1. Field of the Invention
The present disclosure relates to density control techniques in image forming apparatuses.
2. Description of the Related Art
Image forming apparatuses that use electrophotographic systems require stable densities and tones in output images. To that end, U.S. Pat. No. 5,752,126 and U.S. Pat. No. 5,583,644 disclose configurations that stabilize the quality of an image by forming a test pattern on an image carrier and adjust image forming conditions, generate a tone correction table, and so on by reading the density of the formed test pattern using a sensor.
When creating a tone correction table, correction values for densities not formed by the test pattern are obtained by interpolating results of measuring the densities formed by the test pattern. However, pixel values in the image data provided to the image forming apparatus and the densities actually formed by those pixel values are not in a linear relationship, and error appears particularly in low-density and high-density regions where the degree of non-linearity is more marked. Although increasing the number of densities formed by the test pattern is conceivable as a way to solve this problem, doing so increases the time required for tone control and drastically reduces productivity.
According to an aspect of the present invention, an image forming apparatus includes: a forming unit configured to form an image on an image carrier; a holding unit configured to hold a reference table and a tone correction table that convert a plurality of input image data values into corresponding output image data values; and a correcting unit configured to control the forming unit to form a first test pattern including a plurality of images having different densities on the image carrier using the tone correction table, and correct the tone correction table by detecting densities of the plurality of images. The correcting unit is further configured to correct the tone correction table by updating the tone correction table using the detected densities of the plurality of images and then interpolating the updated tone correction table using the reference table.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Hereinafter, exemplary embodiments of the present invention will be described with reference to the drawings. Note that the following embodiments are to be taken as examples only, and the scope of the present invention is not intended to be limited to the embodiments. Note also that constituent elements not necessary for the descriptions of the embodiments have been omitted from the drawings.
Aside from the color of the toner used, the image forming sections PM, PC, and PK have the same configuration as the image forming section PY, and thus descriptions of the image forming sections PM, PC, and PK will be omitted here. Note also that in the following descriptions, reference numerals without the letters Y, M, C, and K appended thereto will be used in cases where it is not necessary to distinguish between different colors. A multicolor toner image is formed on the intermediate transfer belt 6 by transferring the toner images formed on the photosensitive members 1 of the respective image forming sections onto the intermediate transfer belt 6 in a superimposed manner.
The intermediate transfer belt 6 is wrapped upon three rollers 61, 62, and 63, and is rotationally driven in the direction of R2 indicated in
A light source 103 of a reading unit 216 emits light onto a recording material placed on a platen 102, and a CCD sensor 105 reads an image of the recording material by receiving the light reflected therefrom. Image data read by the CCD sensor 105 undergoes predetermined image processing in a reader image processing unit 108 and a printer control unit 109. Note that the image forming apparatus 100 according to the present embodiment is configured to be capable of printing image data received over a telephone line (fax), image data received from a computer over a network, and so on, in addition to images read by the reading unit 216. Meanwhile, an operating unit 20 enables a user to operate the image forming apparatus 100, and includes a display unit 218 for displaying the status of the image forming apparatus 100 to the user. A control unit 110 performs overall control of image forming operations carried out by the image forming apparatus 100, and includes a CPU 111, a RAM 112, and a ROM 113. The control unit 110 determines and obtains density information of the toner image formed on the photosensitive member 1 based on a signal from the density sensor 12. The CPU 111 controls the image forming apparatus 100 using programs and various types of data held in the ROM 113, employing the RAM 112 as a work area. Furthermore, the image forming apparatus 100 includes an environment sensor 30 that obtains information of the environment in which the image forming apparatus is located, such as temperature, humidity, or both, and communicates this information to the control unit 110.
Next, tone correction control according to the present embodiment will be described. Note that the tone correction control is carried out for each color. In the present embodiment, the tone correction control is performed in response to a user operation or to a predetermined condition being met. In the tone correction control, the toner image formed on and fixed onto the recording material, the fixed toner image is read by the reading unit 216, and image forming conditions related to density are determined. In this density control, an image forming condition value for forming an image at a maximum density serving as a target (referred to as a “target maximum density” hereinafter; the condition value will be referred to as a “maximum density condition value”), and a tone correction table for converting the values of input image data in order to realize the target density, are created. Using the created tone correction table, a test pattern R is furthermore formed on the photosensitive member 1 using the maximum density condition value that has been determined. In the present embodiment, the test pattern R is a pattern including images of ten types of different densities (tones), including a solid-color area (maximum density area), as shown in
Then, when sequentially forming images, the image forming apparatus 100 executes correction control using the tone correction table (called simply “correction control” hereinafter) each time a predetermined number of sheets passes through. In the correction control, a test pattern Q, which has a lower number of densities than the test pattern R formed in the tone correction control, is formed on the photosensitive member 1, as shown in
First, details of the tone correction control will be described using
Next, in S13, the control unit 110 forms a test pattern for tone correction on the recording material.
Next, correction control according to the present embodiment will be described using
Note that the correction control is performed each time a predetermined number of sheets passes through when sequentially forming images, as mentioned above. When the correction control starts, in S20, the control unit 110 forms the test pattern Q shown in
In S24, the control unit 110 updates the tone correction table using the tone correction table to be corrected, held in the RAM 112, and the inverse transform table created in S23. As described above, the tone correction table to be corrected is the reference tone correction table generated through the tone correction control in the case where the correction control has not been performed even once, and is the tone correction table corrected in the previous correction control in the case where the correction control has been performed once or more. The dotted line in
First, the following descriptions assume that the image data is 8-bit data for each pixel, or in other words, that each pixel takes on a value from 0 to 255. Yi (where i is an integer from 0 to 255) is taken as an output image data value that corresponds to the input image data value i in the tone correction table updated in S24. Furthermore, YRi is taken as an output image data value that corresponds to the input image data value i in the reference tone correction table. Further still, the five input values for the image data used to form the test pattern Q are represented by p1, p2, p3, p4, and p5. Note that p1<p2<p3<p4<p5.
The control unit 110 finds the output image data values in the interpolated tone correction table corresponding to the input image data values i through the following formulae.
when 0≦i≦p1
(Yp1−0)/(YRp1−0)×(YRi−0)+0
when p1≦i≦p2
(Yp2−Yp1)/(YRp2−YRp1)×(YRi−YRp1)+Yp1
when p2≦i≦p3
(Yp3−Yp2)/(YRp3−YRp2)×(YRi−YRp2)+Yp2
when p3≦i≦p4
(Yp4−Yp3)/(YRp4−YRp3)×(YRi−YRp3)+Yp3
when p4≦i≦p5
(Yp5−Yp4)/(YRp5−YRp4)×(YRi−YRp4)+Yp4
In the corrected tone correction table found through the aforementioned formulae, the output image data values corresponding to the input values used to form the test pattern Q are the same as the output image data values in the tone correction table updated using the results of detecting the test pattern Q. The output image data value corresponding to an input value between two adjacent input values among the input values used to form the test pattern Q is interpolated according to the reference tone correction table.
The control unit 110 saves the tone correction table created through the interpolation process performed in S25 in the RAM 112, and uses that table in subsequent image forming processes. Note that the values used in the updated tone correction table in the aforementioned formulae are Ypi only. Accordingly, the configuration may be such that the linear interpolation process of S22 is not provided, and the output image data values of the tone correction table to be corrected that correspond to the input values used to form the test pattern Q are updated using the results of detecting the test pattern Q, and are then interpolated using the reference tone correction table. Regardless of what configuration is employed, the graph of the output image data values corresponding to the input image data values p(k−1) to pk (where k is 1 to 5) in the interpolated tone correction table is based on the form of the reference tone correction table, and thus the values thereof are based on the values of the tone correction table updated based on the detection results.
Although the reference tone correction table is formed by reading a test pattern fixed onto a recording material in the present embodiment, the table may instead be formed by using a sensor to detect the test pattern formed on the intermediate transfer belt 6, the photosensitive member 1, or the like, for example. Regardless of which configuration is used, interpolation is carried out in the correction control using the reference tone correction table in the present embodiment, which makes it possible to accurately correct the tone correction table using a test pattern with a low number of images.
In the first embodiment, the densities used in the test pattern Q are fixed, but in the present embodiment, the densities are varied with each instance of correction control. For example,
In the first embodiment, the respective detected densities in the test pattern Q measured in S22 of
Embodiments of the present invention can also be realized by a computer of a system or apparatus that reads out and executes computer executable instructions (e. g., one or more programs) recorded on a storage medium (which may also be referred to more fully as a ‘non-transitory computer-readable storage medium’) to perform the functions of one or more of the above-described embodiments and/or that includes one or more circuits (e. g., application specific integrated circuit (ASIC)) for performing the functions of one or more of the above-described embodiments, and by a method performed by the computer of the system or apparatus by, for example, reading out and executing the computer executable instructions from the storage medium to perform the functions of one or more of the above-described embodiments and/or controlling the one or more circuits to perform the functions of one or more of the above-described embodiments. The computer may comprise one or more processors (e. g., central processing unit (CPU), micro processing unit (MPU)) and may include a network of separate computers or separate processors to read out and execute the computer executable instructions. The computer executable instructions may be provided to the computer, for example, from a network or the storage medium. The storage medium may include, for example, one or more of a hard disk, a random-access memory (RAM), a read only memory (ROM), a storage of distributed computing systems, an optical disk (such as a compact disc (CD), digital versatile disc (DVD), or Blu-ray Disc (BD)™), a flash memory device, a memory card, and the like.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2013-261839, filed on Dec. 18, 2013, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2013-261839 | Dec 2013 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5583644 | Sasanuma et al. | Dec 1996 | A |
5752126 | Muramatsu | May 1998 | A |
Number | Date | Country |
---|---|---|
04-267272 | Sep 1992 | JP |
06-198973 | Jul 1994 | JP |
2000-089531 | Mar 2000 | JP |
2005-210469 | Aug 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20150168903 A1 | Jun 2015 | US |