The present invention relates to an image forming apparatus including a cleaning mechanism for cleaning a lens of an optical print head.
In image forming apparatuses such as a printer and a copying machine, there is an image forming apparatus provided with a plurality of light emitting elements for exposing a photosensitive drum to light. The optical print head includes an LED (light emitting diode), an organic EL (electro-luminescence) device or the like as an example of a light emitting element (device), and an optical print head in which the light emitting elements are arranged along a rotational axis direction of the photosensitive drum in a row (line) or in two rows (lines) with a staggered pattern has been known. Further, the optical print head includes a plurality of lenses for focusing light beams, emitted from the plurality of light emitting elements, onto the photosensitive drum. The plurality of lenses are disposed opposed to the surface of the photosensitive drum so as to extend along an arrangement direction of the light emitting elements between the light emitting elements and the photosensitive drum. The light beams emitted from the plurality of light emitting elements are focused on the surface of the photosensitive drum through the lenses. As a result, an electrostatic latent image is formed on the surface of the photosensitive drum. In order to form a good image on the photosensitive drum surface, there is a need that an interval (gap) between the photosensitive drum surface and light emergent surfaces of the lenses is determined with accuracy so that position of the light beams focused by the lenses is on the photosensitive drum surface.
The photosensitive drum is one of consumables, and therefore is exchanged periodically. For that reason, an exchange unit including the photosensitive drum is constituted so as to be mountable to and dismountable from an image forming apparatus main assembly. An operator such as a user or service person can perform maintenance of the image forming apparatus by exchanging the exchange unit with a new exchange unit by extracting the exchange unit from the apparatus main assembly and then inserting the new exchange unit into the apparatus main assembly. During exchange of the exchange unit, in order to prevent contact of a part (for example, the photosensitive drum) of the exchange unit to the optical print head, the exchange unit and the optical print head are spaced from each other with a certain distance (exchanging position). On the other hand, during image formation, the optical print head is positioned near the exchange unit (exposure position). In general, an image forming apparatus including a moving mechanism for moving the optical print head between the exchanging position and the exposure position has been known.
In the image forming apparatus, an exposure device such as the optical print head is provided between a charging device and a developing device in some instances. In order to realize downsizing of the image forming apparatus, it is effective to minimize distances among the photosensitive drum, the optical print head, the charging device, the developing device and the like. For this reason, there was a problem that the light emergent surfaces of the lenses are contaminated with toner falling from the photosensitive drum and the developing device. There is a possibility that the light beams emitted from the light emitting elements are partly blocked by a contaminant (toner) on the light emergent surfaces of the lenses, so that the contaminant is one of factors causing a lowering in image quality of an output image. Therefore, a cleaning means for preventing generation of the contaminant on the lenses causing the lowering in image quality has been proposed. As an example of the cleaning means, for example, Japanese Laid-Open Patent Application (JP-A) 2007-72321 discloses the following cleaning means.
JP-A 2007-72321 discloses an LED print head (LPH) 30 in which a cleaning mechanism 80 is mounted on a head body 31. The cleaning mechanism 80 includes a cleaning pad 80B, at a lower end of an operating rod 80A, for cleaning an upper surface (light emergent surface 38) of a rod lens array 33. Further, at a lower end of the operating rod 80A, an engaging portion 82 is engaged with the head body 31. The engaging portion 82 includes arm portions 82A formed on left and rear sides so as to vertically extend. Inside free end portions of the arm portions 82A, engaging projections 82B are provided so as to project inwardly. The engaging projections 82B are loosely engaged with guide grooves 37 formed in side surfaces of the head body 31 and thus are mounted to the head body 31. On a rear end side (front side) of the operating rod 80B, an operating portion 83 for gripping the cleaning mechanism 80 by an operator is formed. The operator grips the operating portion 83 and operates (pulls (extracts) and pushes (inserts)) the cleaning mechanism 80 mounted on the head body 31. As a result, the cleaning mechanism 80 is moved along the guide grooves 37 in a state in which the engaging projects 82B are loosely engaged with the guide grooves 37. By the above constitution, the operator can clean the light emergent surface 38 of the rod lens array 33.
However, in the LPH 30 disclosed in JP-A 2007-72321, when the operator operates the cleaning mechanism 80, the following problem arises. When the cleaning mechanism 80 disclosed in JP-A 2007-72321 is moved from a front side toward a rear side of the image forming apparatus main assembly by the operator, the engaging projections 82B contact edges of the guide grooves 37 of the head body 31 on a rear end side (rear side). In this mechanism, there is a liability that the head body 31 is moved by impact when the cleaning member 80 contacts the head body 31. For that reason, there is a liability that a position of the head body 31, moved to the exposure position, relative to the photosensitive drum is deviated from a predetermined position (i.e., causes positional deviation).
In a method in which the LPH 30 is used for exposure of the photosensitive drum, during image formation, there is a need that the rod lens array 33 is positioned relative to the photosensitive drum at a predetermined position with accuracy. For that reason, the position deviation of the head body 31 relative to the head body 31 can constitute one of factors causing improper image formation.
As regards the cleaning mechanism for the optical print head, a mechanism which contacts a drum unit including a photosensitive drum when the operator inserts a cleaning member (corresponding to the cleaning mechanism 80) from an outside into an image forming apparatus main assembly also exists. However, in this mechanism, there is a liability that the drum unit is moved by impact when the cleaning member contacts the drum unit. Due to deviation of a position of the drum unit relative to the photosensitive drum, a possibility of occurrence of improper image formation is not negligible.
As a result, it is hard to say that the mechanism, in which the cleaning member inserted from the outside of the apparatus main assembly by the operator contacts the optical print head body (head body 31) or the drum unit, is an optimum mechanism for realizing high definition (precision) of an image quality.
According to an aspect of the present invention, there is provided an image forming apparatus comprising: a drum cartridge including a photosensitive drum and capable of being exchanged by being mounted in and dismounted from a main assembly; an optical print head including a light emitting element configured to emit light to which the photosensitive drum is exposed and including a lens array configured to focus the light onto the photosensitive drum, wherein the optical print head is movable between an exposure position where the photosensitive drum is exposed to the light by causing the light emitting element to emit the light in a state in which the optical print head is positioned relative to the drum cartridge, and an exchanging position where the optical print head is released from the positioning to permit exchange of the drum cartridge; and wherein the photosensitive drum and a light emergent surface of the lens array are spaced from each other to permit insertion of a cleaning member therebetween from an outside of the main assembly; and a portion-to-be-contacted provided in the main assembly and configured to be contacted by the cleaning member to prevent further insertion of the cleaning member after the cleaning member cleans the light emergent surface by sliding on the light emergent surface from one end side toward the other end side of the light emergent surface with respect to a longitudinal direction of the lens array.
According to another aspect of the present invention, there is provided an image forming apparatus comprising: a drum cartridge including a photosensitive drum and capable of being exchanged by being mounted in and dismounted from a main assembly; an optical print head including a light emitting element configured to emit light to which the photosensitive drum is exposed and including a lens array configured to focus the light onto the photosensitive drum, wherein the optical print head is movable between an exposure position where the photosensitive drum is exposed to the light by causing the light emitting element to emit the light in a state in which the optical print head is positioned relative to the drum cartridge, and a retracted position retracted from the drum cartridge further than the exposure position is; and wherein the photosensitive drum and a light emergent surface of the lens array are spaced from each other to permit insertion of a cleaning member therebetween from an outside of the main assembly; and a portion-to-be-contacted provided in the main assembly and configured to be contacted by the cleaning member to prevent further insertion of the cleaning member after the cleaning member cleans the light emergent surface in a light passing region where the light focused in a region used for forming an image on the photosensitive drum passes.
According to a further aspect of the present invention, there is provided an image forming apparatus comprising: a main assembly; a drum cartridge including a photosensitive drum and capable of being exchanged by being mounted in and dismounted from the main assembly; an optical print head including a light emitting element configured to emit light to which the photosensitive drum is exposed and including a lens array configured to focus the light onto the photosensitive drum, the optical print head being movable between an exposure position where the photosensitive drum is exposed to the light by causing the light emitting element to emit the light in a state in which the optical print head is positioned to the drum cartridge and a recording paper retracted from the photosensitive drum further than the exposure position is; and a bar like cleaning member configured to clean a light emergent surface of the lens array, wherein the cleaning member includes a grip portion provided on one end side of the cleaning member with respect to a longitudinal direction of the cleaning member and configured to be gripped, a slidable portion provided on the other end side of the cleaning member with respect to the longitudinal direction of the cleaning member and configured clean the light emergent surface by sliding on the light emergent surface, and a contact portion configured to contact a portion to be contacted fixed to the main assembly as a separate member from the optical print head and the drum cartridge so that the slidable portion inserted from an outside of the main assembly toward between the photosensitive drum and the light emergent surface and cleaning the light emergent surface by sliding on the light emergent surface is prevented from further moving toward a downstream side with respect to an inserting direction thereof
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Parts (a) and (b) of
Parts (a) and (b) of
Parts (a), (b1), (b2), (c1) and (c2) of
Parts (a) and (b) of
Parts (a) and (b) of
Parts (a) and (b) of
Parts (a) and (b) of
Parts (a), (b) and (c) of
Parts (a), (b) and (c) of
Parts (a) to (d) of
Parts (a) and (b) of
Parts (a) and (b) of
Parts (a) and (b) of
Parts (a) and (b) of
In the following, embodiments for carrying out the present invention will be described using the attached drawings. However, constituent elements described in the following embodiments are merely examples, and the present invention is not limited to those in the following embodiments.
(Image Forming Apparatus)
First, a schematic structure of an image forming apparatus 1 will be described. Part (a) of
The image forming apparatus 1 shown in part (a) of
The image forming apparatus 1 shown in part (a) of
The image forming apparatus 1 includes an intermediary transfer belt 107 onto which the toner images formed on the photosensitive drums 3 are to be transferred and primary transfer rollers 108 (Y, M, C, K) for successively transferring the toner images from the photosensitive drums 103 onto the intermediary transfer belt 107. The image forming apparatus 1 further includes a secondary transfer roller 109 for transferring the toner images from the intermediary transfer belt 107 onto recording paper P fed from a paper feeding portion 101 and includes a fixing device 100 for fixing the secondary-transferred toner images on the recording paper P.
(Image Forming Process)
The exposure unit 500 exposes to light the surface of the photosensitive drum 103Y charged by the charging device 104Y. As a result, the electrostatic latent image is formed on the photosensitive drum 103Y. Then, the developing device 106Y develops the electrostatic latent image, formed on the photosensitive drum 103Y, with yellow toner. A resultant yellow toner image formed on the photosensitive drum 103Y through development of the electrostatic latent image is transferred onto the intermediary transfer belt 107 by the primary transfer roller 108Y. The toner images of magenta, cyan and black are also transferred onto the intermediary transfer belt 107 by a similar image forming process.
The respective color toner images transferred on the intermediary transfer belt 107 are fed to a secondary transfer portion T2 by the intermediary transfer belt 107. To the secondary transfer roller 109 disposed at the secondary transfer portion T2, a transfer bias for transferring the toner images onto the recording paper P has been applied. The toner images fed to the secondary transfer portion T2 are transferred, onto the recording paper P fed from the paper feeding portion 101, under application of the transfer bias to the secondary transfer roller 109. The recording paper P on which the toner images are transferred is fed to the fixing device 100. The fixing device 100 fixes the toner images on the recording paper P by heat and pressure. The recording paper P subjected to a fixing process by the fixing device 100 is discharged onto a paper discharge portion 111.
(Drum Unit and Developing Unit)
In the image forming apparatus 1 of this embodiment, a drum unit 518 which is an example of an exchangeable drum cartridge is mounted. The drum unit 518 is a cartridge to be exchanged by an operator such as a user or a maintenance person. The drum unit 518 (Y, M, C, K) in this embodiment includes the photosensitive drum 103 (Y, M, C, K) rotatably supported by a frame thereof. However, the drum unit 518 may also have a constitution in which the charging unit 104 and a cleaning device are not provided.
Further, in the image forming apparatus 1 of this embodiment, a developing unit 641 which is a separate member from the drum unit 518 is mounted. The developing unit 641 is a cartridge prepared by integrally assembling the developing device 106 shown in part (a) of
Part (a) of
As shown in part (a) of
The front side plate 642 is provided with an opening through which the drum unit 518 and the developing unit 641 can be inserted from the front side into and extracted from the image forming apparatus 1. The drum unit 518 and the developing unit 641 are mounted at a predetermined position of the main assembly of the image forming apparatus 1 through the opening (mounting position). Further, the image forming apparatus 1 includes a cover 558 (Y, M, C, K) for covering a front side of both of the drum unit 518 and the developing unit 641 which are mounted in the mounting position. The cover 558 is fixed at one end thereof to the main assembly of the image forming apparatus 1 by a hinge, whereby the cover 558 is rotatable relative to the main assembly of the image forming apparatus 1. The operator for performing maintenance opens the cover 558 and takes the drum unit 518 or the developing unit 641 out of the image forming apparatus 1, and then inserts a new drum unit 518 or a new developing unit 641 into the image forming apparatus 1 and closes the cover 558, whereby an exchanging operation is completed. The cover 558 will be further specifically described later.
Here, as shown in parts (a) and (b) of
(Exposure Unit)
Next, the exposure unit 500 including an optical print head 105 will be described. Here, as an example of an exposure type employed in an image forming apparatus of an electrophotographic type, there is a laser beam scanning exposure type in which a beam emitted from a semiconductor laser is deflected for scanning by a rotating polygon mirror and the photosensitive drum 1 is exposed to the beam through an f-θ lens or the like. The “optical print head 105” described in this embodiment is used in an LED exposure type in which the photosensitive drum 103 is exposed to light by using light emitting elements such as LEDs or the like arranged along the rotational axis direction of the photosensitive drum 103 and thus is not used in the laser beam scanning exposure type described above.
The exposure unit 500 described in this embodiment is provided on a side below a rotational axis of the photosensitive drum 103 with respect to the vertical direction, and the photosensitive drum 103 is exposed to light from below by LEDs 503 of the optical print head 105. However, a constitution in which the exposure unit 500 is provided on a side above the rotational axis of the photosensitive drum 103 with respect to the vertical direction and in which the photosensitive drum 103 is exposed to light from above by the LEDs 503 of the optical print head 105 may also be employed (part (b) of
Referring to
The first contact member 514 and the second contact member 515 contact the drum unit 518, so that a gap (interval) is formed between the lens array 506 and the photosensitive drum 103, and thus a position of the optical print head 105 during image formation is determined. The moving mechanism 640 includes a first link mechanism 861, a second link mechanism 862 and a slidable portion 525. The first link mechanism 861 includes a link member 651 and a link member 653. The second link mechanism 862 includes a link member 652 and a link member 654. With an opening and closing operation of the unshown cover 558, the slidable portion 525 slides in the front-rear direction. In interrelation with the slide (movement) of the slidable portion 525, the first link mechanism 861 and the second link mechanism 862 are driven, so that the optical print head 105 is moved upward and downward. Of the frame of the drum unit 518, portions on which the contact members (514, 515) abut, for example, engaging holes in which free end portions of these contact members (514, 515) engage by about 5 mm are provided. As a result, the optical print head 105 is accurately positioned to the photosensitive drum 3. A specific operation mechanism of the moving mechanism will be described later.
In this embodiment, the first contact member 514 and the second contact member 515 are described as cylindrical pins. However, the shape of the pins is not limited to a cylindrical shape but may also be a prism shape. Further, the shape of the pins may also be a conical shape such that a diameter decreases toward a point. Further, the first and second contact members 514 and 515 are not limited to the pins but may also be projections integrally molded with the holding member 505.
For explaining a structure of the optical print head 105, first, the holding member 505 will be described. The holding member 505 is a holder for holding the substrate 502, the lens array 506 and the first and second contact members 514 and 515. A function of the first and second contact members 514 and 515 will be described specifically later. Incidentally, the holding member 505 in this embodiment is made of a resin material but may also be made of metal. In the following, projection lengths of the first and second contact members 514 and 515 from the holding member 505 are summarized.
First contact member 514 projecting from upper surface of holding member 505: 7 mm
Second contact member 515 projecting from upper surface of holding member 505: 11 mm
First contact member 514 projecting from lower surface of holding member 505: 22 mm
Second contact member 515 projecting from lower surface of holding member 505: 22 mm
Next, the substrate 502 held by the holding member 505 will be described. Part (a) of
On the substrate 502, LED chips 639 are mounted. As shown in part (a) of
The LED chips 639 mounted on the substrate 502 will be described further specifically. As shown in parts (b1) and (b2) of
The LED chips 639-1 to 639-29 are alternately disposed in two (parallel) lines along the rotational axis direction. That is, as shown in part (b1) of
Next, a lens array 506 will be described. Part (c1) of
A broken line Z shown in part (c2) of
(Moving Mechanism)
Next, necessity to move the optical print head 105 in the up-down direction and a structure of the optical print head 105 will be specifically described.
In the following, a structure of the moving mechanism 640 will be described specifically. Part (a) of
The slidable portion 525 is provided with an elongated hole 691 extending in the front-rear direction. The supporting shaft 531 is inserted into the elongated hole 691 and is loosely engaged in the elongated hole 691 with a gap of, e.g., about 0.1-0.5 mm with respect to the up-down direction. For that reason, the slidable portion 525 is slidable (movable) relative to the third supporting portion 526 in a distance corresponding to a length of the elongated hole 691 with respect to the front-rear direction in a state in which movement of the slidable portion 525 relative to the third supporting portion 526 with respect to the up-down direction is prevented.
The first link mechanism 861 includes the link member 651 and the link member 653. A length of the link member 653 with respect to the longitudinal direction is shorter than a length of the link member 651 with respect to the longitudinal direction, and the link members 651 and 653 constitute a link member of a λ type.
The first link mechanism 861 will be described using
The link member 651 includes a bearing portion 610, a projection 655 and a connecting shaft portion 538. The bearing portion 610 is a cylindrical project provided with a hollow hole and stands toward the right side on one end side of the link member 651 with respect to the longitudinal direction. The projection 655 is a cylindrical projection standing in the rotational axis direction of the link member 651 on the other end side of the link member 651 with respect to the longitudinal direction. This projection is mounted to the holding member 505 of the optical print head 105. The connecting shaft portion 538 is provided between the bearing portion 610 and the projection 655 with respect to the longitudinal direction of the link member 651.
The slidable portion 525 is provided with an engaging shaft portion 534. The engaging shaft portion 534 is a cylindrical projection standing from the slidable portion 525 in the left direction. The engaging shaft portion 534 forms a first connecting portion by being engaged rotatably in a hole of the bearing portion 610. That is, the link member 651 is rotatable about the first connecting portion relative to the slidable portion 525. Incidentally, in this embodiment, a constitution in which the engaging shaft portion 534 is formed on the link member 651 side and in which the bearing portion 610 is formed on the slidable portion 525 side may also be employed.
The link member 653 includes a connecting shaft portion 530. The connecting shaft portion 530 is provided on one end side of the link member 653 with respect to the longitudinal direction of the link member 653. The connecting shaft portion 530 is a cylindrical project standing from the link member 653 toward the left side. The connecting shaft portion 530 is engaged rotatably in a hole formed in the third supporting portion 526 and forms a second connecting portion. In this embodiment, the connecting shaft portion 530 may also be formed on the third supporting portion 526, not the link member 653. That is, in the hole provided in the link member 653, the connecting shaft portion 530 formed on the third supporting portion 526 may also be engaged.
The link member 653 is provided with a circular hole formed on the other end side thereof with respect to the longitudinal direction. In the hole, the connecting shaft portion 538 of the link member 651 is rotatably engaged, so that the connecting shaft portion 538 and the hole of the link member 653 form a fourth connecting portion. That is, the link member 653 is rotatable about the third connecting portion relative to the third supporting portion 526 and is rotatable about the fourth connecting portion relative to the link member 651. In this embodiment, the connecting shaft portion 538 may also be formed on the link member 653, not the link member 651. That is, the connecting shaft portion 538 formed on the link member 653 may also be rotatably engaged in a hole formed in the link member 651.
A structure of the second link mechanism 862 is also similar to the above-described structure of the first link mechanism 861. The link members 652 and 654 of the second link mechanism 862 correspond to the link members 651 and 653, respectively, of the first link mechanism 861. Correspondingly to the first connecting portion, connecting portion between one end side portion of the link member 652 with respect to the longitudinal direction and the slidable portion 525 constitutes a second connecting portion. Incidentally, in the moving mechanism 640, either one of the link members 653 and 654 may also be omitted.
By the above constitution, when the slidable portion 525 is slid from the front side toward the rear side relative to the third supporting portion 526, the bearing portion 610 engaged with the engaging shaft portion 534 is slid together with the slidable portion 525 from the front side toward the rear side relative to the third supporting portion 526. As a result, when the first link mechanism 861 is seen from the rear side, the first link mechanism 861 is rotated about the engaging shaft portion 534 in the clockwise direction, and the link member 653 is rotated about the connecting shaft portion 530 in the counterclockwise direction. Therefore, the projection 655 is moved from the exposure position toward a retracted position.
On the other hand, when the slidable portion 525 is slid (moved) from the rear side toward the front side relative to the third supporting portion 526, the link members 651 and 653 are moved in a direction opposite to the arrow direction shown in part (a) of
Here, (1) a distance between a rotation center axis of the connecting shaft portion 538 and a rotation center axis of the bearing portion 610 is L1, (2) a distance between the rotation center axis of the connecting shaft portion 538 and a rotation center axis of the connecting shaft portion 530 is L2, and (3) a distance between the rotation center axis of the connecting shaft portion 538 and a rotation center axis of the projection 655 is L3. In the moving mechanism 640, the first link member 641 forms Scott-Russel's mechanism in which L1, L2 and L3 are equal to each other (part (b) of
Incidentally, in this embodiment, a structure in which a combination of the link member 651 (652) and the link member 653 (654) in the first link mechanism 861 (second link mechanism 862) is reversed with respect to the front-rear direction, i.e., a structure in which a full length of the link member 651 (652) is shorter than a full length of the link member 653 (654) and in which the link member 651 (652) is mounted between one end side and the other end side of the link member 653 (654) may also be used. In this case, when the slidable portion 525 is slid from the front side toward the rear side, the optical print head 105 is moved from the retracted position toward the exposure position, and when the slidable portion 525 is slid from the rear side toward the front side, the optical print head 105 is moved from the exposure position toward the retracted position. The cover 558 described later is connected with the slidable portion 525 and has a structure such that the slidable portion 525 is moved from the front side toward the rear side in interrelation with movement of the cover 558 from an open state toward a closed state and is moved from the rear side toward the front side in interrelation with movement of the cover 558 from the closed state toward the open state.
Further, the mechanism for moving the optical print head 105 is not limited to the moving mechanism 640 but may also be a moving mechanism 940 shown in
As shown in
Part (a) of
Part (b) of
Here, the inclined surface of each of the first and second cam portions 112 and 113 may also descend from the front side toward the rear side. In this case, when the slidable portion 525 is slid from the front side toward the rear side, the optical print head 105 is moved from the retracted position toward the exposure position, and when the slidable portion 525 is slid from the rear side toward the front side, the optical print head 105 is moved from the exposure position toward the extracted position. The cover 558 described later has a structure such that the cover 558 is connected with the slidable portion 525 through a link mechanism, for example and the slidable portion 525 is moved from the front side toward the rear side in interrelation with movement of the cover 558 from the open state toward the closed state and is moved from the rear side toward the front side in interrelation with movement of the cover 558 from the closed state to the open state.
Incidentally, in this embodiment, the mechanism in which in response to the slide (movement) of the slidable portion 525, the optical print head 105 is moved between the exposure position and the exchanging position spaced from the photosensitive drum 103 than the exposure position is was described, but is not limited thereto. For example, an elastic member such as a spring for connecting the third supporting portion 526 and the holding member 505 so that the optical print head 105 is moved vertically relative to the third supporting portion 526 in response to mounting and dismounting of the drum unit 518 relative to the apparatus main assembly without providing the slidable portion 525, the link mechanisms (861, 862) and the cam mechanisms (112, 113) may also be provided. In the case of such a mechanism, when the drum unit 518 is mounted from the outside of apparatus main assembly, the optical print head 105 contacting the drum unit 518 is pushed down toward the third supporting portion 526 while urging the spring, so that the optical print head 105 is placed in the exposure position. In the case of such a constitution, a cleaning member 572 described later cleans the surface of the lens array 506 while sliding on the surface of the photosensitive drum 103.
Part (a) of
The first bearing surface 586 is a portion where a front side lower end of the holding member 505 moved from the exposure position toward the retracted position contacts the first bearing surface 586 from above with respect to the vertical direction. The holding member 505 contacts the first bearing surface 586, so that the optical print head 105 is placed in the retracted position.
The first supporting portion 527 is fixed to the front side plate 642. The front side plate 642 is provided with the positioning bosses 603 and 604 and a plurality of holes (not shown) corresponding to fixing bosses, respectively. The positioning bosses 603 and 604 and inserted in the holes provided in the front side plate 642. In that state, the first supporting portion 527 and the front side plate 642 are fixed with each other with screws passed through the screw holes 602 of the first supporting portion 527.
The wall portion 127 stands from the first supporting portion 527 toward the rear side so as to sandwich, with respect to the left-right direction, the first contact member 514 projecting from the lower side of the holding member 505. The wall portion 127 is provided at positions opposing left and rear side portions of the first contact member 514, so that member of the first contact member 514 in the left-right direction is prevented. As a result, the front side portion of the holding member 505 to which the first contact member 514 is fixed is also prevented from moving in the left-right direction.
Part (b) of
Part (a) of
The second bearing surface 587 has the same function as the above-described first bearing surface 586. To the second bearing surface 587, a rear side lower end of the holding member 505 moved from the exposure position toward the retracted position is contacted. That is, the holding member 505 of the optical print head 105 located in the retracted position is supported by the first bearing surface 586 and the second bearing surface 587.
The wall portion 128 stands from the second supporting portion 528 toward the front side so as to sandwich, with respect to the left-right direction, the second contact member 515 projecting from the lower side of the holding member 505. The wall portion 128 is provided at positions opposing left and rear side portions of the second contact member 515, so that member of the second contact member 515 in the left-right direction is prevented. As a result, the rear side portion of the holding member 505 to which the second contact member 515 is fixed is also prevented from moving in the left-right direction. The wall portion 127 described above prevents the movement of the first contact member 514 in the left-right direction, and the wall portion 128 prevents the movement of the second contact member 515 in the left-right direction, so that the holding member 505 is prevented from moving in the left-right direction over the longitudinal direction thereof. That is, it is possible to reduce a degree of a liability that the optical print head 105 moves in the left-right direction during movement from the retracted position toward the exposure position. In order to obtain this effect, the wall portions 127 and 128 may preferably be formed on the first supporting portion 527 and the second supporting portion 528, respectively, but the wall portion may also be formed on either one of the first and second supporting portions 527 and 528.
As shown in part (b) of
Part (c) of
Incidentally, a constitution in which the second supporting portion 528 and the rear side plate 643 are not fastened with a screw may also be employed. In this case, for example, the second supporting portion 528 is provided with a recessed portion, and this recessed portion is engaged with a projected portion formed on the rear side plate 643, so that a structure in which a position of the second supporting portion 528 relative to the rear side plate 643 is determined is formed.
(Cartridge Cover)
Next, the cover 558 will be described using
Part (a) of
As shown in parts (a) and (b) of
As shown in part (b) of
A constitution for sliding (moving) the slidable portion 525 is not limited to the cover 558. For example, a constitution in which the slidable portion 525 is slid in interrelation with opening and closing of an unshown front door may also be employed. Further, a constitution in which the slidable portion 525 is slid in interrelation with rotation of a rotatable member such as a lever, not a covering member such as the cover 558 or a door may also be employed.
As shown in parts (c) and (d) of
(Cleaning Mechanism)
In the image forming apparatus 1, for example, the exposure means such as the optical print head 105 is provided between the charging device 104 and the developing device 106. In some instances, the light emergent surface of the lens array 506 is contaminated with toner falling from the photosensitive drum 103 or the developing device 106. In the case where the lens (lens portion 706), through which light used for image formation passes, of the plurality of lenses of the lens array 506 is contaminated with the toner, there is a liability that the light emitted from the light emitting element is partly blocked and thus a lowering in image quality of an output image is caused. For that reason, the light emergent surface of the optical print head 105 may desirably be cleaned periodically.
A contact portion 582 is formed between the grip portion 575 and the sliding portion 574 (not shown in
Part (a) of
Parts (b) of
Further, the opening portion 700 is formed in the first supporting portion 527, and the first supporting portion 527 is fixed to the image forming apparatus 1 main assembly. For that reason, even when the contact portion 582 contacts the portion-to-be-contacted 705, impact due to the contact is not directly transmitted to the holding member 505. If the portion-to-be-contacted 705 is provided on the optical print head 105 or the drum unit 518, there is a liability that a position of the optical print head 105 or the drum unit 518 relative to the image forming apparatus 1 main assembly is deviated due to the impact when the contact portion 582 contacts the portion-to-be-contacted 705. Then, relative position between the optical print head 105 and the photosensitive drum 103 is deviated and leads to generate a cause of an image defect such as color misregistration. Accordingly, at a position where the portion-to-be-contacted 705 is provided, the portion-to-be-contacted 705 is required to be a member which is a separate member, such as the opening portion 700 or the front side plate 642, from both the optical print head 105 and the drum unit 518 and which is a member fixed to the image forming apparatus 1 main assembly.
As a means for further enhancing an effect of suppressing the impact due to the contact between the contact portion 582 and the portion-to-be-contacted 705, it is possible to cite that the portion-to-be-contacted 705 is provided at a position where the operator can visually recognize the portion-to-be-contacted 705 from the outside of the apparatus main assembly. As a result, the operator can insert the cleaning member 572 through the opening portion 700 while confirming whether or not the contact portion 582 contacts the portion-to-be-contacted 705 depending on a degree of insertion of the cleaning member 572 by the operator.
Part (a) of
As shown in parts (a) and (b) of
In order to explain a function of the engaging portions 576 and the lower projected portion 577, a front side structure of the optical print head 105 will be described using
As shown in
Part (a) of
Part (b) of
Parts (a) and (b) of
As described above, light beams emitted from the LEDs (light emitting elements) 503 are focused on the photosensitive drum 103 through the lens array 506. As a result, the photosensitive drum 103 is exposed to the light beams, but all the light beams emitted from the LEDs (light emitting elements) 503 are not always used for image formation. For example, in this embodiment, an exposable range is 314 mm, but a long side length of A4-size recording paper and a short side length of A3-size recording paper are 297 mm. That is, on the photosensitive drum 103, a region actually used for the image formation is 297 mm at the maximum, so that even when a region out of the actually used region is exposed to light, such a region is not used for the image formation. As a result, even in the lens array 506 including the plurality of lenses, lenses through which the light beams focused in the region used for forming the image on the photosensitive drum 103 pass and lenses through which the light beams focused in the region which is not used for forming the image on the photosensitive drum 103 pass exist. Lenses 606 in parts (a) and (b) of
Part (a) of
On the other hand, part (b) of
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2017-208425 filed on Oct. 27, 2017, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2017-208425 | Oct 2017 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20090087210 | Terao et al. | Apr 2009 | A1 |
20100329727 | Ashida et al. | Dec 2010 | A1 |
20150331382 | Takasaka | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
2007-072321 | Mar 2007 | JP |
2007-168297 | Jul 2007 | JP |
Entry |
---|
Extended European Search Report dated Mar. 1, 2019, in European Patent Application No. 18199906.1. |
Number | Date | Country | |
---|---|---|---|
20190129353 A1 | May 2019 | US |