This application is based on Japanese Patent Application No. 2009-274721 filed on Dec. 2, 2009, which is incorporated hereinto by reference.
The present invention relates to an image forming apparatus for forming a toner image using the electrophotographic process, an image fixing device for fixing the toner image, and an image forming system equipped with the image forming apparatus and image fixing device, particularly to a technique for preventing the fixing roller surface from being roughened.
In an image forming apparatus using the electrophotographic process, a toner image is formed on an image carrier of a rotating photoreceptor drum and photoreceptor belt, and the formed toner image is directly or indirectly transferred onto a recording sheet The image is further fixed so as to form an image thereon
In the aforementioned image forming process, the toner image transferred electrostatically onto the recording sheet is fixed on the recording sheet in a stable state by heat and pressure of a fixing roller. Incidentally, image formation (fixing) is repeated using the recording sheet of one and the same size, and side ends of the recording sheet is brought in contact with the same positions of the fixing roller surface. This may cause a scratch or abrasion on the fixing roller surface, with the result that the service life of the fixing roller will be reduced.
Further, uniform fixing will be interfered by such a scratch and abrasion, and image quality will be deteriorated. Such a problem arises conspicuously when a transfer sheet of a certain size has been repeatedly used to produce a scratch or abrasion on the fixing roller, and a recording sheet having a size greater than that of the transfer sheet is used.
The following patent documents have been proposed in an effort to avoid such a scratch or abrasion (hereinafter referred to as “roughness”) on the fixing roller surface.
In the Unexamined Japanese Patent Application Publication No. 2008-298925, the end of the recording sheet is sandwiched on the upstream side of the fixing device, whereby the thickness of the end is reduced. This arrangement reduces the amount of the fixing roller surface from being scratched by the end of the recording sheet sandwiched and reduced in thickness.
The Unexamined Japanese Patent Application Publication No. 2006-317881 discloses a technique of reducing the level of roughness on the surface by introducing an abrasive agent for polishing the surface of the fixing belt.
The Unexamined Japanese Patent Application Publication No. 2008-225276 provides the fixing roller or fixing belt surface with a recessed section for reducing the pressure.
In the Unexamined Japanese Patent Application Publication No. 2007-34068, the contact member of a belt is arranged in a fixing device constituting an upper belt and a lower roller to ensure that the surface roughness of the lower roller is greater than that of the upper belt.
Incidentally, an image forming apparatus has been proposed in recent years wherein a second fixing device is provided on the downstream side of the fixing device to re-melt the fixed toner, whereby the level of glossiness is upgraded. This second fixing device is intended to upgrade the level of glossiness of the toner image. Accordingly, the proposals given in the aforementioned patent documents cannot be used directly. Further, this proposal has failed to introduce any technique suited to the second fixing device, capable of reducing the level of roughness on a fixing roller surface.
Further, even when image formation (fixing) is repeated using the recording sheets of the same size, the conveying conditions differ according to the type of the sheets. This may result in a slight difference in the positions to be passed through by sheets between the first fixing roller and the second fixing roller. Thus, although there may be no problem with the first fixing roller, the roughness of the surface on the part of the second fixing roller may interfere with the uniform glossiness.
The following describes the details of the embodiments for implementing the image forming apparatus of the present invention, with reference to the drawings.
Referring to
The image forming apparatus 100 of
The controller 101 is provided with a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory) and others that are not illustrated. Using a prescribed area of the RAM as a work area, the CPU executes various forms of programs stored in the ROM and provides administrative control of each component of the image forming apparatus 100. The controller 101 controls the process of fixing roller surface roughness prevention shown in the flow chart, as will be described later.
The operation and display section 105 includes input devices such as a keyboard, mouse and touch panel, and sends the various forms of inputted instruction signals to the controller 101. Further, the operation and display section 105 includes display devices such as an LCD (Liquid Crystal Display) and CRT (Cathode Ray Tube), and displays various forms of image data inputted from the controller 101. This operation and display section can have an operation section apart from the display section. However, in the following description of the embodiments, the operation and display section 105 is assumed as a touch panel type operation and display section 105, because a touch panel type wherein the displayed icon or key (hereinafter referred to as “key”) is pressed is commonly employed.
The memory section 110 is a storage device such as an HDD (Hard Disc Drive) or flash memory capable of freely writing, deleting, and reading the data. It can be a permanently fixed device or a removable device. This memory section 110 stores the job data including one or more than one registered job (including the jobs already processed, currently being processed, and not yet processed). The memory section 110 also stores the data required to control the fixing roller surface roughness prevention.
The print engine 140 is an image forming section and printing device using an electrophotographic process or other various forms of processes. In a photocopier, printer and facsimile devices, the print engine 140 forms an image on a prescribed sheet of paper and outputs the resulting image. The print engine 140 includes a first fixing device for ensuring that the toner image transferred onto the recording sheet is fixed onto a recording sheet in the stable state by heat and pressure provided by the first fixing roller through the structure shown in
The second fixing device applies further heat and pressure to the recording sheet to which the toner image has been fixed by the first fixing device, whereby more stable fixing is achieved, and the wax component contained in the toner is re-melted so as to enhance the gloss on the toner image surface.
In the illustrated example, the image forming apparatus 100 can be configured to communicate with terminal equipment such as an external PC through a communication means which is not illustrated. In this case, the communication means is assumed to represents a LAN (Local Area Network) or WAN (Wide Area Network) for example. It can further include various forms of communication lines such as a telephone line, ISDN (Integrated Services Digital Network), ADSL (Asymmetric Digital Subscriber Line), mobile communication network, communication satellite line, CATV (Cable TeleVision) line, optical communication line, and radio communication line.
Referring to the block diagram of
The print engine 140 of the present embodiment includes a print control section 141 including a CPU (Central Processing Unit) as a control means for controlling each section related to image formation, a sheet feed section 1450 for feeding the recording sheet stored in the sheet feed tray 1450T, a conveyance section 1460 for conveying the recording sheet fed out by the sheet feed section 1450 at a prescribed conveyance speed with the timing of image formation adjusted by the sensor 1460s, an image forming section 1470 for forming a toner image on the photoreceptor such as a rotating photoreceptor drum or photoreceptor belt and for transferring this image electrostatically onto the recording sheet directly or indirectly so that an image is formed, a first fixing device 1480 for ensuring that the toner image transferred onto the recording sheet is fixed on the recording sheet in a stable state by the heat and pressure of the fixing roller, and a second fixing device 1490 for ensuring that the toner image transferred onto the recording sheet is fixed on the recording sheet in a stable state by the heat and pressure of the fixing roller.
In response to the control program of the controller 101 and image forming apparatus 100, the print control section 141 controls each component of the print engine 140, and provides various forms of adjustment and control, whereby the print engine 140 is placed under administrative control.
The sheet feed section 1450 ensures that the recording sheets placed on one or more than one sheet feed tray 1450T are fed to the position for image formation by the sheet feed roller. The conveyance section 1460 is a conveyance means for conveying at a prescribed conveyance speed the recording sheets fed out of the sheet feed section 1450, and is provided with a registration roller, other various types of conveyance rollers, and a conveyance belt. Further, a conveyance sensor 1460s such as a leading edge detection sensor for detecting the edge of the recording sheet is mounted at a prescribed position of each section of the conveyance section 1460.
Incidentally, the conveyance section 1460 incorporates a reverse conveyance path 1460R based on the switch-back system for duplex image formation. The recording sheet can be circulated from the output side of the first fixing device 1480 through the reverse conveyance path 1460R, as shown in
The image forming section 1470 is provided with charging sections 1471 (1471Y through K) for charging the photoreceptor with a prescribed voltage, exposing sections 1472 (1472Y through K) for forming an electrostatic latent image by exposing the charged photoreceptor in response to image data, and by changing the charged voltage, photoreceptors 1473 (1473Y through K) as image carriers for forming an electrostatic latent image on the surface through the aforementioned process of charging and exposure, and for converting this electrostatic latent image into a toner image, developing sections 1474 (1474Y through K) for attaching toner to the electrostatic latent image formed on the surface of the photoreceptor 1473 so that a toner image is formed by development and a transferring section 1475 for transferring electrostatically onto the recording sheet the toner image formed on the surface of the photoreceptor 1473.
The charging section 1471, exposing section 1472, photoreceptor 1473, and developing section 1474 can be configured independently of each other for each of the colors Y, M, C and K used for image formation, as shown in
In the case of the color image forming apparatus of
The toner image transferred onto the recording sheet by the transferring section 1475 is fixed in a stable state by the heat and pressure of the two fixing devices, a first fixing device 1480 and a second fixing device 1490.
A polishing section 1485 equipped with a polishing member such as a polishing sheet or polishing roller is provided as a first fixing roller surface roughness prevention mechanism, close to the first fixing roller surface of the first fixing device 1480. The first fixing roller surface is polished by the polishing section 1485 equipped with the polishing section such as a polishing sheet or polishing roller, so as to minimize the surface roughened by scratches or abrasions caused by the edge of the recording sheet.
In the vicinity of the second fixing device 1490, an oscillating section 1495 is arranged as a second fixing roller surface roughness prevention mechanism. The second fixing device 1490 can be oscillated in the axial direction of the fixing roller by the oscillating section 1495. The second fixing roller is oscillated in the axial direction by the oscillating section 1495 so as to minimize concentration of the roughness on the surface due to scratches or abrasions caused by the edge of the recording sheet.
In this case, the second image fixing device 150 incorporates an oscillating section 1495′ as a second fixing roller surface roughness prevention mechanism. It is further provided with a second fixing controller 151, wherever required. Instead of the second fixing controller 151 being provided, it is also possible to arrange such a configuration that control is provided by the print control section 141 or controller 101.
Referring to
As shown in
As shown in
The first fixing device 1480 is a fixing device as a basis of the image forming apparatus 100, and is therefore characterized by a higher heat capacity and greater weight. Thus, in a fixing roller surface roughness prevention mechanism, polishing is more preferably used than oscillation. In the meantime, the second fixing device 1490 is an auxiliary fixing device located downstream in the direction of recording sheet conveyance in the first fixing device 1480. This allows the heat capacity to be smaller than that of the first fixing device 1480. Thus, the weight is smaller. Oscillation can be used preferably in a fixing roller surface roughness prevention mechanism.
Referring to
As shown in
This oscillating section 1495 ensures that the second fixing roller 1491 or the second fixing device 1490 as a whole configured to oscillate in the axial direction of the second fixing roller 1491 is oscillated in the axial direction by the drive force of the oscillation motor 1495M having been converted by the gears 1495G1 and 1495G2. For this oscillation, the second fixing roller 1491 or fixing device 1480 as a whole is retained by a sliding mechanism (not illustrated) and others.
As shown in
This oscillating section 1495 ensures that the second fixing roller 1491 or the second fixing device 1490 as a whole configured to oscillate in the axial direction of the second fixing roller 1491 is oscillated in a prescribed direction along the threaded rod 1495G3 by the rotation of the nut driven by the motor inside the drive section 1495MN.
A motor, gear, screw, and nut are shown to be included in the oscillating section 1495 of
The second fixing roller 1491 or the second fixing device 1490 as a whole is so configured that the position thereof at the time of oscillation can be detected by the oscillation sensor 1490SH. The result of detection is notified to the print control section 141, controller 101, or the second fixing controller 151.
Referring to the flow chart of
In the first place, if an image formation output instruction is given from the operation and display section 105 or an external PC which is not illustrated (YES in Step S101 of
When image formation is to continue (YES in Step S103 of
In this case, if the fixing roller surface roughness prevention mechanism is off (YES in Step S104 of
If the number of the recording sheets of any size having passed through the roller has not reached a prescribed number of sheets in the image formation operation (NO in Step S106 of
“A prescribed number of sheets” in the sense in which it is used here refers to the number of recording sheets or the number slightly smaller determined in advance wherein the edges of these recording sheets of a particular size are brought in contact with one and the same position of the fixing roller surface by the repeated operation of image formation using these recording sheets, with the result that the surface of the fixing roller is likely to be subjected to scratches or abrasions.
If, in the process of image formation, the number of the recording sheets of any size having passed has not reached a prescribed number of sheets (YES in Step S106 of
When the fixing roller surface roughness prevention function is turned on for the first fixing roller 1481, the print control section 141 ensures that the polishing section 1485 having been kept in the standby position is brought in contact with the surface of the first fixing roller 1481, and the surface of the first fixing roller 1481 is polished by the polishing section 1485 so that the surface will not be roughened by scratches or abrasions caused by the side edges of the recording sheet.
When the fixing roller surface roughness prevention function is turned on for the second fixing roller 1491, the print control section 141 ensures that the second fixing device 1490 as a whole or the second fixing roller 1491 is oscillated by the oscillating section 1495 so that the roughness resulting from scratches or abrasions caused by the side edges of the recording sheet will be diffused on the surface of the second fixing roller 1491, without being concentrated on a particular position. The amplitude of the oscillation in this case is intended to avoid roughness produced on the surface of the second fixing roller 1491 by the edge of the recording sheet Thus, the oscillation is controlled at the cycle wherein there is movement of about several millimeters through several tens of millimeters during the operation of fixing several tens of sheets through a few hundred sheets.
When the second fixing device 150 is an external device of the image forming apparatus 100, and an image forming system is formed of these devices as a whole without the presence of a second fixing controller 151, an instruction of oscillation can be issued directly to the oscillating section 1495′ under the control of the controller 101 or print control section 141.
In the image forming system, when the external second fixing device 150 is equipped with the second fixing controller 151, an instruction of oscillation can be issued to the oscillating section 1495′ from the controller 101 or print control section 141 through the second fixing controller 151.
After the fixing roller surface roughness prevention function has been turned on as described above, the controller 101 goes back to Step S 102, and repeats the aforementioned image formation processing (Step S102 through Step S 104) until termination of the image formation (Step S103 of
When an instruction to terminate the image formation output has been issued from the operation and display section 105 or an external PC which id not illustrated (NO in Step S103 of
In the manner described above, when a prescribed number of the recording sheets having the same size in the image forming operation has been reached for each of the first fixing roller 1481 and second fixing roller 1491, the fixing roller surface roughness prevention mechanism is operated. This arrangement ensures effective prevention of the roughness on the surface of the fixing roller of the fixing devices, when fixing is performed by two fixing devices of the first and second fixing devices.
In the configuration of
In the configuration of
In the configuration of
In the configuration of
In the configuration of
In the configuration of
In the configuration of
The above description of the embodiment assumes that both the first fixing roller 1481 and second fixing roller 1491 are used for fixing roller surface roughness prevention. It has become possible to provide an image forming apparatus, image fixing device, and image forming system wherein roughness on the surface of the second fixing roller can be effectively prevented by the fixing roller surface roughness prevention function applied to at least the second fixing roller 1491. This arrangement has never been achieved in the related art.
In the above description of the embodiment, the oscillating section 1495 is turned off (wherein oscillation does not occur) or is turned on (wherein oscillation occurs). However, the present invention is not restricted thereto.
The range of oscillation can be expanded stepwise. For example, when a first prescribed number of recording sheets have passed, oscillation is turned on in the first phase. After that, when a second prescribed number of recording sheets has passed, oscillation is turned on in the second phase wherein the oscillation amplitude is expanded. This arrangement permits an effective and proper diffusion and elimination of the roughness on the surface of the fixing roller surface, even when a great number of sheets have passed.
In the aforementioned embodiments, a specific configuration was represented by the four-color image forming apparatus of
The embodiments of the image forming apparatus, image fixing device, and image forming system of the present invention are provided with a fixing roller surface roughness prevention mechanism that prevents the roughness from being formed on the surface of the fixing roller due to the contact of the fixing roller with the side edges of the recording sheet. When a prescribed number of the recording sheets having the same size in the image forming operation have been reached, the fixing roller surface roughness prevention mechanism is turned on. This arrangement provides effective prevention of roughness from occurring on the surface of the fixing roller of a fixing device, when fixing operation is performed by two fixing devices, the first and second fixing devices.
Number | Date | Country | Kind |
---|---|---|---|
JP2009-274721 | Dec 2009 | JP | national |