the surface) having the high smoothness of the transfer surface is used as the recording paper P. The light quantity reflected by the transfer surface of the recording paper P is decreased when the embossed paper (special paper in which irregularity is made in the surface thereof, the difference of 40 μm to 60 μm between the recessed portion and the projected portion in the surface, and thickness of 100 μm to 260 μm) having the low smoothness of the transfer surface is used as the recording paper P. Therefore, the control portion 41 determines that the recording paper P is the plain paper when the light acceptance sensor accepts the large light quantity, and the control portion 41 determines that the recording paper P is the embossed paper when the light acceptance sensor accepts the small light quantity.
Operations in the image forming mode will be described below.
The case in which the embossed paper is used as the recording paper P to form the full-color image in the embossed paper will first be described. In this case, “FC+CT” is shown in the drawings because the full-color image (FC) is formed in the embossed paper using the transparent toner (CT).
The embossed paper which is of the recording paper P is accommodated in one of the paper feed cassettes 38 and 40, and the full-color image forming mode is input on the control panel.
At this point, as shown in
Therefore, the transparent toner image is transferred onto the transfer surface of the intermediate transfer belt 36, and the yellow, magenta, cyan, and black toner images are sequentially transferred onto the transparent toner image. Then, the full-color toner image transferred onto the intermediate transfer belt 36 is transferred to the embossed paper conveyed to the secondary transfer position C.
The case in which the plain paper is used as the recording paper P to form the full-color image in the plain paper will be described. In this case, “FC” is shown in the drawings because the full-color image (FC) is formed in the plain paper without using the transparent toner (CT).
The plain paper which is of the recording paper P is accommodated in one of the paper feed cassettes 38 and 40, and the full-color image forming mode is input on the control panel.
At this point, the image forming operation of the transparent-toner image forming unit 18CT is stopped. As shown in
Therefore, the yellow, magenta, cyan, and black toner images are sequentially transferred onto the transfer surface of the intermediate transfer belt 36, and the full-color toner image transferred onto the intermediate transfer belt 36 is transferred to the plain paper conveyed to the secondary transfer position C.
The case in which the plain paper is used as the recording paper P to form the monochrome image in the plain paper will be described. In this case, “BW” is shown in the drawings because the monochrome image (BW) is formed in the embossed paper without using the transparent toner (CT).
The plain paper which is of the recording paper P is accommodated in one of the paper feed cassettes 38 and 40, and the monochrome image forming mode is input on the control panel.
At this point, the image forming operations of the transparent-toner, yellow, magenta, and cyan image forming units 18CT, 18Y, 18M, and 18C are stopped. As shown in
Therefore, only the black toner image is transferred onto the transfer surface of the intermediate transfer belt 36, and the black toner image transferred onto the intermediate transfer belt 36 is transferred to the plain paper conveyed to the secondary transfer position C.
The case in which the embossed paper is used as the recording paper P to form the monochrome image in the embossed paper will be described. In this case. “BW+CT” is shown in the drawings because the monochrome image (BW) is formed in the embossed paper using the transparent toner (CT).
The embossed paper which is of the recording paper P is accommodated in one of the paper feed cassettes 38 and 40, and the monochrome image forming mode is input on the control panel.
At this point, the image forming operations of the yellow, magenta, and cyan image forming units 18Y, 18M, and 18C are stopped. As shown in
Therefore, the transparent toner image is transferred to the transfer surface of the intermediate transfer belt 36, then the black toner image is transferred onto the transparent toner image, and the monochrome toner image transferred onto the intermediate transfer belt 36 is transferred to the embossed paper conveyed to the secondary transfer position C.
Action of the image forming apparatus of the exemplary embodiment will be described below.
In the case where the full-color image or the monochrome image is formed in the plain paper having the high surface smoothness, it is not necessary to transfer the transparent toner image onto the intermediate transfer belt 36. Therefore, the transparent-toner image forming unit 18CT is retracted from the intermediate transfer belt 36.
When compared with the case in which the transparent-toner image forming unit 18CT is always brought into contact with the intermediate transfer belt 36, the friction of the transparent-toner photosensitive drum 20CT may be suppressed to lengthen the lifetime of the photosensitive drum 20CT.
In the case where the monochrome image is formed in the recording paper P (embossed paper or plain paper), it is necessary to transfer only the black toner image or the transparent-toner and black toner images onto the intermediate transfer belt 36, and it is not necessary to transfer the yellow, magenta, and cyan toner images. Therefore, the yellow, magenta, and cyan image forming units 18Y, 18M, and 18C are retracted from the intermediate transfer belt 36 by the belt retracting members 78 and 80.
When compared with the case in which the yellow, magenta, and cyan image forming units 18Y, 18M, and 18C are always brought into contact with the intermediate transfer belt 36, the friction of the yellow, magenta, and cyan photosensitive drums 20Y, 20M, and 20C may be suppressed to lengthen the lifetimes of the yellow, magenta, and cyan photosensitive drums 20Y, 20M, and 20C.
Because the yellow, magenta, and cyan image forming units 18Y, 18M, and 18C are mot moved, the eccentricity or shift is hardly generated in the yellow, magenta, and cyan photosensitive drums 20Y, 20M, and 20C. Accordingly, the generation of the color shift is suppressed compared with the configuration in which the yellow, magenta, and cyan image forming units 18Y, 18M, and 18C are moved. Additionally, because a gear (not shown) provided on the side of the image forming unit 18 is not brought into contact with and separated from a driving source (driving gear) which is provided on the main body side of the image forming apparatus 10 to drive the image forming unit 18, the gear is hardly damaged.
When the color image is formed in the embossed paper, the belt retracting member 80 and the belt retracting member 78 bring the intermediate transfer belt 36 into contact with the yellow, magenta, and cyan photosensitive drums 20Y, 20M, and 20C and the transparent-toner photosensitive drum 20CT. When the monochrome image is formed in the embossed paper, the belt retracting member 80 retracts the intermediate transfer belt 36 from the yellow, magenta, and cyan photosensitive drums 20Y, 20M, and 20C, the belt retracting member 78 retracts the intermediate transfer belt 36 from the transparent-toner photosensitive drum 20CT, and the retracting member 74 brings the transparent-toner photosensitive drum 20CT into contact with the intermediate transfer belt 36. When the color image is formed in the plain paper, the belt retracting member 80 brings the intermediate transfer belt 36 into contact with the yellow, magenta, and cyan photosensitive drums 20Y, 20M, and 20C, and the belt retracting member 78 retracts the intermediate transfer belt 36 from the transparent-toner photosensitive drum 20CT. When the monochrome image is formed in the plain paper, the belt retracting member 80 retracts the intermediate transfer belt 36 from the yellow, magenta, and cyan photosensitive drums 20Y, 20M, and 20C, and the belt retracting member 78 retracts the intermediate transfer belt 36 from the transparent-toner photosensitive drum 20CT. That is, it is not necessary that the transparent-toner photosensitive drum 20CT be moved in a direction in which the transparent-toner photosensitive drum 20CT is retracted from the intermediate transfer belt 36, the moving amount of the transparent-toner photosensitive drum 20CT may be reduced.
When the image forming unit 18 performs the image forming operation while the photosensitive drum 20 is not brought into contact with the intermediate transfer belt 36, because the cleaning device 24 cleans the surface of the photosensitive drum 20 while the toner is not put on the surface of the photosensitive drum 20, the surface of the photosensitive drum 20 is easily abraded. Therefore, when the photosensitive drum 20 is not brought into contact with the intermediate transfer belt 36, the image forming operation of the image forming unit 18 is stopped. This enables the abrasion of the photosensitive drum 20 to be suppressed to lengthen the lifetime of the photosensitive drum 20.
The LED array head 28CT is positioned in the housing 16 to which the transparent-toner photosensitive drum 20CT is attached, and the photosensitive drum 20CT and the LED array head 28CT are moved together when the housing 16 is moved. Because an exposure length is not changed even if the photosensitive drum 20CT is moved, the density is not changed in the electrostatic latent image formed in the photosensitive drum 20CT. Accordingly, the generation of the unevenness may be suppressed in the image formed in the recording paper P.
The transparent-toner image forming unit 18CT is arranged on the upstream side in the process direction, and the transparent toner image is first transferred onto the intermediate transfer belt 36. In the case where the full-color image is formed on the transparent toner image, the yellow, magenta, cyan, and black toner images are sequentially transferred. Therefore, the five-layer toner image including the transparent, yellow, magenta, cyan, and black toner layers is formed on the intermediate transfer belt 36. At this point, the transparent toner image is formed in the bottom layer of the five-layer toner image. That is, because the transparent toner image is interposed between the color (yellow, magenta, and cyan) toner images and the intermediate transfer belt 36, the transfer property of the toner image is not lowered and the high-quality image is formed on the recording paper P, even if the embossed paper having the low smoothness of the transfer surface is used as the recording paper P onto which the toner image on the intermediate transfer belt 36 is transferred.
In the exemplary embodiment, the black image forming unit 18K is arranged on the lowermost stream side in the process direction. Therefore, a time (so-called FPOT (First Printout Time)) until the initial recording paper P is output since the image formation is completed to the initial recording paper P may be shortened in the monochrome image forming mode.
Experimental results for confirming the effect of the invention will be described below.
The experiment for a difference in color shift amount of the color image formed in the recording paper P is performed, in the conventional case in which the image forming unit 18 is moved to retract the photosensitive drum 20 from the transfer surface of the intermediate transfer belt 36, and in the case of the exemplary embodiment in which the belt retracting members 78 and 80 move the transfer surface of the intermediate transfer belt 36 to retract the transfer surface of the intermediate transfer belt 36 from the photosensitive drum 20.
The relative misregistration between the two colors is measured by forming an image position detecting pattern (chevron pattern) shown in
As shown in
On the contrary, in the exemplary embodiment, the color shift amount generated by driving the intermediate transfer belt 36 becomes 30 μm in the color image, when the belt retracting members 78 and 80 move the transfer surface of the intermediate transfer belt 36 to retract the transfer surface of the intermediate transfer belt 36 from the photosensitive drum 20.
Accordingly, when the belt retracting members 78 and 80 move the transfer surface of the intermediate transfer belt 36, compared with the conventional configuration in which the image forming unit 18 is moved, the color shift amount is largely reduced in the color image formed in the recording paper P to obtain the excellent image stability.
In the exemplary embodiment, the transparent-toner image forming unit 18CT (photosensitive drum 20CT) is retracted from the transfer surface of the intermediate transfer belt 36 by the retracting member 74. However, even if the color shift is generated in the transparent toner image, because the transparent toner is not visible, it is not necessary that the transparent toner image be accurately registered with other color toner images. Accordingly, even if the transparent-toner image forming unit 18CT is configured to be moved by the retracting member 74, there is substantially no risk of having an influence on the image stability.
Referring to
As can be seen from the graph of
The lifetime of the photosensitive drum 20 is measured by performing a running test in which numerical values assumed in the actual usage of the photosensitive drum 20 in the market are used as a transparent toner usage rate (embossed paper usage rate) and a ratio of the monochrome image forming mode and the color image forming mode (use of transparent toner: no use of transparent toner=1:50, and monochrome image forming mode: color image forming mode=4:6).
A half-tone image formed in the recording paper P is observed, and the lifetime of the photosensitive drum 20 is judged from an image defect (generation of a streak or a white spot). The lifetime of the transparent-toner photosensitive drum 20 is judged by a combination with another photosensitive drum 20 (in the embodiment, cyan photosensitive drum 20C) in the midpoint of the running test.
Table 1 shows the number of sheets of the recording paper P when the lifetime of the photosensitive drum 20CT is ended. The transparent toner (embossed paper) is used once each 50 times in both the comparative example and the embodiment. In the comparative example, even if the transparent toner is not used, the transparent-toner image forming unit 18CT (photosensitive drum 20CT) is not retracted from the transfer surface of the intermediate transfer belt 36. In the exemplary embodiment, when transparent toner is not used, the transparent-toner image forming unit 18CT (photosensitive drum 20CT) is retracted from the transfer surface of the intermediate transfer belt 36, and the image forming operation is stopped.
As shown in Table 1, in the comparative example, the lifetime of the photosensitive drum 20CT is ended when the image formation is performed for the about 15,000 sheets of recording paper P. In the exemplary embodiment, the image defect is not generated up to the 500,000 sheets of recording paper P.
Accordingly, when the transparent toner is not used, the transparent-toner image forming unit 18CT (photosensitive drum 20CT) is retracted from the transfer surface of the intermediate transfer belt 36, and the image forming operation is stopped, which allows the lifetime of the photosensitive drum 20CT to be largely lengthened.
Table 2 shows the number of sheets of the recording paper P when the lifetimes of the photosensitive drums 20Y, 20M, and 20C are ended. The ratio of the monochrome image forming mode and the color image forming mode is set to 4:6, and the transparent toner (embossed paper) is used one each 50 times. In the comparative example, during monochrome image forming mode and no use of the transparent toner, all the image forming units 18 (photosensitive drums 20) are not retracted from the transfer surface of the intermediate transfer belt 36. In the exemplary embodiment, during the monochrome image forming mode and no use of the transparent toner, the belt retracting member 78 and 80 retract the transfer surface of the intermediate transfer belt 36 such that the transfer surface of the intermediate transfer belt 36 is not brought into contact with the yellow, magenta, and cyan image forming units 18Y, 18M, and 18C (photosensitive drums 20Y, 20M, and 20C), and the image forming operations of the image forming units 18Y, 18M, and 18C are stopped. At the same time, the transparent-toner image forming unit 18CT (photosensitive drum 20CT) is retracted from the transfer surface of the intermediate transfer belt 36, and the image forming operation of the image forming unit 18CT is stopped.
As shown in Table 2, in the comparative example, the lifetimes of the photosensitive drums 20Y, 20M, and 20C are ended when the image formation is performed for the about 20,000 sheets of recording paper P. In the exemplary embodiment, the lifetimes of the photosensitive drums 20Y, 20M, and 20C are ended when the image formation is performed for the about 50,000 sheets of recording paper P.
Accordingly, during the monochrome image formation, the photosensitive drums 20Y, 20M, and 20C are retracted from the transfer surface of the intermediate transfer belt 36, and the image forming operations of the image forming units 18Y, 18M, and 18C are stopped, which allows the lifetimes of the photosensitive drums 20Y, 20M, and 20C to be lengthened about 2.5 times.
In the configuration of the exemplary embodiment, the transfer surface of the intermediate transfer belt 36 is brought into contact with and separated from the transparent-toner, yellow, magenta, and cyan photosensitive drums 20CT, 20Y, 20M, and 20C by the belt retracting member 78 provided between the tension roller 32 and the transparent-toner photosensitive drum 20CT and the belt retracting member 80 provided between the yellow photosensitive drum 20Y and the magenta photosensitive drum 20M. Alternatively, the transfer surface of the intermediate transfer belt 36 may be brought into contact with and separated from the photosensitive drum 20 by a configuration except for the exemplary embodiment.
For example, the belt retracting member 78 may be provided between the tension roller 32 and the transparent-toner photosensitive drum 20CT while the belt retracting member 80 may be provided between the transparent-toner photosensitive drum 20CT and the yellow photosensitive drum 20Y, between the magenta photosensitive drum 20M and the cyan photosensitive drum 20C, or between the cyan photosensitive drum 20C and the black photosensitive drum 20K.
As shown in
In the case where the full-color image is formed in the embossed paper (FC+CT), the transparent-toner image forming unit 18CT is lowered while the roller members 83 and 84 of the belt retracting members 78 and 80 are raised as shown in
In the case where the full-color image is formed in the plain paper (FC), the transparent-toner image forming unit 18CT is raised while the roller members 83 and 84 of the belt retracting members 78 and 80 are raised as shown in
In the case where the monochrome image is formed in the plain paper (BW), the transparent-toner image forming unit 18CT is raised while the roller members 83 and 84 of the belt retracting members 78 and 80 are lowered as shown in
In the case where the monochrome image is formed in the embossed paper (BW+CT), the transparent-toner image forming unit 18CT is lowered while the roller members 83 and 84 of the belt retracting members 78 and 80 are lowered as shown in
In the above embodiment, the belt retracting member 78 may be provided between the transparent-toner photosensitive drum 20CT and the yellow photosensitive drum 20Y while the belt retracting member 80 may be provided between the yellow photosensitive drum 20Y and magenta photosensitive drum 20M or between the cyan photosensitive drum 20C and the black photosensitive drum 20K.
In the configuration of the embodiment, the transparent-toner, yellow, magenta, cyan, and black image forming units 18CT, 18Y, 18M, 18C, and 18K are sequentially provided from the upstream side in the process direction. Alternatively, as shown in
In the case where the full-color image is formed in the embossed paper (FC+CT), the transparent-toner image forming unit 18CT is lowered while the roller member 83 of the belt retracting member 78 is raised as shown in
In the case where the full-color image is formed in the plain paper (FC), the transparent-toner image forming unit 18CT is raised while the roller member 83 of the belt retracting member 78 is raised as shown in
In the case where the monochrome image is formed in the plain paper (BW), the transparent-toner image forming unit 18CT is raised while the roller member 83 of the belt retracting member 78 is lowered as shown in
In the case where the monochrome image is formed in the embossed paper (BW+CT), the transparent-toner image forming unit 18CT is lowered while the roller member 83 of the belt retracting member 78 is lowered as shown in
In the configuration of the exemplary embodiment, the transfer surface of the intermediate transfer belt 36 is brought into contact with and retracted from the transparent-toner, yellow, magenta, and cyan photosensitive drums 20CT, 20Y, 20M, and 20C by the belt retracting members 78 and 80. Alternatively, as shown in
In the case where the full-color image is formed in the embossed paper (FC+CT), the tension roller 32 is raised (tension roller 33 is set to a reference position shaft, and the tension roller 32 is moved counterclockwise in
In the case where the full-color image is formed in the plain paper (FC), the transparent-toner image forming unit 18CT is raised while the tension roller 32 is raised as shown in
In the case where the monochrome image is formed in the plain paper (BW), the transparent-toner image forming unit 18CT is raised while tension roller 32 is lowered (tension roller 33 is set to the reference position shaft, and the tension roller 32 is moved clockwise in
In the case where the monochrome image is formed in the embossed paper (BW+CT), transparent-toner image forming unit 18CT is lowered while the tension roller 32 is lowered as shown in
The foregoing description of the exemplary embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in the art. The exemplary embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, thereby enabling others skilled in the art to understand the invention for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2007-166492 | Jun 2007 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20030091368 | Yamamoto et al. | May 2003 | A1 |
20040105693 | Akizuki et al. | Jun 2004 | A1 |
20040174426 | Nomura et al. | Sep 2004 | A1 |
20060127134 | Sakamaki et al. | Jun 2006 | A1 |
20070059041 | Iwasaki | Mar 2007 | A1 |
20070077095 | Ueda et al. | Apr 2007 | A1 |
20070196141 | Kitagawa et al. | Aug 2007 | A1 |
Number | Date | Country |
---|---|---|
2006-139063 | Jun 2006 | JP |
Number | Date | Country | |
---|---|---|---|
20080317518 A1 | Dec 2008 | US |