The present invention relates to an image forming apparatus for transferring a toner image carried on an image bearing member onto an intermediary transfer belt or a recording material carried on a recording material carrying belt.
The image forming apparatus, including a photosensitive drum and a transfer roller, for transferring the toner image on the surface of the photosensitive drum onto the intermediary transfer belt or the recording material carried on the recording material carrying belt, to be nipped between the photosensitive drum and the transfer roller has been conventionally known.
Here, e.g., in order to efficiently transfer the toner image from the photosensitive drum onto the intermediary transfer belt, there is a need to ensure a predetermined contact width with respect to a belt conveyance direction at a contact portion between the transfer roller and the recording material carried on the recording material carrying belt. However, in order to provide the contact width which is larger than a predetermined value, an outer diameter of the transfer roller is required to be set at a larger value. Thus, there arises a problem such that it is difficult to realize downsizing of the image forming apparatus. In order to solve the problem, an image forming apparatus is disclosed in Japanese Laid-Open Patent Application (JP-A) Hei 09-230709.
The image forming apparatus disclosed in JP-A Hei 09-230709 includes, in place of the transfer roller, a slidable transfer member to be slidable on the photosensitive drum or a conveyed recording material. According to the image forming apparatus described in JP-A Hei 09-230709, the slidable transfer member as a transfer member is, compared with the transfer roller as the transfer member, capable of suppressing a dimension thereof, so that the downsizing of the image forming apparatus can be realized.
Next, e.g., when the image forming apparatus is used for a long term, there arises a problem such that a frictional force is increased with time by sliding of the slidable transfer member on the intermediary transfer belt thereby to increase a torque necessary to drive the intermediary transfer belt. Or, e.g., when the image forming apparatus is used for a long term, there arises a problem such that a frictional force is increased with time by sliding of the slidable transfer member on the recording material carried on the recording material carrying member thereby to increase a torque necessary to drive the recording material carried on the recording material carrying member. In these cases, due to the increase in frictional force, a contact secondary transfer is formed intermittently at a contact portion between the slidable transfer member and the intermediary transfer belt or a contact portion between the slidable transfer member and the recording material carried on the recording material carrying belt, so that a transfer electric field is less liable to be stabilized. In some cases, there is a possibility of breakage of the slidable transfer member itself.
However, in the image forming apparatus described in JP-A Hei 09-230709, the slidable transfer member is of a stationary type and therefore in the case where the frictional force at the contact portion between the slidable transfer member and the photosensitive drum is increased, a pressing force of the slidable transfer member against the photosensitive drum is not reduced.
A principal object of the present invention is to provide an image forming apparatus capable of suppressing a fluctuation in transfer efficiency of a toner image and scattering of toner while realizing a reduction of a torque necessary to convey a belt and improvement in contact stability between the belt and a swinging transfer member.
According to an aspect of the present invention, there is provided an image forming apparatus comprising:
an image bearing member for bearing a toner image;
a movable endless transfer belt for transferring the toner image from the image bearing member onto a transfer material; and
a transfer device for transferring the toner image from the image bearing member toward the transfer belt, wherein the transfer device includes a transfer member for sliding on an inner surface of the transfer belt in contact with the inner surface, a supporting member for supporting the transfer member and an urging member for urging the supporting member toward the transfer belt,
wherein the transfer member is contacted to the inner surface of the transfer belt at a contact surface thereof without rotation relative to the supporting member during movement of the transfer belt, wherein the supporting member is rotatable about a center axis thereof so as to be moved in a direction perpendicular to a movement direction of the transfer belt, and
wherein the contact surface is convex with predetermined curvature toward the transfer belt.
These and other objects, features and advantages of the present invention will become more apparent upon a consideration of the following description of the preferred embodiments of the present invention taken in conjunction with the accompanying drawings.
Parts (a) and (b) of
Part (a) of
Parts (a) and (b) of
Parts (a) and (b) of
Embodiments of the present invention will be described more specifically with reference to the drawings. Dimensions, materials, configurations, relative positions, and so on of constituent parts which will be described hereinafter may be appropriately changed depending on the structures and various conditions of an image forming apparatus to which the present invention is applied, and the present invention is not limited thereto unless otherwise specified particularly.
The image forming apparatus 100 includes an intermediary transfer belt 6 movable while being contacted to the photosensitive drum 1 (1a, 1b, 1c, 1d). Further, the image forming apparatus 100 principally includes developing devices 2 (2a, 2b, 2c, 2d) and laser scanners 5 (5a, 5b, 5c, 5d) as exposure devices, for respective colors. Further, the image forming apparatus 100 principally includes the photosensitive drums 1 (1a, 1b, 1c, 1d) as image bearing members for bearing toner images and primary charging devices 3 (3a, 3b, 3c, 3d). As the primary charging devices 3 (3a, 3b, 3c, 3d), primary charging rollers may be used. Further, the image forming apparatus 100 is an image forming apparatus of an in-line type in which cleaning devices 4 (4a, 4b, 4c, 4d) as cleaning means and primary transfer devices 11A, 11B, 11C and 11D as primary transfer means are provided. The image forming apparatus 100 includes a controller 50 as a control means, and the controller 50 is connected to a plurality of host computers through network. Print job image data sent from these host computers are receives by the controller 50. The controller 50 successively develops the image data for a plurality of print jobs into lasers lighting (turning-on) signals of the laser scanners 5a to 5d correspondingly to the respective colors.
The photosensitive drum 1a is uniformly charged by the primary charging device 3a while being rotated in a direction indicated by an arrow K at a predetermined peripheral speed. Then, the photosensitive drum 1a receives, via an imaging and projection optical system, a scanning laser beam which has been emitted from the laser scanner 5a and modulated correspondingly to a digital image signal, so that an electrostatic image for a first color component (a yellow component in this embodiment). Then, the electrostatic image is developed with a first color toner (yellow toner Y) by the developing device 2a, so that a visible image for the first color component is obtained. The above-described procedure is performed also with respect to a second color (magenta), a third color (cyan) and a fourth color (black).
An intermediary transfer belt 6 is rotated in a direction indicated by an arrow K at the same peripheral speed as that of the photosensitive drum 1a. To the primary transfer device 11A disposed oppositely to the photosensitive drum 1a through the intermediary transfer belt 6, a primary transfer bias supplied from a primary transfer bias voltage source B1 is applied. Thus, transfer (photosensitive drum) of the yellow visible image from the photosensitive drum 1a onto the intermediary transfer belt 6 is effected. Also with respect to magenta, cyan and black, associated visible images are successively superposed and primary-transferred onto the intermediary transfer belt 6 by using similar means to obtain color toner images. Incidentally, to the primary transfer devices 11B, 11C and 11D, primary transfer biases supplied from primary transfer bias voltage sources B2, B3 and B4 are applied.
The intermediary transfer belt 6 is stretched by a roller 21, a roller 22 and a secondary transfer opposite roller 7b, and a secondary transfer roller 7a is disposed at a position in which the secondary transfer roller 7a opposes the secondary transfer opposite roller 7b through the intermediary transfer belt 6 and a recording material conveying belt 23. The color toner images formed on the intermediary transfer belt 6 are collectively transferred (secondary-transferred) onto a transfer material P, which is to be conveyed, in a nip with the secondary transfer roller 7a. The transfer material P on which the color toner images have been secondary-transferred is conveyed to a fixing device 8, in which the color toner images are fixed by heat and pressure in a nip (fixing portion) between a heating member 9 and a pressing roller 10.
Further, sliding member 12 has a sliding surface S which is a contact surface on which the sliding member 12 is contacted to and slides on the intermediary transfer belt 6 while being opposed to the photosensitive drum 1a through the intermediary transfer belt 6. The primary transfer member 11a is swingable (movable) toward a downstream side with respect to a belt movement direction M in which the intermediary transfer belt 6 is to be moved. Further, the primary transfer member 11a is configured to transfer the toner on the surface of the photosensitive drum 1a onto the intermediary transfer belt 6. Further, the primary transfer member 11a is, as shown in a broken line area A1 indicated by a broken line, rotatable (swingable) about a swinging center axis in a direction indicated by an arrow DY. Further, the sliding surface S is formed in a convex shape toward the intermediary transfer belt 6 with predetermined curvature.
Further, the sliding member 12 is an elastic pad. The sliding surface S of the sliding member 12 is formed by a curved surface with the curvature of 1/r (radius of curvature: r). The curvature 1/r of the sliding surface S is set at a value larger than that of a flat surface. Further, the curvature 1/r of the sliding surface S is set at the value lower than that of a circle having, as a radius, a swing radius R of the primary transfer member 11a corresponding to a minimum distance from the center O1 of the center axis 14 to the sliding surface S in the case where the primary transfer member 11a and the intermediary transfer belt 6 are in a non-contact secondary transfer.
Here, a maximum angle at which the primary transfer member 11a is swung about the center O1 of the center axis 14 toward the downstream side with respect to the belt movement direction M is θ (=θmax). In the case where the primary transfer member 11a and the intermediary transfer belt 6 are in the non-contact secondary transfer, the swing radius R of the primary transfer member 11a corresponding to the minimum distance from the center O1 of the swinging center axis to the sliding surface S is a distance from the center of the swinging center axis 14 in a secondary transfer (indicated by a solid line) in which the primary transfer member 11a is not swung to an end of the sliding member 12 (in an undeformed secondary transfer) with respect to a direction perpendicular to the movement direction of the intermediary transfer belt 6. Further, in the case where the primary transfer member 11a and the intermediary transfer belt 6 are in a contact secondary transfer, an axis-belt distance corresponding to a minimum distance from the center O1 of the swinging center axis 14 to a back (inner) surface of the intermediary transfer belt 6 is d. Further, a proportion of the axis-belt distance d to the swing radius R is m (0<m≦1). In this case, a relationship between the axis belt distance d and the swing radius R is represented by d=m×R (0<m≦1).
A proportion of the radius of curvature r of the sliding surface S to the swing radius R is n (1≦n). In this case, a relationship between the radius of curvature r of the sliding surface S and the swing radius R is represented by r=n×R. Accordingly, the radius of curvature of the sliding surface S of the primary transfer member 11a is represented by 1/r=1/(n×R)(1≦n). During an image forming operation, the sliding member 12 is configured to be contacted to and slide on the intermediary transfer belt 6 at a part of the sliding surface S.
During the image formation, the intermediary transfer belt 6 is moved in the movement direction M and at the same time the primary transfer member 11a is swung in a direction indicated by an arrow DY depending on a frictional force between the intermediary transfer belt 6 and the sliding surface S. As a result, similarly as in a conventional device of a swinging transfer type, a swinging frictional force exerted between the intermediary transfer belt 6 and the sliding surface S is reduced.
The supporting member 13 includes a projected plate-like rotation prevention portion ST extended in a belt width direction N (perpendicular to the drawing sheet (plane) of
Incidentally, in the following description, the secondary transfer of the primary transfer member 11a indicated by the solid line in
Part (a) of
In the initial state, a point at which the intermediary transfer belt 6 and the sliding surface S of the sliding member 12 start contact therebetween is a contact start point P1. In the initial state, a point at which the intermediary transfer belt 6 and the sliding surface S of the sliding member 12 complete their contact is contact end point P2. Further, a distance from the contact start point P1 to the contact end point P2 is a contact width LN between the intermediary transfer belt 6 and the sliding member 12.
In the secondary transfer in which the intermediary transfer member 11a is swung by the angle θ, a point at which the intermediary transfer belt 6 and the sliding surface S of the sliding member 12 start contact therebetween is a contact start point P1′. In the secondary transfer in which the intermediary transfer member 11a is swung by the angle θ, a point at which the intermediary transfer belt 6 and the sliding surface S of the sliding member 12 complete their contact is contact end point P2′. Further, a distance from the contact start point P1′ to the contact end point P2′ is a contact width LN′ between the intermediary transfer belt 6 and the sliding member 12.
Part (a) of
The circle C1 has the center O1 (0, 0) of the center axis 14 as the center and has the swing radius R as the radius, and is represented by the following formula (1).
C1:x2+y2=R2 (1)
The circle C2 has a point O2 (0, (1−n)×R) as the center and has the radius of curvature r=n×R. The sliding surface S of the sliding member 12 has the curvature 1/r=1/(n×R). At the contact start point P1 (x1, m×R) and the contact end point P2 (x2, m×R), the circle C2 intersects the rectilinear line L (y=m×R) representing the intermediary transfer member 6. The circle C2 is represented by the following formula (2).
C2:x2+(y+(n−1)×R)2=(n×R)2 (2)
The circle c2′ is obtained by rotating the circle C2 about the center O1 of the center axis 14 by θ (clockwise direction) and has a point O2′ (A, B) as the center. At the contact start point P1′ (x1′, m×R) and the contact end point P2′ (x2′, m×R), the circle C2′ intersects the rectilinear line L representing the intermediary transfer member 6. The circle C2′ is represented by the following formula (3).
C2′:(x−A)2+(y−B)2=(n×R)2 (3)
The circle C2 and C2′ represent the sliding surfaces S of the sliding member 12 in the initial state and the swinging secondary transfer with the angle θ (0<θ≦θmax), respectively. Further, the contact width between the intermediary transfer belt 6 and the sliding member 12 is represented by LN=x2−x1 and LN′=x2′−x1′.
Part (b) of
In the case where n=1, i.e., the radius of curvature r of the sliding member and the swing radius R are equal to each other, even when the swinging angle θ is changed, values of x1′/R and x2′/R are not changed. The positions of x1′ which is the x-coordinate of the contact start point and x2′ which is the x-coordinate of the contact end point are not changed.
In the case where the radius of curvature r of the sliding member 12 is larger than the swing radius R, x1′/R is shifted toward the upstream side with respect to the belt movement direction M, and x2′/R is shifted toward the upstream side with respect to the belt movement direction M. That is, the position of x1′ which is the x-coordinate of the contact start point P1′ is shifted toward the upstream side, and the position of x2′ which is the x-coordinate of the contact end point P2′ is shifted toward the upstream side.
When x1′ which is the x-coordinate of the contact start point P1′ is shifted toward the upstream side, an amount of the toner transferred from the photosensitive drum 1 onto the intermediary transfer belt 6 is increased before the photosensitive drum 1 and the intermediary transfer belt 6 are contacted to each other. For this reason, a degree of scattering of the toner image becomes worse.
Further, when x2′ which is the x-coordinate of the contact end point P2′ is shifted toward the upstream side, abnormal electric discharge at a separation portion between the photosensitive drum 1 and the intermediary transfer belt 6 is liable to occur, so that an intermittent pattern due to the electric discharge appears on an image (hereinafter, referred to as an abnormal electric discharge image).
Here, an image formed by the image forming apparatus in which the swing radius R was 10 mm, the radius of curvature r of the sliding surface S of the sliding member 12 was 20 mm, an amount of deformation of the sliding member 12 at the contact portion between the sliding member 12 and the intermediary transfer belt 6 was 1.5 mm was checked. As a result, the scattering of the toner and the abnormal electric discharge image did not occur when the swinging angle θ was in a range of 0 to 5 degrees, so that the image was good. However, it was found that degrees of the toner scattering and the abnormal electric discharge image were worsened with an increasing swinging angle θ when the swinging angle θ exceeded 5 degrees.
The position of x1′, which is the x-coordinate of the contact start point P1′, at the swinging angle θ of 5 degrees was shifted toward the upstream side of the intermediary transfer belt 6 with respect to the belt movement direction M by 0.96 mm at the swinging angle θ of 0 degrees. This corresponds to about 12% of a deviation (shift) amount compared with the case of the swinging angle θ of degrees.
On the other hand, the position of x2′, which is the x-coordinate of the contact end point P2′, at the swinging angle θ of 5 degrees was shifted toward the upstream side of the intermediary transfer belt 6 with respect to the belt movement direction M by 0.78 mm at the swinging angle θ of 0 degrees. This corresponds to about 11% of a deviation (shift) amount compared with the case of the swinging angle θ of degrees. As a result, it was found that it is desirable that positional changes, during the swinging, of x1′ which is the x-coordinate of the contact start point P1′ and x2′ which is the x-coordinate of the contact end point P2′ are suppressed to levels of the deviation within 10% on the basis of the initial state.
Here, referring again to (b) of
x1′(θ)=−{√{square root over (n2−(m−b)2−a)}}×R (4)
From the formula (4), the above-described change rate Δx1(θ)=x1′(θ)/x1 (=x1′θ/x1′ (θ=0) is obtained and then when the relationship of Δx1≦1.1 is applied, the following formula (5) (relational expression 1) is obtained.
Accordingly, the image forming apparatus 100 of the sliding and swinging transfer type according to the present invention is configured to always satisfy the formula (5).
Hereinbelow, the respective embodiments will be described. Constitutions of Experimental embodiments 1 to 3 satisfy the above-described formula (5) (relational expression 1), and the three change rates are in a range of 0.90-1.10. On the other hand, constitutions of Comparative embodiments 1 and 2 do not satisfy the formula (5), and the three change rates are out of the range of 0.90-1.10. Incidentally, although described later, as shown in (a) and (b) of
Experimental embodiment 1 has the constitution in which the radius of curvature r of the sliding member 12 is 1.2 times the swing radius R, thus decreasing the curvature. Experimental embodiment 1 is, compared with Experimental embodiment 3, advantageous in terms of downsizing of the device since the swing radius R can be made smaller when the same contact width between the intermediary transfer belt 6 and the sliding member 12 is set.
Experimental embodiment 2 has the constitution in which the radius of curvature r of the sliding member 12 is further increased (i.e., the curvature 1/r is further decreased) so as to be 1.5 times the swing radius R< so that the swing radius R can be further decreased compared with Experimental embodiment 1. However, the changes of the contact start point P1′, the contact end point P2′ and the contact width LN′ during the swinging become large and therefore the amounts of the changes are suppressed to 10% or less by setting the maximum swinging angle θmax at 5 degrees which is ½ of that in Experimental embodiment 1 and by setting the amount of deformation of the sliding member 12 at 0.15 (=1−m). In Experimental embodiment 2, in accordance with the formula (5), the maximum swinging angle θmax is decreased and the amount of deformation is increased. As a result, it is possible to set the curvature 1/r of the sliding member 12 at a very small value while suppressing the changes of the contact start point P1′, the contact end point P2′ and the contact width LN′.
As in Experimental embodiments 1 to 3, when the formula (5) is satisfied, m, n and θmax can be freely selected and therefore it is possible to obtain a device constitution which meets the purpose of the device while suppressing the changes of the x-coordinate x1 of the contact start point P1, the x-coordinate x2 of the contact end point P2 and the contact width LN during the swinging.
Part (a) of
The maximum swinging secondary transfer in Comparative embodiment 1 shown in (b) of
However, the x-coordinate x1′ of the contact start point P1′ is largely shifted toward the downstream side by 35% and therefore the positions of the contact region between the sliding member 512 and the intermediary transfer belt 6 and the contact region between the photosensitive drum 1a and the intermediary transfer belt 6 are largely shifted. In such a secondary transfer, the length of the intermediary transfer belt 6 sandwiched between the photosensitive drum 1a and the sliding member 512 is decreased, so that a transfer efficiency when the toner image is transferred from the photosensitive drum 1a onto the intermediary transfer belt 6 becomes worse. As a result, the toner image density is decreased and thus the image quality is lowered.
The primary transfer device (not shown) in Comparative embodiment 2 has the constitution in which the radius of curvature r of the sliding member is 2 times the swing radius R and m and θmax are set at values equal to those in the case of the primary transfer device 511A in Comparative embodiment 1. In Comparative embodiment 2, in the case where the contact width with the intermediary transfer belt 6 is made equal to that in Experimental embodiment 1, the swing radius R can be decreased considerably. For that reason, the primary transfer device in Comparative embodiment 2 is very advantageous in terms of the downsizing thereof. However, when the primary transfer device is swung until the maximum swinging angle θmax, the x-coordinate x1′ of the contact start point P1 with the intermediary transfer belt 6 is shifted from that in the initial state toward the upstream side by 35%. As a result, the toner scattering becomes worse and thus the image quality is lowered.
Part (c) of
As described above, in Comparative embodiment 1, the contact region between the sliding member 512 and the intermediary transfer belt 6 and the contact region between the photosensitive drum 1a and the intermediary transfer belt 6 are largely shifted and therefore a desired image density cannot be obtained, so that the evaluation result of the image density is “x”. Further, in Comparative embodiment 2, the contact start point P1′ between the sliding member 512 and the intermediary transfer belt 6 is largely shifted toward the upstream side, so that the evaluation result of the toner scattering is “x”.
On the other hand, in Experimental embodiments 1 to 3, the contact start point P1′, the contact end point P2′ and the contact width LN′ between the intermediary transfer belt 6 and the sliding member 12 are less shifted from those in the initial state and therefore good results are obtained with respect to both of the toner scattering and the image density.
Part (a) of
In Second Embodiment, the primary transfer device 211A includes the frame 16, a primary transfer member 211a and the spring 15. The primary transfer member 211a includes a pressing member 212 for pressing the sheet member and a sheet-like sliding sheet member 17. The sliding sheet member 17 is mounted on the pressing member 212 and has the sliding surface S which is opposed to the photosensitive drum la through the intermediary transfer belt 6 and is contacted to the intermediary transfer belt 6, and exhibits electroconductivity.
In the primary transfer device 211A in Second Embodiment, as the sliding sheet member 17, a 150 μm-thick sheet (film) of polyethylene (PE) in which carbon black has been added so as to exhibit electroconductivity is used.
The sliding sheet member 17 is fixed on the pressing member 212 so as to follow the curvature 1/r of the pressing member 212 by sheet fixing members 18a and 18b. As the sliding sheet member 17, by selecting the sliding sheet member which has a friction coefficient, between the sliding sheet member and the intermediary transfer belt 6, smaller than that between the sliding member 12 and the intermediary transfer belt 6 in First Embodiment, it is possible to improve the sliding property compared with that in First Embodiment. Further, by employing such a constitution that the sheet pressing member 212 is made insulative and a transfer voltage is directly supplied from the primary transfer voltage source B1 to the sliding sheet member 17, a range of choice of the material for the pressing member 212 can be enlarged and it is also possible to enhance design latitude.
As the pressing member 212, similarly as in First Embodiment, one satisfying the formula (5) is used, and the sliding sheet member 17 is provided so as to follow the curvature of the pressing member 212. Therefore, with respect to the contact start point P1′, the contact end point P2′ and the contact width LN′ between the sliding sheet member 17 and the intermediary transfer belt 6 during the swinging, the amounts of shift from those in the initial state fall within 10% or less.
As described above, in Second Embodiment, compared with First Embodiment, the good image in the initial state can be maintained also during the swinging while improving the sliding property by decreasing the frictional force at the transfer portion.
According to the image forming apparatuses in First Embodiment and Second Embodiment described above, the primary transfer members 11a and 211a are swung with an increasing sliding frictional force between the intermediary transfer belt 6 and the primary transfer members 11a and 211a. Therefore, when compared with the constitution using the stationary slidable transfer member which is not swung, a pressing force of the primary transfer members 11a and 211a against the intermediary transfer belt 6 is reduced, so that a sliding resistance of the primary transfer members 11a and 211a on the intermediary transfer belt 6 is reduced. As a result, reduction in torque necessary to drive the intermediary transfer belt 6 is realized.
In addition, according to the image forming apparatuses in First and Second Embodiments. The sliding surfaces S of the primary transfer members 11a and 211a are formed with predetermined values of the curvature. Therefore, when compared with the constitution in which the primary transfer member is formed to have the flat surface, the changes in contact width LN and contact position between the sliding surface S and the intermediary transfer belt 6 are suppressed. As a result, contact stability of the primary transfer members 11a and 211a with the intermediary transfer belt 6 is good, so that the fluctuation in transfer efficiency of the toner image from the photosensitive drum 1a onto the intermediary transfer belt 6 and the image defect such as the toner scattering are suppressed.
Therefore, according to the image forming apparatuses in First and Second Embodiments, the contact stability of the primary transfer members 11a and 211a with the intermediary transfer belt 6 is good while realizing the reduction in torque necessary to drive the intermediary transfer belt 6, so that the transfer efficiency fluctuation of the toner image and the image defect such as the toner scattering are suppressed.
Further, according to the image forming apparatuses in First and Second Embodiments, the swinging ranges of the primary transfer members 11a and 211a satisfy the formula (5) described above, the toner scattering and the abnormal electric discharge image can be obviated with accuracy.
Further, according to the image forming apparatus in Second Embodiment, the transfer member is constituted by the pressing member 212 and the sliding sheet member 17. As a result, the pressing member 212 performs the function as the elastic member and the sliding sheet member 17 performs the function as the electroconductive member, thus realizing function separation. Thus, the range of choice of the materials for the supporting member 13 and the sheet pressing member 212 is enlarged and the design latitude of the device is enhanced.
Incidentally, in First and Second Embodiments, as the example, the image forming apparatus of the intermediary transfer type using the intermediary transfer belt 6 is described but the present invention is not limited only to the intermediary transfer type. For example, a similar effect can be achieved by applying the present invention to an image forming apparatus of a direct transfer type in which the transfer material is conveyed between a transfer belt and the photosensitive drum and the toner image on the photosensitive drum is directly transferred onto the transfer material.
While the invention has been described with reference to the structures disclosed herein, it is not confined to the details set forth and this application is intended to cover such modifications or changes as may come within the purpose of the improvements or the scope of the following claims.
This application claims priority from Japanese Patent Application No. 026531/2010 filed Feb. 9, 2010, which is hereby incorporated by reference.
Number | Date | Country | Kind |
---|---|---|---|
2010-026531 | Feb 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5697030 | Hayashi et al. | Dec 1997 | A |
5697033 | Ichikawa et al. | Dec 1997 | A |
5893665 | Ichikawa et al. | Apr 1999 | A |
5918096 | Sano et al. | Jun 1999 | A |
6529701 | Baba et al. | Mar 2003 | B2 |
7835678 | Yasumaru et al. | Nov 2010 | B2 |
20020006295 | Kitahara | Jan 2002 | A1 |
20030143002 | Eun et al. | Jul 2003 | A1 |
20090196663 | Yasumaru et al. | Aug 2009 | A1 |
20130136509 | Suzuki et al. | May 2013 | A1 |
20130322935 | Ichihashi et al. | Dec 2013 | A1 |
20140050510 | Yasumaru et al. | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
9-230709 | Sep 1997 | JP |
Number | Date | Country | |
---|---|---|---|
20110194879 A1 | Aug 2011 | US |