This application claims priority from Japanese Patent Application No. 2020-020302 filed on Feb. 10, 2020, the disclosure of which is incorporated herein by reference in its entirety.
The present invention relates to an image forming apparatus.
An image forming apparatus known in the art comprises a cover which can be opened and closed to allow maintenance and/or replacement of components arranged inside a housing of the apparatus. For example, the cover is attached to the housing of the apparatus in such a manner that it is rotatable about a horizontally-extending rotation axis. When the cover is closed, the cover is locked to the housing by a locking mechanism.
An exemplary image forming apparatus comprises a maneuver lever attached to the cover, and locking members attached to both ends of the maneuver lever. The maneuver lever extends parallel to a rotation axis of the cover and is rotatable. The locking members are slidable in directions parallel to the rotation axis of the cover. When the maneuver lever rotates between a closed position and an open position, each of the locking members slides between a locked position located away from the maneuver lever and an unlocked position closer to the maneuver lever. The locking members are biased to the locked positions respectively by springs.
In the above-described exemplary image forming apparatus, the space necessary for movement of the locking members in a direction perpendicular to the rotation axis of the cover can be reduced compared to an apparatus in which locking members are attached to both ends of a maneuver lever and rotate with the maneuver lever. However, since it is necessary to slide the locking members inwardly against biasing forces of the springs to open the cover, the force necessary to open the cover is relatively large which decreases the maneuverability of the cover.
It would be desirable to provide an image forming apparatus having a locking mechanism in which a space necessary for movement of the locking members in a direction perpendicular to a rotation axis of a cover and the force necessary to open and close the cover is reduced.
In one aspect, an image forming apparatus is disclosed herein, that comprises a housing, a cover attached to the housing, a maneuver lever attached to the cover, a first locking member attached to the cover, and a second locking member attached to the cover. The cover is rotatable about a rotation axis with respect to the housing. The maneuver lever extends parallel to the rotation axis, and is movable between a closed position and an open position. The maneuver lever has a first end and a second end that are located apart from each other in a direction parallel to the rotation axis. The first locking member is configured to engage with the first end of the maneuver lever. The first locking member is rotatable about a first axis perpendicular to the rotation axis between a locked position and an unlocked position. The second locking member is configured to engage with the second end of the maneuver lever. The second locking member is rotatable about a second axis parallel to the first axis between a locked position and an unlocked position.
When the maneuver lever moves from the closed position to the open position, each of the first locking member and the second locking member rotates from the locked position to the unlocked position.
The above and other aspects, their advantages and further features will become more apparent by describing in detail illustrative, non-limiting embodiments thereof with reference to the accompanying drawings, in which:
A detailed description will be given of a non-limiting embodiment with reference made to the drawings where appropriate. A general structure of a color printer as an example of an image forming apparatus will be given to begin with, and a description of the features of the present invention will be given afterwards.
As shown in
As shown in
In this description, directions will be described as seen from a user using the color printer 1. That is, in
The housing 10 comprises an output tray 11 on the top surface. Sheets S with images formed thereon are ejected from the housing 10 and staked on the output tray 11.
The feeder unit 20 is arranged in the lower part of the housing 10. The feeder unit 20 mainly comprises a sheet tray 21, and a feeding mechanism 22. The feeding mechanism 22 is provided on the front side of the sheet tray 21 and comprises a feed roller 23, a separator roller 24, a separator pad 25, a paper dust remover roller 26, and a registration roller 27.
The sheets S held in the sheet tray 21 are turned from the front to the rear of the housing 10 by the feeding mechanism 22 and fed to the image forming unit 3. The sheet tray 21 can be removed from the housing 10 by pulling the sheet tray 21 toward the front, and can be installed in the housing 10 by pushing the sheet tray 21 toward the rear. The sheet tray 21 extends from the front end to the rear end in the lower part of the housing 10.
The image forming unit 3 is arranged above the sheet tray 21 and forms an image on a sheet S conveyed from the feeder unit 20. The image forming unit 3 mainly comprises four LED units 40, four processing units 50, a transferring unit 70, and a fixing unit 80.
Each LED unit 40 comprises a plurality of LEDs on a lower end thereof and is positioned above and opposed to a corresponding photoconductor drum 51 described later. Each LED unit 40 is configured such that the plurality of LEDs flash in accordance with image data, to thereby expose a surface of the corresponding photoconductor drum 51 to light.
The process units 50 are arranged side by side in the front-rear direction. Each process unit 50 mainly comprises the photoconductor drum 51, a charger 52, a development roller, a supply roller, a doctor blade, and a toner container (reference characters thereof omitted in the drawings).
The transferring unit 70 is located between the sheet tray 21 and the process units 50. The transferring unit 70 mainly comprises a conveyer belt 73 and four transfer rollers 74. The conveyor belt 73 is an endless belt that is looped around and runs between a drive roller 71 and a follower roller 72. The outer surface of the conveyer belt 73 contacts each photoconductor drum 51. The transfer rollers 74 are positioned on the inner side of the conveyor belt 73. The conveyor belt 73 is held between the transfer rollers 74 and corresponding photoconductor drums 51.
The fixing unit 80 is arranged on the rear side of the process unit 50 and mainly comprises a heating roller 81, and a pressure roller 82. The pressure roller 81 is opposed to the heating roller 81 and presses the heating roller 81.
In the image forming unit 3, the surface of each photoconductor drum 51 is charged by the charger 52. Thereafter, light from the LED unit 40 exposes the surface of the photoconductor drum 51 to light to form an electrostatic latent image on the photoconductor drum 51 in accordance with image data. Toner in the toner container is supplied to the development roller via the supply roller, enters a gap between the development roller and the doctor blade, and is carried on the development roller as a thin layer with a constant thickness
The toner carried on the development roller is supplied to the electrostatic latent image formed on the photoconductor drum 51. Accordingly, the electrostatic latent image is visualized and forms a toner image on the photoconductor drum 51. Thereafter, a sheet S fed from the feeder unit 20 is conveyed through between the photoconductor drum 51 and the conveyer belt 73 (transfer rollers 74), so that the toner images (of different colors, e.g. cyan, magenta, yellow, and black) formed on the photoconductor drums 51 are successively transferred to and overlapped on the sheet S to form a multicolor toner image.
The sheet S with the toner image is conveyed through between the heating roller 81 and the pressure roller 82, which causes the toner image to be thermally fixed on the sheet S. In this way, an image can by formed on the sheet S. The sheet S with an image formed thereon is conveyed from the fixing unit 80 to the conveyance path 91 by a conveyor roller 83.
The conveying unit 90 functions as an ejection mechanism that ejects a sheet S conveyed from the image forming unit 3 to the outside of the housing 10, as well as a reconveyance mechanism that causes a sheet S with an image formed on one side by the image forming unit 3 to be turned upside down and conveyed to the image forming unit 3 again. Specifically, the conveying unit 90 mainly comprises a conveyance path 91 and ejection rollers 92.
Next, the locking mechanism for the top cover 2 will be described.
As shown in
The top cover 2 comprises a first frame 2A, and a second frame 2B fixed to the first frame 2A by screws 8. The first frame 2A comprises a pair of lever supporting sections 2C located apart from each other in the first direction. Each lever supporting section 2C includes a recess 2P configured to support the maneuver lever 30. The bottoms of the recesses 2P have semicircular configurations with centers thereof positioned on a common axis parallel to the first direction. The first frame 2A further comprises a pair of first lock supporting sections 2E and a pair of second lock supporting sections 2F. The pair of first lock supporting sections 2E and the pair of second lock supporting sections 2F are located apart from each other in the first direction. Each first lock supporting section 2E includes a recess 2Q configured to support a corresponding locking member 60B. Each second lock supporting section 2F includes a recess 2R configured to support a corresponding locking member 60A. The bottoms of the recesses 2Q have semicircular configurations with centers thereof positioned on a common axis perpendicular to the first direction. The bottoms of the recesses 2R have semicircular configurations with centers thereof positioned on a common axis perpendicular to the first direction.
The maneuver lever 30 and the locking members 60 are attached to the first frame 2A by means of the second frame 2B.
The maneuver lever 30 has a shape elongate in the first direction and is rotatable between a closed position and an open position about a lever axis X2 extending in the first direction. The maneuver lever 30 has a first end and a second end that are located apart from each other in the first direction. The maneuver lever 30 comprises a lever body 31, a maneuver section 32, and lever contact sections 33. A first lever contact section 33 is provided on the first end of the maneuver lever 30 and a second lever contact section 33 is provided on the second end of the maneuver lever 30.
As shown in
As shown in
Returning to
Each of the lever contacting sections 33 contacts a corresponding locking member 60 as will be described later. The lever contacting portions 33 protrude in the first direction from end faces 31C of the lever body 31. The lever contacting portions 33 are out of alignment with the lever axis X2.
As shown in
The locking member 60A comprises a lock body 61, a latch section 62, a contact section 63, a stopper 64, and a shaft section 65.
As shown in
When the locking member 60A is in a locked position, the latch section 62 engages with an engagement section 10A formed in the housing 10 (see
The contact section 63 contacts the first lever contact section 33 of the maneuver lever 30. The contact section 63 extends from the other end of the lock body 61 toward the lever 30.
The stopper 64 contacts a protrusion 2D that protrudes from an inner surface of the top cover 2, to stop rotation of the locking member 60A caused by a biasing force of a spring 9 (see
The shaft section 65 is rotatably supported on the cover 2. The shaft section 65 extends in a second direction perpendicular to the first direction at the other end of the lock body 61. The axis of the shaft section 65 coincides with an axis of rotation of the locking member 60A.
As shown in
Returning to
Each end of the shaft section 65 of the second locking member 60B is placed in the recess 2Q of a corresponding lock support section 2E and held between the corresponding lock support section 2E and the second frame 2B. The contact section 63 of the second locking member 60B contacts the second lever contact section 33 of the maneuver lever 30.
According to the above-described structure, the first locking member 60A is configured to be rotatable about a first axis X3 between the locked position and an unlocked position. The second locking member 60B is configured to be rotatable about a second axis X4 between a locked position and an unlocked position. The axes X3, X4 of the locking members 60A, 60B are perpendicular to the rotation axis X1 of the top cover 2 and to the lever axis X2. The “perpendicular” angles formed between the axes are not necessarily exactly 90 degrees, but may be in the neighborhood of 90 degrees. For example, the angles may be 90 degrees±5 degrees.
The top cover 2, the maneuver lever 30, and the locking members 60 are formed by injection molding from plastic, for example.
The operation of the locking mechanism 4 will now be described.
As shown in
To open the cover 2, as shown in
When the maneuver section 32 is released, the locking members 60A, 60B return to the locked positions by the biasing force of the springs 9. At this point, the stoppers 64 of the locking members 60A, 60B contact corresponding protrusions 2D of the cover 2. In this way, the locking members 60A, 60B are restrained from rotating beyond the protrusions 2D.
When the locking members 60A, 60B rotate from the locked positions to the unlocked positions, the locking members 60A, 60B rotate in such a manner that the latch section 62 of the first locking member 60A and the latch section 62 of the second locking member 60B move closer to each other in the first direction. That is, the first locking member 60A rotates in a counterclockwise direction, and the second locking member 60B rotates in a clockwise direction.
A method for attaching the maneuver lever 30 and the locking members 60A, 60B to the top cover 2 will now be described.
First, as shown in
In the illustrative, non-limiting embodiment described above, the following advantageous effects of the lock mechanism 4 for the top cover 2 can be achieved.
When the maneuver section 32 is lifted, the maneuver lever 30 rotates about the lever axis X2 from the closed position to the open position. The locking members 60A, 60B accordingly rotate from the locked positions in which the locking members 60A, 60B engage with the corresponding engagement sections 10A to the unlocked positions in which the locking members 60A, 60B are disengaged from the corresponding engagement sections 10A. Since the axes X3, X4 of the locking members 60A, 60B are perpendicular to the lever axis X2 of the maneuver lever 30, the space necessary for rotation of the locking members 60A, 60B is located inward of the locking members 60A, 60B in the first direction, i.e., inward of the locking members 60A, 60B in the left-right direction of the apparatus. Therefore, the space necessary for movement of the locking members 60A, 60B in a direction perpendicular to the first direction can be reduced.
Further, since the latch section 62 of the first locking member 60A and the latch section 62 of the second locking member 60B rotate in such a manner that they move closer to each other in the first direction when the locking members 60A, 60B rotate from the locked positions to the unlocked positions, the space necessary for movement of the locking members 60A, 60B in the first direction can be reduced compared to the case where the latch sections 62 rotate in such a manner that they move apart from each other or rotate in the same direction.
Also, since the maneuver lever 30 pushes the contact sections 63 of the locking members 60A, 60B upward to rotate the locking members 60A, 60B from the locked positions to the unlocked positions, there is no need of a complicated mechanism and the force necessary to open and close the cover will be reduced compared to, for example, the case where a part is located between the maneuver lever 30 and the locking members 60A, 60B.
Since the locking mechanism 4 comprises springs 9 that bias respective locking members 60A, 60B to the locked positions, the locking members 60A, 60B can be restrained from being disengaged from the corresponding engagement sections 10A and retained in the locked positions.
Since each of the locking members 60A, 60B comprises the stopper 64 that contacts the top cover 2 to stop rotation of the locking members 60A, 60B caused by a biasing force of the respective springs 9, the latch sections 62 of the locking members 60A, 60B are restrained, when the top cover 2 is opened, from rotating beyond a position in which the latch sections 62 are capable of engaging with the housing 10 upon closing the top cover 2.
Since the maneuver lever 30 is rotatable about a lever axis X2 between the closed position and the open position, the force necessary for maneuver is reduced compared to a slide-type maneuver lever, for example.
Since the top cover 2 comprises the first frame 2A and the second frame 2B, and the shafts 31B are held between and supported by the first frame 2A and the second frame 2B, the maneuver lever 30 can be easily attached to the top cover 2. Further, since the shaft sections 65 of the locking members 60A, 60B are held between and supported by the first frame 2A and the second frame 2B, the locking members 60A, 60B can be easily attached to the top cover 2.
The present invention is not limited to the above-described embodiment and may be implemented in various other forms as described below.
The locking members 60A, 60B have a first side and a second side which face away from each other in directions parallel to the first direction. In this description, the first side faces to the left and the second side faces to the right.
As shown in
Further, as shown in
Furthermore, as shown in
Although a color printer 1 is described as an example of an image forming device, the present invention may be applied to monochrome laser printers, copying machines, multifunction machines, etc.
Although the lock mechanism 4 is described as a lock mechanism 4 for a top cover 2, the lock mechanism 4 may be used for other covers.
The elements described in the above embodiment and its modified examples may be implemented selectively and in combination.
Number | Date | Country | Kind |
---|---|---|---|
JP2020-020302 | Feb 2020 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
10016996 | Iketani | Jul 2018 | B2 |
20110242626 | Nagashima | Oct 2011 | A1 |
20130259515 | Mori | Oct 2013 | A1 |
20130287434 | Hisano | Oct 2013 | A1 |
20160187839 | Ueyama et al. | Jun 2016 | A1 |
20170315499 | Maeda | Nov 2017 | A1 |
20180052419 | Maeda | Feb 2018 | A1 |
20180095408 | Tsuchiya | Apr 2018 | A1 |
20190227478 | Kikura | Jul 2019 | A1 |
Number | Date | Country |
---|---|---|
2001267764 | Sep 2001 | JP |
2006102949 | Apr 2006 | JP |
2007328302 | Dec 2007 | JP |
2012175059 | Sep 2012 | JP |
2013242535 | Dec 2013 | JP |
2014010298 | Jan 2014 | JP |
2014157368 | Aug 2014 | JP |
2016124114 | Jul 2016 | JP |
2016126027 | Jul 2016 | JP |
2017198857 | Nov 2017 | JP |
Number | Date | Country | |
---|---|---|---|
20210247716 A1 | Aug 2021 | US |