This application claims priority from Japanese Patent Application No. 2013-227603 filed Oct. 31, 2013 and Japanese Patent Application No. 2013-227604 filed Oct. 31, 2013. The entire contents of these priority applications are incorporated herein by reference.
The present invention relates to an image-forming apparatus employing an electrophotographic system.
One electrophotographic image-forming apparatus disclosed in Japanese unexamined patent application publication No. 2006-53508 is a laser printer. The laser printer includes a body case having a cover portion for covering a top portion of the body case; a process cartridge that form toner image on recording paper and disposed in the body case; and a fixing unit that fixes the toner image formed on the recording paper.
However, if the user of the laser printer having the above construction accidentally spills liquid onto the cover portion of the laser printer, the liquid may penetrate and flow into the body case through seams or junctures therein.
If a liquid penetrates the body case of the laser printer, the process cartridges, the fixing unit, and the like may become wet, resulting in malfunctions such as electrical short-circuits.
In view of the foregoing, it is an object of the present invention to provide an image forming apparatus capable of preventing an image-forming unit and the like in the image forming apparatus from becoming wet when liquid is spilled on the cover portion of the body case.
In order to attain the above and other objects, the invention provides an image forming apparatus that may include a casing, a cover unit, and a liquid channel. The casing may include a frame supporting an image forming unit configured to form an image on a recording medium. The cover unit may be disposed above the image forming unit and include a first member, a second member positioned adjacent thereto, and a neighboring portion positioned between the first member and the second member and over the image forming unit. The liquid channel may be configured to guide liquid that has entered the casing. The liquid channel may include a first channel and a second channel. The first channel may be disposed between the neighboring portion and the image forming unit and configured to receive liquid that has entered the casing through the neighboring portion and guide liquid to the frame. The first channel may include a recess part and a liquid outlet. The recess part may be disposed below the neighboring portion and extends toward the frame in an extending direction. The liquid outlet may be configured to discharge liquid from the recess part and positioned at an end portion of the recess part in the extending direction. The second channel may be disposed at the frame and configured to receive liquid from the first channel. The second channel may have a passage opening through the frame in the extending direction and configured to allow liquid discharged from the liquid outlet to pass through the frame in the extending direction.
In the drawings:
The main casing 2 has a box-like shape and accommodates therein the sheet-feeding unit 3, the image-forming unit 4, and the sheet-discharge unit 5.
Directions in the following description related to the printer 1 will assume that the printer 1 is placed right side up on a level surface. Hence, the upper side of the printer 1 in
The main casing 2 includes an access opening 9, a front cover 10, and a discharge tray 11 as an example of the tray unit of the present invention. The access opening 9 is provided on the front side of the main casing 2 and penetrates the front wall of the main casing 2 in the front-rear direction. The front cover 10 is pivotally movable about its bottom end portion in order to expose or cover the access opening 9. The discharge tray 11 is provided on the rear portion of a top wall 71 (described later) constituting the main casing 2. The discharge tray 11 is depressed downward from the top surface of the main casing 2 and functions to support sheets P of paper. The sheets P of paper are an example of the recording medium of the present invention.
The sheet-feeding unit 3 is adapted to convey the sheets P toward the image-forming unit 4. The sheet-feeding unit 3 includes a paper tray 12 detachably mounted in the bottom section of the main casing 2 and serves to accommodate therein the sheets P.
The image-forming unit 4 is configured to form images on the sheets P. The image-forming unit 4 includes a scanning unit 20, a process unit 21, a transfer unit 22, and a fixing unit 23.
The scanning unit 20 is disposed on the top portion of the main casing 2. The scanning unit 20 emits a laser beam for each of a plurality of photosensitive drums 28 (described later) based on image data in order to expose the photosensitive drums 28.
The process unit 21 is disposed beneath the scanning unit 20 in the approximate vertical center region of the main casing 2. The process unit 21 is capable of sliding along the front-rear direction and can be pulled out of the main casing 2 through the access opening 9. The process unit 21 includes a drawer unit 27, and developer cartridges 30.
The drawer unit 27 includes a plurality of photosensitive drums 28, and a plurality of scorotron chargers 29.
A plurality of the photosensitive drums 28 is provided to correspond to the plurality of colors of toner used by the printer 1. The photosensitive drums 28 are arranged parallel to each other and are spaced at regular intervals in the front-rear direction. More specifically, four photosensitive drums 28 are provided in the preferred embodiment to correspond to the four toner colors yellow, magenta, cyan, and black. The photosensitive drums 28 are arranged in this order from the front side of the drawer unit 27 toward the rear side thereof. Each photosensitive drum 28 has a general cylindrical shape and is elongated in the left-right direction. The photosensitive drums 28 are rotatably supported in the bottom of the drawer unit 27, with their bottom surfaces exposed from the bottom portion of the drawer unit 27.
A plurality of the scorotron chargers 29, and specifically four scorotron chargers 29 in the preferred embodiment, are provided to respectively correspond with the plurality of photosensitive drums 28. The scorotron chargers 29 are arranged at regular intervals so as to be positioned on the upper rear sides of corresponding photosensitive drums 28 with a gap therebetween.
A plurality of the developer cartridges 30, and specifically four of the developer cartridges 30 in the preferred embodiment, is provided to respectively correspond with the plurality of photosensitive drums 28. The developer cartridges 30 are detachably mounted in the drawer unit 27 on the upper sides of the corresponding photosensitive drums 28. Each developer cartridge 30 includes a developing roller 31, a supply roller 32, and a thickness-regulating blade 33.
The developing roller 31 is disposed in the bottom section of the corresponding developer cartridge 30. The developing roller 31 has a lower rear portion exposed through the developer cartridge 30 and contacts the upper front portion of the corresponding photosensitive drum 28. The supply roller 32 is disposed on the upper front side of the developing roller 31. The supply roller 32 has a lower rear surface in rolling contact with the upper front surface of the developing roller 31. The thickness-regulating blade 33 is disposed above the developing roller 31 and in sliding contact with the top surface of the developing roller 31. Each developer cartridge 30 accommodates therein toner for the corresponding color in a space above the supply roller 32.
The transfer unit 22 is disposed vertically between the paper tray 12 and the process unit 21 and is elongated in the front-rear direction. The transfer unit 22 includes a drive roller 37, a follow roller 38, a conveying belt 39, and transfer rollers 41. The drive roller 37 and the follow roller 38 are arranged parallel to each other and are spaced apart from each other in the front-rear direction. The conveying belt 39 is looped around the drive roller 37 and the follow roller 38. A plurality of the transfer rollers 41, and specifically four of the transfer rollers 41 in the preferred embodiment, is provided to correspond with the plurality of photosensitive drums 28. The transfer rollers 41 are disposed beneath the corresponding photosensitive drums 28 such that the upper portion of the conveying belt 39 is interposed between the transfer rollers 41 and the corresponding photosensitive drums 28.
The fixing unit 23 is positioned on the rear side of the transfer unit 22 with a gap therebetween. The fixing unit 23 includes a heating roller 43, and a pressure roller 44. The pressure roller 44 has an upper front surface in rolling contact with the lower rear surface of the heating roller 43 with pressure.
The sheet-discharge unit 5 is configured to discharge a sheet P from the main casing 2 after the image-forming unit 4 has formed an image on the sheet P. The sheet-discharge unit 5 is disposed above the fixing unit 23 and is provided with a discharge roller 50.
The discharge roller 50 is disposed rearward of the discharge tray 11 and is rotatably supported on the main casing 2.
The printer 1 having this construction performs an image-forming operation under the control of a control unit (not shown). At the beginning of the image-forming operation, the scorotron chargers 29 apply a uniform charge to the surfaces of the corresponding photosensitive drums 28. Next, the scanning unit 20 exposes the circumferential surfaces of the charged photosensitive drums 28 based on prescribed image data, thereby forming electrostatic latent images on the circumferential surfaces of each of the photosensitive drums 28 based on the image data.
Toner in each of the developer cartridges 30 is supplied to the corresponding supply rollers 32, and the supply rollers 32 in turn supply toner to the corresponding developing rollers 31. This toner is positively tribocharged between the supply rollers 32 and the developing rollers 31. Next, the thickness-regulating blades 33 regulate the toner carried on the surfaces of the corresponding developing rollers 31 at a uniform thickness. By rotating, the developing rollers 31 supply toner from their surfaces to the electrostatic latent images formed on the circumferential surfaces of the corresponding photosensitive drums 28, producing toner images on the circumferential surfaces of the photosensitive drums 28.
In the meantime, various rollers in the printer 1 rotate to feed sheets P from the paper tray 12 and to supply the sheets P one at a time onto the top portion of the conveying belt 39 at a prescribed timing. Subsequently, the conveying belt 39 conveys the sheet P supplied onto its top surface rearward so that the sheet P passes between each of the photosensitive drums 28 and the conveying belt 39. At this time, the photosensitive drums 28 and corresponding transfer rollers 41 sequentially transfer toner images in each color onto the sheet P conveyed therebetween, forming a color image on the sheet P.
After the color image has been formed on the sheet P, the circulation of the conveying belt 39 continues to convey the sheet P to a position between the heating roller 43 and the pressure roller 44. As the sheet P passes between the heating roller 43 and the pressure roller 44, the heating roller 43 and the pressure roller 44 apply heat and pressure to the sheet P to thermally fix the color image to the sheet P. Subsequently, the discharge roller 50 discharges the sheet P through a discharge opening 84 (described later) and onto the discharge tray 11 in a discharge direction X. Sheets P discharged from the main casing 2 are stacked on the top surface of a sheet support part 73 (described later) of the discharge tray 11 and supported thereby.
As shown in
The main casing body 59 has a box-like shape with an opening upward. The main casing body 59 includes a right wall 60, a left wall 61, and a rear wall 62.
As shown in
As shown in
The frame 65 is disposed on the right side of the image-forming unit 4 and constitutes the left portion of the right wall 60. The frame 65 is formed of a resin material known in the art and has a plate shape that is generally rectangular in a side view and elongated in the front-rear direction, as illustrated in
As shown in
As shown in
As will be described later, the frame 65 is also integrally provided with a second channel 92.
As shown in
As shown in
As shown in
As will be described later, the top cover 63 is further integrally provided with a third channel 93.
As shown in
As shown in
As shown in
As shown in
As shown in
The flat plate part 80 has a plate shape and is generally rectangular in a plan view.
The first tray part 81 is disposed in the rear portion of the flat plate part 80 at the approximate left-right center thereof and is recessed lower than the top surface of the flat plate part 80.
The first tray part 81 includes a sheet support part 73, and a pair of first tray side walls 74.
As shown in
The main portion 76 extends continuously from the flat plate part 80 slanted downward toward the rear. The protruding portion 77 is formed continuously with the rear edge of the main portion 76, protruding downward therefrom. The protruding portion 77 extends across the entire left-right dimension of the main portion 76.
As shown in
As shown in
As shown in
As shown in
As shown in
The duct body 86 has a box-like shape and is elongated in the left-right direction. The duct body 86 is formed with filter openings 108, and a fan opening 109.
As shown in
As shown in
The ozone filters 107 is adapted to allow the passage of air, but trap volatile organic compounds (VOCs) contained in air passing therethrough and decompose/remove ozone. Three of the ozone filters 107 are provided to correspond to the three filter openings 108.
The ozone filters 107 are plate-shaped and generally rectangular in a front view. The ozone filters 107 are disposed on the inner front side of the duct body 86 at positions rearward of the corresponding filter openings 108. Through this arrangement, the front surfaces of the ozone filters 107 are exposed to the outside of the duct body 86 through the corresponding filter openings 108.
As shown in
As shown in
The sloped part 82 extends continuously from the bottom end portion of the vertical part 83 so as to slope upward toward the front.
As shown in
The roller support parts 87 are disposed on the top surface of the duct body 86 at the rear of the second tray part 85. The roller support parts 87 face each other in the left-right direction with a space therebetween. The roller support parts 87 have a plate shape that is generally rectangular in a side view and extend upward from the top surface of the duct body 86. The roller support parts 87 rotatably support the left and right ends of the discharge roller 50. Through this configuration, the discharge roller 50 is supported in the duct unit 64.
As will be described later, the duct unit 64 is integrally provided with a first channel 91.
As shown in
As shown in
The second tray side walls 89 are adjacent to the corresponding first tray side walls 74 on the rear side thereof. In this way, the second tray part 85 is disposed upstream of the first tray part 81 in the discharge direction X of the sheet P. Together, the first tray part 81 and the second tray part 85 configure the discharge tray 11.
While not shown in the drawings, the fan opening 109 confronts the through-hole 67 formed in the frame 65 in the left-right direction.
As shown in
As illustrated in
As shown in
The liquid channel 90 is configured to discharge liquid from the main casing 2 that enters the main casing 2 through the gap C.
The liquid channel 90 includes a first channel 91, a second channel 92, and a third channel 93.
(1) First Channel
The first channel 91 is the upstream portion of the liquid channel 90 with respect to the direction that liquid flows. The liquid channel 90 is configured to receive liquid that enters the main casing 2 through the gap C and to guide the liquid toward the frame 65. As shown in
As shown in
As shown in
The recess part 95 is provided beneath the gap C. The recess part 95 is formed as a recess that is open on the top. The recess part 95 is elongated in the left-right direction and extends toward the frame 65 as shown in
The first recess wall 105 constitutes the rear side of the recess part 95. The first recess wall 105 extends continuously downward from the front end portion of the sloped part 82 in the second tray part 85. Accordingly, the first recess wall 105 is disposed upstream of the protruding portion 77 in the discharge direction X, i.e., to the rear of the protruding portion 77, and confronts the protruding portion 77 in the front-rear direction while being separated therefrom.
As shown in
As shown in
As shown in
As shown in
As shown in
Further, the left end of the recess part 95 is closed, while the right end thereof is open.
The right end of the recess part 95, and specifically the right edges of the first recess wall 105, the second recess wall 106, and the recess bottom 104, defines a liquid outlet 99. Thus, the recess bottom 104 slopes so as to grow lower toward the liquid outlet 99.
Further, the liquid outlet 99 is provided at the right end of the recess part 95 and is positioned further rightward than the image-forming unit 4. The liquid outlet 99 has a general U-shape in a side view with the opening of the “U” facing upward.
The extension part 96 is disposed adjacent to the recess part 95 on the right side thereof. Specifically, as shown in
As shown in
The interior space of the extension part 96 is in communication with the liquid outlet 99 in the left-right direction and communicates with the interior space of the recess part 95 through the liquid outlet 99.
As shown in
The reservoir part 98 is disposed adjacent to the recess part 95 on the front side thereof. As shown in
The front wall of the reservoir part 98 has a greater vertical dimension than the rear wall of the reservoir part 98. Hence, the front wall of the reservoir part 98 has an upper portion positioned to the front of and spaced apart from the second recess wall 106 so as to oppose the second recess wall 106 in the front-rear direction. Accordingly, as shown in
As shown in
The first reservoir part 101 constitutes the right portion of the reservoir part 98. The first reservoir part 101 is in communication with the interior space of the recess part 95 through the communication groove 100.
The second reservoir part 102 constitutes the left portion of the reservoir part 98 and is adjacent to the first reservoir part 101 on the left side thereof. The second reservoir part 102 is in communication with the first reservoir part 101 in the left-right direction. The second reservoir part 102 has a greater vertical dimension than the first reservoir part 101.
(2) Second Channel
As shown in
As shown in
As shown in
As shown in
The receiving wall 113 constitutes the bottom of the liquid receiving part 111. The receiving wall 113 has a plate shape that is generally L-shaped in a side view. Specifically, the receiving wall 113 first extends leftward from the bottom edge of the inlet 110, then bends and extends upward.
The coupling walls 114 constitute the front and rear sides of the liquid receiving part 111 and are disposed apart from each other in the front-rear direction. The coupling walls 114 are plate-shaped and have a general rectangular shape in a front view. The inner front-rear surfaces of the coupling walls 114 at their bottom and left edges are respectively connected to the front and rear edges of the receiving wall 113. The right edges of the coupling walls 114 are connected to peripheral edges of the inlet 110.
Through this configuration, the bottom portion of the inlet 110 and the liquid receiving part 111 are in communication with each other in the left-right direction.
As shown in
One of the first guiding walls 117 is disposed on each of the front and rear sides of the inlet 110 so that the inlet 110 is interposed therebetween when viewed from the right. The first guiding walls 117 protrude rightward from the right surface of the frame 65 and are separated from each other in the front-rear direction. The first guiding walls 117 include a front first guiding wall 117F and a rear first guiding wall 117R.
The front first guiding wall 117F is integrally provided with a straight portion 119, and a sloped portion 120.
In a side view, the straight portion 119 extends linearly along the vertical direction. The straight portion 119 has a top end portion positioned on the right of the inlet 110.
The sloped portion 120 is formed continuously with the bottom edge of the straight portion 119 and slopes rearward toward the bottom. While not shown in the drawings, a power supply board is provided on the right surface of the frame 65 in front of the front first guiding wall 117F for supplying power to the image-forming unit 4. Hence, the sloped portion 120 slopes away from the power supply board.
The rear first guiding wall 117R constitutes the front wall of the fan support part 68, as described above, and extends linearly along the vertical in a side view. The top end portion of the rear first guiding wall 117R is positioned on the rear side of the inlet 110 in a side view. The vertical dimension of the rear first guiding wall 117R is approximately equivalent to the vertical dimension of the straight portion 119.
The closing wall 118 is disposed adjacent to the bottoms of the first guiding walls 117. That is, the closing wall 118 is positioned lower than the fan support part 68 and, hence, is positioned lower than the fan 88.
The closing wall 118 has a general U-shape in a side view, with the opening of the “U” facing upward. The closing wall 118 protrudes rightward from the right surface of the frame 65.
As shown in
As shown in
(3) Third Channel
As shown in
As shown in
The rib 130 is disposed on the left surface of the side cover 66 at a position on the lower front side of the vent 69. The rib 130 extends linearly along the vertical in a side view and has a general plate shape that protrudes leftward from the left surface of the side cover 66. The left end of the rib 130 and the right end on the bottom edge of the closing wall 118 face each other in the left-right direction with a slight gap therebetween.
The second guiding walls 131 are respectively arranged on each of the front and rear sides of the rib 130 so that the rib 130 is interposed between the second guiding walls 131 in a left side view. The second guiding walls 131 protrude leftward from the left surface of the side cover 66 and are separated from each other in the front-rear direction.
More specifically, the rib 130 is disposed between the upper end portions of the second guiding walls 131, with the upper end portions of the second guiding walls 131 aligned with the upper end of the rib 130 in the front-rear direction with gaps therebetween.
The bottom portions of the second guiding walls 131 slope rearward toward the bottom, such that the bottom ends of the second guiding walls 131 are positioned above the notched groove 70 with a space therebetween.
As illustrated by the printer 1 in
If this occurs, liquid may enter the gap C formed between the main portion 76 of the sheet support part 73 and the sloped part 82 of the second tray part 85 shown in
As shown in
Once the liquid reaches the right end of the recess part 95, the liquid is discharged from the recess part 95 through the liquid outlet 99. If the flow of liquid in the recess part 95 increases until the surface of the liquid rises above the bottom edge of the communication groove 100 at this time, some of the liquid flows through the communication groove 100 into the first reservoir part 101 of the reservoir part 98 and is retained therein, as shown in
Further, liquid discharged from the recess part 95 through the liquid outlet 99 enters the extension part 96 that communicates with the liquid outlet 99 and flows along the top surface of the extension part bottom wall 103 constituting the extension part 96 that slopes diagonally downward and rightward. Subsequently, the liquid flows over the right edge of the extension part 96 down along the protrusion 97 and falls onto the liquid receiving part 111 of the second channel 92.
The receiving wall 113 of the liquid receiving part 111 receives liquid flowing down from the protrusion 97. The liquid receiving part 111 guides the liquid to flow rightward toward the inlet 110.
The liquid passes through the inlet 110 from left to right. With this configuration, the liquid receiving part 111 and the inlet 110 guide liquid transferred through the first channel 91 to the side of the frame 65 opposite the image-forming unit 4.
As shown in
As shown in
Next, the liquid is discharged from the bottom edges of the second guiding walls 131, flows downward toward the notched groove 70 and is discharged from the main casing 2 through the notched groove 70.
(1) As shown in
That is, liquid that enters the main casing body 59 through the gap C is first received in the recess part 95. After flowing toward the frame 65 through the recess part 95, the liquid is guided to the opposite side of the image-forming unit 4 with respect to the frame 65 through the inlet 110 and is then transferred to the second channel 92.
Accordingly, the structure of the invention can reliably prevent the image-forming unit 4 and the like from becoming wet, even if liquid enters the main casing body 59 through the gap C.
(2) As shown in
As a result, liquid penetrating the main casing body 59 through the gap C can be discharged from the main casing body 59 through the first channel 91, the second channel 92, and the third channel 93. Accordingly, this structure can reliably prevent the image-forming unit 4 and the like from becoming wet.
(3) As shown in
(4) As shown in
Accordingly, the structure of the invention can reliably prevent the image-forming unit 4 from becoming wet by liquid discharged through the liquid outlet 99.
(5) As shown in
(6) As shown in
(7) As shown in
Accordingly, this construction can reliably guide liquid along the right surface of the frame 65 after the liquid has passed through the inlet 110 and can reliably transfer liquid from the guiding part 112 to the third channel 93.
(8) As shown in
As a result, this construction can stably transfer liquid from the guiding part 112 to the third channel 93 and can reliably guide that liquid out of the main casing body 59.
(9) As shown in
(10) As shown in
Since the duct unit 64 is integrally provided with the duct body 86 and the first channel 91, fewer parts are required in this structure in comparison with a case where the duct body 86 and the first channel 91 were provided separately.
(11) As shown in
(12) As shown in
(13) As shown in
Further, the first tray part 81 constituting part of the discharge tray 11 can be removed from the main casing body 59. Accordingly, maintenance on the image-forming unit 4 is facilitated simply by removing the first tray part 81 from the main casing body 59.
(14) As shown in
(15) As shown in
(16) As shown in
(17) As shown in
However, since the recess part 95 of the first channel 91 is disposed beneath the gap C, as shown in
If the flow of liquid entering the main casing body 59 increases, causing the level of the liquid flowing in the recess part 95 to increase, the surface of the liquid flowing in the recess part 95 may rise above the bottom edge of the communication groove 100 shown in
Thus, liquid entering the main casing body 59 through the gap C is received by the recess part 95 and then discharged through the liquid outlet 99 at a prescribed position. Even if the flow of liquid in the recess part 95 increases, the liquid passes through the communication groove 100 and is collected in the reservoir part 98. Thus, this configuration reliably prevents the image-forming unit 4 and the like from becoming wet.
(18) As shown in
The recess part 95 also has the first recess wall 105 and the second recess wall 106 each disposed on opposite sides of the protruding portion 77 with respect to the discharge direction X. Accordingly, the recess part 95 can reliably receive liquid that flows down the protruding portion 77 into the recess part 95.
(19) As shown in
(20) As shown in
Further, the first reservoir part 101 provided relatively near the fan 88 has a smaller vertical dimension than the second reservoir part 102. This allows the reservoir part 98 to be provided with both the first reservoir part 101 and the second reservoir part 102, while ensuring a smooth flow of air near the fan 88. Thus, heat can be efficiently dissipated from the printer 1 while increasing the quantity of liquid that the reservoir part 98 can retain.
Number | Date | Country | Kind |
---|---|---|---|
2013-227603 | Oct 2013 | JP | national |
2013-227604 | Oct 2013 | JP | national |