1. Field of the Invention
The present invention relates to an image forming apparatus including a sensor that detects an object to be detected.
2. Description of the Related Art
A known image forming apparatus using an electrographic process or the like reads a reference image on an image conveyance member using a sensor as a detecting unit, calculates the amount of misalignment from the reference in the result of the reading, corrects the amount of color misalignment and the density of the image, and maintains its proper setting. In this case, the sensor is an optical sensor. Examples of the image conveyance member may include a photosensitive member, an intermediate transfer member, and a transfer material carrier.
For example, in a tandem image forming apparatus employing an intermediate transfer method, a reference image for color misalignment correction for each color is formed on an intermediate transfer member by an image forming portion for each color, the position of the reference image for each color is detected by a sensor, and color misalignment is corrected. In this image forming apparatus, a reference image for density correction for each color is formed on the intermediate transfer member by the image forming portion for each color, the density of the reference image for each color is detected by the sensor, and the density for each color is corrected.
One factor in decreasing the accuracy of detection of the above-described sensor may be a flutter of the reference image, which is an object to be detected. For example, when the intermediate transfer member having an endless belt shape flutters in the direction of the depth of the sensor, there are variations in results of detection of reference images. To avoid such variations, fluttering of the intermediate transfer member may be reduced by arrangement of a roller in a location opposed to the sensor on the inner circumferential surface side of the intermediate transfer member. However, while an image transferred to the surface of the intermediate transfer member (output image or reference image) is passing through a location above the roller having a potential difference therefrom, toner may scatter from the surface of the intermediate transfer member. The scattered toner may be directed toward the detecting surface of the sensor arranged in the vicinity of the intermediate transfer member and may adhere to the detecting surface of the sensor.
An openable and closable shutter member (protective member) for protecting the sensor may be disposed between the sensor and the intermediate transfer member, as described in Japanese Patent No. 4724288.
An image forming apparatus according to the present invention includes a movable image-bearing member configured to bear a toner image, a sensor opposed to the image-bearing member, a shutter member arranged between the sensor and the image-bearing member and movable between an open position at which the sensor is exposed to the image-bearing member and a closed position at which the sensor is shielded from the image-bearing member, a rotatable cam configured to move the shutter member, and an execution portion capable of selectively executing a first mode in which the cam is rotated within a first phase range and the shutter member is opened or closed and a second mode in which the cam is rotated at least through a second phase range different from the first phase range and the shutter member is vibrated.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
An image forming apparatus according to the present invention will be described in detail below with reference to the drawings.
The image forming apparatus 10 includes first, second, third, and fourth image forming portions (stations) PY, PM, PC, and PK configured to form yellow (Y), magenta (M), cyan (C), and black (B) images, respectively, as a plurality of image forming portions. In the present embodiment, the configurations and operations of the image forming portions PY, PM, PC, and PK are substantially the same, except for used toner colors. Accordingly, when it is not necessary to distinguish among them, the suffixes Y, M, C, and K indicating the elements for individual colors are omitted and the elements are collectively described. In the description below, the front side of the sheet surface in
The photosensitive drum 1 is disposed in the image forming portion P. The photosensitive drum 1 is an electrophotographic photosensitive member (photosensitive member) having a drum shape (cylindrical shape) as an image-bearing member. The photosensitive drum 1 is rotationally driven by a drive motor (not illustrated) as a driving unit in the direction of an arrow R1 in
The rotating photosensitive drum 1 is uniformly charged by the charger 2. An electrostatic latent image (electrostatic image) is formed on the photosensitive drum 1 by scanning exposure performed on the charged surface of the photosensitive drum 1 by the exposing device 3. The electrostatic latent image formed on the photosensitive drum 1 is developed by the developing device 4 using toner as a developing material.
The exposing device 3 includes a laser whose light emission is controlled in accordance with an image signal and a plurality of mirror portions configured to guide laser beams onto the photosensitive drum 1. Adjustment of the light emission timing in the laser and the mirrors enables timing of writing an image to be adjusted and the position of the beginning of writing for each color to be adjusted. Adjustment of a potential of the photosensitive drum 1 and the amount of light of the laser enables the density of the image to be adjusted.
An intermediate transfer belt 7 being an intermediate transfer member having an endless belt shape is arranged below the photosensitive drums 1Y, 1M, 1C, and 1K such that the intermediate transfer belt 7 horizontally passes through the image forming portions PY, PM, PC, and PK. The intermediate transfer belt 7 is one example of a movable image conveyance member. The intermediate transfer belt 7 is wound around a drive roller 71, a secondary-transfer counter roller 72, a tension roller 73, and a backup roller 74 as a plurality of supporting rollers. The intermediate transfer belt 7 is rotated (cyclically moved) along the direction of an arrow R2 in
A toner image formed on the photosensitive drum 1 is (primarily) transferred to the intermediate transfer belt 7 at the primary transfer portion N1 by the action of the primary transfer roller 5 to which a primary transfer voltage (primary transfer bias) is applied. For example, in the case of forming a full-color image, toner images for individual colors are sequentially transferred onto the intermediate transfer belt 7 in the first, second, third, and fourth image forming portions PY, PM, PC, and PK such that the toner images overlap one another. The toner images transferred to the intermediate transfer belt 7 are (secondarily) transferred to a transfer material (sheet material) S, such as a recording sheet, at the secondary transfer portion N2 by the action of the secondary transfer roller 8 to which a secondary transfer voltage (secondary transfer bias) is applied. For example, in the case of forming a full-color image, the overlapping four-color toner images on the intermediate transfer belt 7 are collectively transferred to the transfer material S. The transfer material S is fed from a container 11 in a transfer material supply portion, the attitude of the transfer material S is aligned by a registration adjuster 12, and then it is conveyed to the secondary transfer portion N2.
The transfer material S with the toner image transferred thereto is borne on a conveyance belt 13 being a conveyance member having an endless belt shape. The conveyance belt 13 is driven by a drive motor (not illustrated) as a driving unit. A suction fan (not illustrated) for sucking the transfer material S is arranged on the inner circumferential surface side of the conveyance belt 13. The suction fan sucks the transfer material S onto the conveyance belt 13. After that, the transfer material S is conveyed to a fixing device 14 as a fixing unit arranged downstream of the conveyance belt 13 in its conveyance direction. The transfer material S is heated and pressed by the fixing device 14, and the toner image is fixed thereon. In this manner, the image is obtained on the transfer material S. Then, the transfer material S is conveyed to a transfer-material discharging portion and is discharged onto a transfer-material discharging tray 15 outside a main body 9 of the apparatus in the image forming apparatus 10 (outside the apparatus).
An adhering substance such as residual toner on the photosensitive drum 1 after primary transfer (primary transfer residual toner) is removed and collected from the photosensitive drum 1 by the drum cleaner 6. An adhering substance such as residual toner on the intermediate transfer belt 7 after secondary transfer (secondary transfer residual toner) is removed and collected from the intermediate transfer belt 7 by the belt cleaner 75.
The image forming apparatus 10 includes a sensor unit 100. The sensor unit 100 is arranged downstream of the primary transfer portion N1K, which is the most downstream in the conveyance direction of the transfer material S, and upstream of the secondary transfer portion N2 and is opposed to the outer circumferential surface of the intermediate transfer belt 7. The sensor unit 100 includes registration sensors 102 (
Next, a general configuration and operation of the sensor unit 100 in the present embodiment is described.
As illustrated in
As illustrated in
In the present embodiment, the backup roller 74 is disposed with the aim of suppressing fluttering of the intermediate transfer belt 7. Other members may also be used. For example, a support member (backup member) in any other form, such as a support metal plate for suppressing fluttering of the intermediate transfer belt 7, may be disposed.
As illustrated in
As illustrated in
As illustrated in
In the present embodiment, the registration sensor 102 measures the amount of misalignment in the color misalignment correction patch for each color on the basis of the difference between the amount of light reflected from the intermediate transfer belt 7 and the amount of light reflected from the color misalignment correction patch, and the amount of correction of the position of the beginning of writing for each color is calculated. In the present embodiment, the density sensor 103 measures the difference between the amount of light reflected from a density reference member (described below) disposed on the shutter member 106 and the amount of light reflected from the density correction patch and measures the density of the image of the density correction patch for each color on the basis of that difference. The amount of correction of the density of the image for each color is calculated.
As illustrated in
The shutter member 106 is arranged between the housing 110 and the intermediate transfer belt 7. That is, the shutter member 106 is arranged between the intermediate transfer belt 7 and each of the registration sensors 102 and the density sensors 103 exposed through the detection openings 113. The shutter member 106 can move between an open position where the detection surface 112 of each of the registration sensors 102 and the density sensors 103 is exposed to the intermediate transfer belt 7 and a closed position where the detection surface 112 is shielded from the intermediate transfer belt 7. In the present embodiment, as described below, the shutter member 106 is moved to the closed position by being moved forward by the drive cam 172 against an urging force of the above-described tension spring and is moved to the open position by being moved backward by release of the pressing by the drive cam 172. As illustrated in
In the present embodiment, all of the sensors 102 and 103 in the sensor unit 100 is able to detect a patch when the shutter member 106 is in the open position and is unable to detect it when the shutter member 106 is in the closed position.
Next, the configuration of the shutter driving portion 107 is described in further detail.
As described above, the shutter driving portion 107 includes the drive motor 171 and the rotatable drive cam 172 configured to move the shutter member 106. The shutter member 106 is connected to the shutter driving portion 107 through the follower 165 and is opened or closed by the drive motor 171 and the drive cam 172.
The drive cam 172 includes a home-position sensor 175 as a phase detecting unit configured to detect a phase (rotation position) of the drive cam 172. The home-position sensor 175 includes a flag 173 and a photo-interrupter 174. The flag 173 is fixed coaxially with the drive cam 172 and rotates with the same phase as the drive cam 172. The photo-interrupter 174 is configured to detect the flag 173. The home-position sensor 175 detects the phase of the drive cam 172, and the controller 200 controls driving of the drive motor 171 on the basis of the detection. With this control, the position of the shutter member 106 can be controlled.
In the present embodiment, the shutter member 106 can reciprocate along the forward and backward direction of the image forming apparatus 10. A movement direction from the front side toward the rear side of the shutter member 106 is a first movement direction, and its opposite direction is a second movement direction. In the present embodiment, the drive cam 172 can rotate about a rotary axis O (
As described above, toner scattered from the surface of the intermediate transfer belt 7 may adhere to and settle on the surface of the shutter member 106 arranged between the intermediate transfer belt 7 and each of the registration sensors 102 and the density sensors 103. The settled toner may inadvertently fall on an image on the intermediate transfer belt 7 and may cause a malfunction, such as image soiling called “dropped.”
In the present embodiment, as described in detail below, the controller 200 is configured to selectively execute the following first mode and second mode. That is, in the first mode, the shutter member 106 is opened or closed by rotation of the drive cam 172 within a first phase range. In the second mode, the shutter member 106 is vibrated by rotation of the drive cam 172 at least through a second phase range different from the first phase. As illustrated in
Next, an operation of opening and closing the shutter member 106 in the first mode (first opening/closing mode) is described.
To move the state where the shutter member 106 is closed to the state where it is opened in the first mode, the drive cam 172 in the state where the shutter member 106 is in the closed position in
To move the state where the shutter member 106 is opened to the state where it is closed in the first mode, the drive cam 172 in the state where the shutter member 106 is in the open position illustrated in
As described above, in the first mode, the operation of opening and closing the shutter member 106 is made by the drive cam 172 repeating the substantially semi-perimeter rotation in the positive and opposite directions within the first phase range between the state illustrated in
Next, timings of the operation of opening and closing the shutter member 106 in the first mode are described.
In the present embodiment, the controller 200 controls the opened and closed positions of the shutter member 106 on the basis of a result of detection by the home-position sensor 175. At this time, the controller 200 performs controlling such that opening the shutter member 106 is timed to detect the patch using the sensors 102 and 103. That is, the controller 200 moves the shutter member 106 to the open position immediately before the patch on the intermediate transfer belt 7 passes through the portions opposed to the sensors 102 and 103 and moves the shutter member 106 to the closed position immediately after the patch passes through the portions opposed to the sensors 102 and 103. For example, the controller 200 can perform controlling so as to move the shutter member 106 to the open position immediately before a series of patches to be detected sequentially in a first period is conveyed to the portions opposed to the sensors and so as to move the shutter member 106 to the closed position immediately after that series of patches passes through the portions opposed to the sensors. In the present embodiment, the period of time for which the shutter member 106 is opened is approximately 0.3 seconds. The timing when the shutter member 106 is opened and the duration of the opening are not limited to those in the present embodiment.
Next, the operation of vibrating the shutter member 106 in the second mode (second opening/closing mode) is described.
In this manner, the shutter member 106 can be vibrated in the second mode. By a single vibrating operation in the second mode, the vibrating portion 172b may be made to pass through the position in contact with the follower 165 once and vibrate the shutter member 106 once, or the vibrating portion 172b may be made to pass through the position more than once and repeatedly vibrate the shutter member 106. Any settings may be used to sufficiently shake an adhering substance, such as toner, from the shutter member 106.
In color misalignment correction or density correction, shaking adhering and settling toner from the surface of the shutter member 106 can be suppressed by operating the shutter member 106 in the first mode. In contrast, the shutter member 106 can be vibrated and adhering and settling toner can be shaken from the shutter member 106 by operating the shutter member 106 in the second mode. The toner shaken from the shutter member 106 falls onto the intermediate transfer belt 7.
A specific shape of the vibrating portion 172b, such as height of the step, may be set to any shape that allows an impact load that can sufficiently shake toner from the shutter member 106 to be provided to the shutter member 106. Here, the substance adhering to the shutter member 106 is not limited to toner and may be any matter (mainly powder or granular matter) that can scatter or float inside the main body 9 of the apparatus and that can adhere to the shutter member 106. Examples of the adhering substance may include an external additive of toner and paper dust. In the present embodiment, the follower 165 changes it position in a way that it does not slide along the circumferential surface and falls from the apex b1 to the bottom b2 in the vibrating portion 172b at the vibrating portion 172b. The vibrating portion 172b may include a cam surface in which the distance from the rotation center decreases gradually but sharply just enough to sufficiently vibrate the shutter member 106, and the follower 165 may change its position along the cam surface. In this case, the shutter member 106 typically moves at the vibrating portion 172b with a moving speed higher than that at the opening/closing portion 172a, and a sufficient impact load is provided to the shutter member 106 at the endpoint of the movement. In the present embodiment, the vibrating portion 172b is a single step. The vibrating portion 172b may also include a plurality of steps.
Next, timings of the operation of vibrating the shutter member 106 in the second mode are described.
As described above, when the shutter member 106 is operated in the second mode, toner falls from the shutter member 106 onto the intermediate transfer belt 7. Accordingly, in execution of the second mode, it is necessary to have no output image to be recorded and output on the transfer material S or no reference image (e.g., color misalignment correction patch or density correction patch) on the intermediate transfer belt 7 opposed to the shutter member 106. That is, the second mode is executed when there is no image conveyed by the image conveyance member on the portion opposed to the sensor. In the present embodiment, the second mode is executed at a predetermined timing when no patch is conveyed to the portion opposed to the shutter member 106 during no image formation, other than during output image formation. Examples of during no image formation may include during pre-multi-rotation, during pre-rotation, during sheet-to-sheet interval, during post rotation, and during standby. During pre-multi-rotation, a predetermined preparatory operation is performed, and examples of during pre-multi-rotation may include during power-up of the image forming apparatus and during returning from a sleep mode. During pre-rotation, a predetermined preparatory operation is performed after a signal of a job (a series of image formation operations for a single transfer material or a plurality of transfer materials activated by a first start instruction) is input and before an image is actually written. During sheet-to-sheet interval corresponds to an interval between transfer materials in a job of sequentially forming images on the plurality of transfer materials. During post rotation, a predetermined organizing operation (preparatory operation) is performed after the completion of a job. During standby, an input of a signal of a job is waited. In particular, in the present embodiment, the operation of vibrating the shutter member 106 in the second mode is performed during post rotation.
At the time when the operation of vibrating the shutter member 106 in the second mode is performed, the intermediate transfer belt 7 may be rotating. That is, the second mode may be executed during movement of the image conveyance member. In other words, toner caused to fall from the shutter member 106 onto the intermediate transfer belt 7 by vibration can be collected by the belt cleaner 75, which is disposed downstream of the portion opposed to the sensor unit 100 in the conveyance direction of the intermediate transfer belt 7. Alternatively, if a secondary transfer member cleaner (not illustrated) for cleaning the secondary transfer roller 8 is disposed, toner transferred from the intermediate transfer belt 7 to the secondary transfer roller 8 can be collected by the secondary transfer member cleaner. In this case, the operation of vibrating the shutter member 106 in the second mode performed during rotation of the intermediate transfer belt 7 allows toner to be dispersed without causing much toner to fall to one spot in the conveyance direction of the intermediate transfer belt 7, and thus the load for collecting toner in the above-described cleaner can be reduced. Other configurations may also be used. The operation of vibrating the shutter member 106 in the second mode may be performed at a desired timing when the intermediate transfer belt 7 does not rotate.
As described above, in the present embodiment, malfunction, such as image soiling caused by inadvertent falling of toner adhering to and settling on the openable/closable shutter member 106, which protects the sensors 102 and 103, can be suppressed.
The present invention is described above on the basis of the specific embodiment, but is not limited to the above-described embodiment.
For example, in the above-described embodiment, the shutter member is moved from the closed position to the open position by being moved by the tension spring in the urging direction. Other configurations may also be used. With the above-described movement form, the operation of opening the shutter member can be performed at a relatively high speed. The relationship between the movement direction and the open and closed positions of the shutter member is not limited to that in the above-described embodiment. A relationship opposite to that in the above-described embodiment may also be used.
In the above-described embodiment, the case where the image conveyance member is the intermediate transfer member is described. Other cases may also be used. For example, as is known to those skilled in the art, there is an image forming apparatus employing a direct transfer method. This image forming apparatus includes a transfer-material carrying member as the image conveyance member, in place of the intermediate transfer member in the above-described embodiment, and forms an image by transferring a toner image on a transfer material carried on the transfer-material carrying member. One example of the transfer-material carrying member may be a transfer-material carrying belt similar to the intermediate transfer belt in the above-described embodiment. In such an image forming apparatus, a reference image (toner image for adjustment, such as color misalignment correction patch or density correction patch) is formed on the transfer-material carrying member or a transfer material carried on the transfer-material carrying member, it is detected by the sensors, and controlling for correcting the color misalignment and the density of the image is performed. Accordingly, the application of the present invention to a sensor unit in the above-described image forming apparatus can provide substantially the same advantages as in the above-described embodiment. The image conveyance member may also be a photosensitive member having a drum shape or an endless belt shape. The application of the present invention to a sensor unit configured to detect a reference image (toner image for adjustment, such as density correction patch) formed thereon can provide substantially the same advantages as in the above-described embodiment.
In the above-described embodiment, the sensors are optical sensors. Other sensors may also be used. Any sensor that is opposed to the movable image conveyance member and configured to detect a state of an object to be detected on the image conveyance member may also be used. For example, if the image conveyance member is a photosensitive member, the sensors may be potential sensors configured to detect a surface potential of the photosensitive member as the state on the photosensitive member.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2014-074927, filed Mar. 31, 2014, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2014-074927 | Mar 2014 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6321044 | Tanaka | Nov 2001 | B1 |
20110026953 | Tomita | Feb 2011 | A1 |
20130004189 | Hashiguchi et al. | Jan 2013 | A1 |
20140064770 | Yanata | Mar 2014 | A1 |
20140147153 | Murayama | May 2014 | A1 |
20140294420 | Lee | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
H05-181363 | Jul 1993 | JP |
2002-131997 | May 2002 | JP |
2007-298782 | Nov 2007 | JP |
4724288 | Jul 2011 | JP |
Entry |
---|
U.S. Appl. No. 14/672,051, filed Mar. 27, 2015. |
Number | Date | Country | |
---|---|---|---|
20150277319 A1 | Oct 2015 | US |