The present invention relates to an image forming apparatus.
JP-A-2003-076184 describes an image forming apparatus. The image forming apparatus includes a shutter capable of opening and closing an image forming unit side opening of a fixing unit, and shutter opening position holding means for holding the shutter at an open position. When the holding by the shutter opening position holding means is released, the shutter moves to a closed position by the own weight thereof regardless of the electric driving force.
In the image forming apparatus of JP-A-2009-288491, a shielding region for shielding radiation from a heating source to a heating region by a shielding portion is changed according to the position of the sheet to be transported in the heating region.
The fixing device of JP-A-2007-328222 includes a rotating body for heating, an infrared source that is disposed to face the rotating body and generates infrared rays, an infrared reflecting member that reflects infrared rays to the rotating body side, and a safety element that detects an abnormal temperature rise. Further, the fixing device includes a shielding member that moves and shields between the rotating body and the infrared source when the rotating drive of the rotating body is stopped.
Aspects of non-limiting embodiments of the present disclosure relate to an image forming apparatus capable of suppressing heating of image forming means by heating means or fixing means as compared with a case in which non-contact type heating means remain open even when power is cut off.
Aspects of certain non-limiting embodiments of the present disclosure address the above advantages and/or other advantages not described above. However, aspects of the non-limiting embodiments are not required to address the advantages described above, and aspects of the non-limiting embodiments of the present disclosure may not address advantages described above.
According to an aspect of the present invention, there is provided an image forming apparatus, including: an image forming unit that forms a toner image on a medium; a heating unit that is provided on a downstream side in a transport path from the image forming unit and that is configured to heat a medium being transported in a non-contact manner; a fixing unit that is provided on a downstream side in the transport path from the heating unit and fixes the toner image on the medium; a shielding unit to which force is applied so as to be inform a closed state in which the heating unit is shielded; and an open state forming unit configured to receive power supply to drive the shielding unit so as to form an open state in which the heating unit is opened, and maintain the open state while the power is being supplied.
Exemplary embodiment(s) of the present invention will be described in detail based on the following figures, wherein:
Hereinafter, a first exemplary embodiment of the present invention will be described with reference to the drawings.
The image forming apparatus 10 includes an image forming unit 14 that forms a toner image on a medium P sent from an accommodating unit (not shown) via a feeding-transport unit 12, and a fixing device 16 that fixes the toner image formed on the medium P by the image forming unit 14. The medium P to which the toner image is fixed is discharged from a discharge unit (not shown) via a discharging-transport unit 18. The image forming apparatus 10 further includes a transport mechanism 20 that transports the medium P between the feeding-transport unit 12 and the discharging-transport unit 18.
(Image Forming Unit)
The image forming unit 14 has a function of forming a toner image on the medium P. The image forming unit 14 includes a toner image forming unit 22 that forms a toner image, and a transfer device 24 that transfers the toner image formed by the toner image forming unit 22 to the medium P.
<Toner Image Forming Unit>
The toner image forming unit 22 forms a toner image for each color, and includes toner image forming units 22(Y), 22(M), 22(C), and 22(K) of four colors of yellow (Y), magenta (M), cyan (C), and black (K). The toner image forming unit 22 of each color is basically configured in the same manner except for the toner to be used.
As shown in
<Transfer Device>
As shown in
The primary transfer roller 42 has a function of transferring the toner image formed on the photoconductor drum 30 to the transfer belt 40 at a primary transfer position T between the photoconductor drum 30 and the primary transfer roller 42. The transfer belt 40 has an endless shape and is wound around plural rollers 46.
The transfer belt 40 has a function of transporting the primarily transferred toner image to a secondary transfer position NT by rotating in an arrow B direction when at least one of the plural rollers 46 is driven to rotate.
The transfer unit 44 has a function of transferring the toner image transferred to the transfer belt 40 to the medium P. The transfer unit 44 includes a secondary transfer unit 48 and a counter roller 50 that are disposed to face each other. The transfer belt 40 is disposed between the secondary transfer unit 48 and the counter roller 50. A recessed portion 50A configured to accommodate a gripper 68 to be described later is formed on an outer peripheral surface of the counter roller 50.
The transfer unit 44 transfers the toner image transferred to the transfer belt 40 to the medium P passing through the secondary transfer position NT by electrostatic force generated by the discharging of the secondary transfer unit 48.
(Transport Mechanism)
The transport mechanism 20 is disposed between the feeding-transport unit 12 and the discharging-transport unit 18. The transport mechanism 20 has a function of receiving the medium P from the feeding-transport unit 12 with the chain gripper 60. The transport mechanism 20 has a function of delivering the received medium P to the discharge-transport unit 18 via the second transfer position NT, the heating unit 62, and a fixing unit 64.
<Chain Gripper>
As shown in
As shown in
The chain gripper 60 rotates in an arrow C direction when either one of the two sprockets 70 is rotated, and transports the medium P held by the gripper 68 through the secondary transfer position NT, the heating unit 62, the fixing unit 64, and the discharging-transport unit 18 in this order as shown in
(Fixing Device)
The fixing device 16 has a function of fixing the toner image formed on the medium P by the image forming unit 14.
The fixing device 16 includes a heating unit 62 provided on the downstream side D in the medium transport direction of the transport path H from the image forming unit 14 and configured to heat the transported medium P in a non-contact manner, and a fixing unit 64 provided on the downstream side D in the medium transport direction from the heating unit 62 and configured to fix the toner image on the medium P. A region of the transport path H heated by the heating unit 62 is an upward gradient that increases from the upstream side U in the medium transport direction toward the downstream side D in the medium transport direction.
As shown in
As shown in
A lower end portion of the guide plate 88 is bent, and the lower end portion thereof is inclined toward the image forming unit 14 side as it goes downward, and is disposed on an end portion of a ventilation plate 89 described later. The guide plate 88 is made of a metal plate, and the guide plate 88 is made of, for example, an aluminum plate.
<Heating Unit>
The heating unit 62 has a function of melting the toner image of the medium P by heating a surface PA of the medium P transported along the transport path H by the chain gripper 60 by radiation transmission in a non-contact manner. As shown in
[Reflection Plate]
The reflection plate 90 is formed in a container shape that is open toward a lower side of the apparatus, and has a function of reflecting infrared rays from the heating source 92 toward the lower side of the apparatus. The reflection plate 90 is made of a metal plate, and the reflection plate 90 is made of, for example, an aluminum plate.
[Heating Source]
The heating source 92 includes, for example, plural heaters. Examples of the heaters of the heating source 92 include a columnar infrared heater.
[Wire Mesh]
The wire mesh 93 partitions the inside and the outside of the reflection plate 90. The wire mesh 93 suppresses contact between the medium P transported by the chain gripper 60 and the heating source 92.
<Blowing Unit>
As shown in
The blower 87 is disposed inside the chain gripper 60 and below the heating unit 62. The blower 87 blows air to the back surface PB of the medium P transported by the chain gripper 60, and causes the medium P to float.
The ventilation plate 89 is disposed between the blower 87 and the heating unit 62 and on the inner peripheral side of the chain gripper 60. As shown in
Further, as shown in
<Fixing Unit>
The fixing unit 64 includes a heating roller 94 and a pressure roller 96. The fixing unit 64 has a function of fixing the toner image to the medium P by heating and pressurizing the medium P in contact with the medium P.
[Heating Roller]
The heating roller 94 has a built-in heating source, comes into contact with the surface PA of the medium P transported by the chain gripper 60 to heat the medium P, and fixes the toner image to the medium P.
[Pressure Roller]
The pressure roller 96 has a function of pressurizing the medium P by sandwiching the medium P between the pressure roller 96 and the heating roller 94. A recessed portion 96A configured to accommodate the gripper 68 is formed in the outer peripheral surface of the pressure roller 96.
<Restricting Mechanism>
As shown in
[Shielding Unit]
The shielding unit 82 is formed of a plate material having a size that covers and shields the heating unit 62, and the shielding unit 82 constitutes a single shielding portion. Both side portions of the shielding unit 82 are movably supported by rails 100 extending along the transport path H.
The rail 100 extends from the heating unit 62 side to the fixing unit 64 side, and the shielding unit 82 forms a closed state C in which the shielding unit 82 shields the heating unit 62 when the shielding unit 82 moves toward the upstream side U in the medium transport direction along the rails 100. Thereby, the release of heat from the heating unit 62 is suppressed. In other words, heat released downward from the heating unit 62 is restricted. When the shielding unit 82 moves to the downstream side D in the medium transport direction along the rails 100, the shielding unit 82 forms an open state O in which the heating unit 62 is opened. As a result, heat is allowed to be released downward from the heating unit 62.
The rail 100 is inclined so as to rise from the upstream side U in the medium transport direction toward the downstream side D in the medium transport direction. In other words, the rail 100 is inclined so as to rise from the image forming unit 14 side toward the fixing unit 64 side. As a result, force is applied to the shielding unit 82 to move to the upstream side U in the medium transport direction due to the own weight thereof, and force to form the closed state C in which the heating unit 62 is shielded is constantly applied to the shielding unit 82.
[Open State Forming Unit]
The open state forming unit 84 is provided on the downstream side D in the medium transport direction from the heating unit 62. The open state forming unit 84 includes a winding-up roll 104 that winds up a wire 102 extending from downstream side D in the medium transport direction of the shielding unit 82 so as to be able to be drawn out, and a motor 106 that rotates the winding-up roll 104 in a winding up direction. Further, the open state forming unit 84 includes an electromagnetic clutch 108 that connects or disconnects the motor 106 and the rotation mechanism of the winding-up roll 104.
The motor 106 receives power supply and rotates the winding roll 104 in the winding-up direction, thereby driving the shielding unit 82 to the downstream side D in the medium transport direction to form an open state O in which the heating unit 62 is opened. The motor 106 suppresses unexpected rotation of the winding-up roll 104 due to the idling torque of the motor 106.
The electromagnetic clutch 108 connects the motor 106 to the rotation mechanism of the winding-up roll 104 while the electromagnetic clutch 108 is powered on, and the rotation of the winding-up roll 104 is regulated by the idle torque (self-locking of the gear) of the motor 106.
When the power supply is cut off and the electromagnetic clutch 108 is turned off, the electromagnetic clutch 108 releases the connection between the motor 106 and the rotation mechanism of the winding-up roll 104. Therefore, when the power supply is cut off due to a power failure or the like and the electromagnetic clutch 108 is turned off, the winding-up roll 104 becomes rotatable, and the shielding unit 82 moves to the downstream side D in the medium transport direction due to the own weight thereof, so that the closed state C in which the heating unit 62 is shielded is formed.
(Operation and Effects)
The operation of the present exemplary embodiment according to the above configuration will be described.
As compared with the case in which the heat transfer from the non-contact type heating unit 62 is continued when the power supply is cut off due to a power failure or the like, it is possible to suppress the heating of the image forming unit 14 by the heating unit 62 or the fixing unit 64.
In addition, it is possible to suppress the heating of the facing portion such as the blowing unit 86 and the chain gripper 60 facing the heating unit 62.
As a specific example, since the heating unit 62 is shielded by the shielding unit 82, it is possible to suppress the heat of the heating unit 62 from being transferred to the image forming unit 14. In addition, since the distance between the fixing unit 64 and the image forming unit 14 is long, it is possible to suppress the heat from the fixing unit 64 from being transferred to the image forming unit 14.
A region of the transport path H heated by the heating unit 62 is an upward gradient that increases from the upstream side U in the medium transport direction toward the downstream side D in the medium transport direction. In other words, the region of the transport path H heated by the heating unit 62 is an upward gradient that increases from the image forming unit 14 side toward the fixing unit 64 side. Therefore, as compared with a case in which the region of the transport path H is lowered from the upstream side U in the medium transport direction toward the downstream side D in the medium transport direction, the movement of the air that is warmed and rises is suppressed moving to the upstream side U in the medium transport direction.
The blowing unit 86 blows air toward the back surface PB of the medium P transported between the image forming unit 14 and the heating unit 62. Therefore, as compared with the case in which the blowing unit 86 is provided only in the region facing the heating unit 62, it is possible to prevent the air warmed by the heating unit 62 from moving toward the image forming unit 14 side by blowing air from the blowing unit 86.
A guide plate 88 that guides the air from the blowing unit 86 to the downstream side D in the medium transport direction is disposed between the heating unit 62 and the image forming unit 14. Therefore, as compared with the case where the guide plate 88 guides the air to the upstream side U in the medium transport direction, it is possible to promote the movement of the air warmed by the heating unit 62 toward the heating unit 62 side.
The shielding unit 82 is composed of a single shielding portion. Therefore, even in the open state O, it is possible to increase the heating efficiency in the open state O as compared with a case in which a part of the plural shielding portions disposed along the heating surface shields the heating portion.
That is, the region of the transport path H heated by the heating unit 62 is formed substantially horizontally, and the rail 100 that guides the shielding unit 82 extends substantially horizontally.
The rail 100 extends from the heating unit 2 side to the image forming unit 14 side. As shown in
Further, as shown in
One end of a coil spring 110 is fixed to an end face 100A of the rail 100 on the upstream side U in the medium transport direction, and the other end of the coil spring 110 is fixed to an end portion of the shielding unit 82 on the upstream side U in the medium transport direction. As a result, the shielding unit 82 is pulled toward the upstream side U in the medium transport direction by the coil spring 110, so that force is constantly applied to the shielding unit 82 so as to be in the closed state C in which the heating unit 62 is shielded.
(Operation and Effects)
In the present exemplary embodiment having the above-described configuration, the same operation and effects as those of the first exemplary embodiment may be obtained for the same or equivalent portions as those of the first exemplary embodiment.
In addition, the shielding unit 82 operates in the direction for shielding from a side close to the image forming unit 14 to form the closed state C. Therefore, as compared with the case of shielding from the side close to the fixing unit 64, it may be possible to suppress the heating of the image forming unit 14 by the heat from the heating unit 62.
That is, as shown in
Each of the shielding plates 120 is rotatably supported by a bracket (not shown) for rotating a rotation shaft 120A, and each of the shielding plates 120 is supported so as to be rotatable about the rotation shaft 120A.
As shown in
One end of the coil spring 130 is fixed to an end portion of the operation plate 126 on the downstream side D in the medium transport direction, and the other end of the coil spring 130 is fixed to a housing 132 of the apparatus main body. Accordingly, as shown in
As shown in
At this time, each of the shielding plates 120 of the shielding unit 82 operates in the direction for shielding from a side close to the image forming unit 14 to form a closed state.
(Operation and Effects)
In the present exemplary embodiment having the above-described configuration, the same operation and effects as those of the first exemplary embodiment and the second exemplary embodiment may be obtained for the same or equivalent portions as those of the first exemplary embodiment and the second exemplary embodiment.
In addition, by configuring the shielding unit 82 with the plural shielding plates 120 disposed at the lower portion of the heating unit 62, it is possible to suppress an avoidance space of the shielding unit 82 in the open state O as compared with a case in which a single shielding unit 82 having a size covering the heating unit 62 is used.
The restricting mechanism 80 includes a shielding unit 82, and the shielding unit 82 includes a shutter 140 movable along the heating unit 62. The restricting mechanism 80 is capable of opening the shutter 140. Further, as shown in
The restricting mechanism 80 includes a folding unit (an upstream side first folding roll 168 and an upstream side second folding roll 174 described later) that folds the shutter 140 that moves in the separating direction 144 in the approaching direction 148 approaching the transport path H, and a fixing bar 150 that is a fixing unit that fixes the end portion side of the shutter 140 folded by the folding unit on the transport path H side with respect to the folding unit. In addition, the restricting mechanism 80 includes a moving unit 152 that moves the folding unit in the separating direction.
Specifically, as shown in
A changing roll 146 that is a changing unit is rotatably supported on the upstream side U in the medium transport direction between the middle bridge members 164.
The shutter 140, of which the retracting direction 142 is changed to the separating direction 144 by the changing roller 146, is folded back toward the approaching direction 148 by the upstream side first folding roll 168 that is the upstream side first folding unit between the upstream side extension brackets 166 extending from the moving unit 152.
The shutter 140 folded back by the upstream side first folding roll 168 is folded back toward the separating direction 144 by the upstream side folding roll 172 between the upstream side rising brackets 170 extending from the middle bridge members 164 of the rectangular frame 160. Note that the upstream side folding roll 172 and the upstream side second folding roll 174 described later may not be provided.
The shutter 140 folded back by the upstream side folding roll 172 is folded back toward the approaching direction 148 by the upstream side second folding roll 174 that is the upstream side second folding unit between the upstream side extension brackets 166.
One end of the shutter 140 folded back by the upstream side second folding roll 174 is fixed to the fixing bar 150 that is a fixing unit between the upstream side rising brackets 170.
As shown in
The shutter 140 in which the tensile direction 180 is changed to the separating direction 144 by the changing roller 182 is folded back toward the approaching direction 148 approaching the transport path H by the downstream side first folding roll 186 between the downstream side extension brackets 184 extending from the moving unit 152.
The shutter 140 folded back by the downstream side first folding roll 186 is folded back toward the separating direction 144 by a downstream side folding roll 190 between the downstream side rising brackets 188 extending from the respective middle bridge members 164 of the rectangular frame 160.
The shutter 140 folded back by the downstream side folding roll 190 is folded back toward the approaching direction 148 by a downstream side second folding roll 192 between the downstream side extension brackets 184.
The other end of the shutter 140 folded back by the downstream side second folding roll 192 is fixed to a fixing bar 194 extending between the two downstream side rising brackets 188.
The shutter 140 is formed in a long sheet shape, and as shown in
Support members 200 are provided on both upper bridge members 162 of the rectangular frame 160, and a rectangular frame shaped moving unit 152 is supported on a rotation shaft 202A of the clutch motor 202 extending from the support member 200.
Rotation force is applied to the rotation shaft 202A by, for example, a spiral spring, and force is applied such that the moving unit 152 rotates in a direction in which the shutter 140 forms a closed state C in which the heating unit 62 is shielded.
Note that, by adjusting the center of gravity of the moving unit 152, the moving unit 152 may be configured to rotate by the own weight thereof in the direction in which the closed state C is formed.
The clutch motor 202 rotates the moving unit 152 when receiving power supply, and as shown in
Accordingly, a shutter portion including the opening 140A moved to the downstream side D in the medium transport direction of the moving unit 152 is moved to the lower portion of the heating unit 62. At the same time, the shutter portion shielding the heating unit 62 is retracted to the upstream side U in the medium transport direction of the moving unit 152, and the open state O is maintained.
When the power supply is cut off due to a power failure or the like and the clutch of the motor 202 with the clutch is turned off, as shown in
(Operation and Effects)
In the present exemplary embodiment having the above-described configuration, the same operation and effects as those of the first exemplary embodiment to the third exemplary embodiment may be obtained for the same or equivalent portions as those of the first exemplary embodiment to the third exemplary embodiment.
Further, in the present exemplary embodiment, the changing roll 146 is provided as a changing unit that changes the retracting direction 142 of the shutter 140 in the open state O to the separating direction 144 away from the transport path H. Therefore, as compared with the case in which the retracting direction 142 of the shutter 140 is set along the transport path H, it is possible to suppress the dimension of the standby space of the shutter 140 along the transport path H.
The restricting mechanism 80 includes each folding roll 168, 174 that folds the shutter 140 that moves in the separating direction 144 in the approaching direction 148, and a fixing bar 150 that is a fixing unit that fixes the end portion side of the shutter 140 folded by the folding rolls 168, 174. The restricting mechanism 80 also includes a moving unit 152 that moves each of the folding rollers 168, 174 in the separating direction 144. Therefore, it is possible to suppress the dimension of the standby space of the shutter 140 in the direction away from the transport path H as compared with the case in which the folding unit is not provided to fold the shutter 140 moving in the separating direction 144.
In each of the exemplary embodiments described above, the case in which the region of the transport path H heated by the heating unit 62 is the upward gradient or the horizontal from the upstream side U in the medium transport direction toward the downstream side D in the medium transport direction has been described, but the present disclosure is not limited thereto. For example, the region of the transport path H heated by the heating unit 62 may have a downward gradient or may extend in the vertical direction from the upstream side U in the medium transport direction toward the downstream side D in the medium transport direction.
The blower 87 and the ventilation plate 89 may not be provided.
The shielding unit 82 does not necessarily need to shield the wire mesh 93 as long as the shielding unit 82 shields the heating source 92. However, as shown in
The foregoing description of the exemplary embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in the art. The exemplary embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, thereby enabling others skilled in the art to understand the invention for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2019-123948 | Jul 2019 | JP | national |
This is a continuation of International Application No. PCT/JP2020/019871 filed on May 20, 2020, and claims priority from Japanese Patent Application No. 2019-123948 filed on Jul. 2, 2019.
Number | Name | Date | Kind |
---|---|---|---|
5887238 | Matsuzoe | Mar 1999 | A |
6085060 | Goldmann | Jul 2000 | A |
6449458 | Lang et al. | Sep 2002 | B1 |
6957035 | Giannetti | Oct 2005 | B1 |
9266348 | LeFevre | Feb 2016 | B1 |
20040175208 | Ichida et al. | Sep 2004 | A1 |
20120315061 | Kondo | Dec 2012 | A1 |
20200166877 | Tamura | May 2020 | A1 |
20220075297 | Hongo | Mar 2022 | A1 |
Number | Date | Country |
---|---|---|
2003-075977 | Mar 2003 | JP |
2003-076184 | Mar 2003 | JP |
2003-248395 | Sep 2003 | JP |
2006-133317 | May 2006 | JP |
2007-328222 | Dec 2007 | JP |
2009-288490 | Dec 2009 | JP |
2009-288491 | Dec 2009 | JP |
2010-078745 | Apr 2010 | JP |
2010-096822 | Apr 2010 | JP |
5217634 | Jun 2013 | JP |
Entry |
---|
Jun. 16, 2020 International Search Repoert issued in International application No. PCT/JP2020/019871. |
Jun. 16, 2020 Written Opinion issued in Internation Application No. PCT/JP2020/019871. |
Feb. 16, 2023 Office Action issued in Japanese Patent Application No. 2019-123948. |
Number | Date | Country | |
---|---|---|---|
20220075298 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2020/019871 | May 2020 | US |
Child | 17529867 | US |