This application claims priorities from Japanese Patent Application Nos. 2020-086816 filed May 18, 2020 and 2020-086817 filed May 18, 2020. The entire contents of the priority applications are incorporated herein by reference.
The present disclosure relates to an image-forming apparatus.
Japanese Patent Application Publication No. 2002-189322 discloses an image-forming apparatus including a photosensitive drum, a motor, and a drum gear train. The drum gear train is configured to transmit a driving force from the motor to the photosensitive drum.
Japanese Patent Application Publication No. 2012-203009 discloses an image-forming apparatus including a photosensitive drum, a developing roller, a fixing device, a motor, a developing gear train, and a controller. The developing gear train is configured to transmit a driving force from the motor to the developing roller. The developing gear train includes a clutch configured to perform switching in state thereof between a transmission state and a cutoff state. In the transmission state of the clutch, the driving force can be transmitted from the motor to the developing roller. In the cutoff state of the clutch, the transmission of the driving force to the developing roller is interrupted.
In the conventional image-forming apparatus described in the '322 publication, there may be a demand that the rotation of the photosensitive drum be halted at a desired timing.
Further, in the conventional image-forming apparatus described in the '009 publication, a peripheral velocity of the developing roller is slowed down in order to avoid degradation of developing agent when an image forming operation is not performed. However, the slowing-down of the peripheral velocity of the developing roller generates a difference in peripheral velocity between the photosensitive drum and the developing roller. This velocity difference may cause friction between the photosensitive drum and the developing roller, thereby leading to degradation of the photosensitive drum.
In view of the foregoing, it is an object of the disclosure to provide an image-forming apparatus capable of stopping the rotation of the photosensitive drum at a desired timing.
It is another object of the disclosure to provide an image-forming apparatus capable of restraining degradation of the photosensitive drum.
In order to attain the above and other objects, according to one aspect, the disclosure provides an image-forming apparatus including a photosensitive drum, a motor, and a drum gear train configured to transmit a driving force from the motor to the photosensitive drum. The drum gear train includes: a first gear rotatable about a first axis upon receipt of the driving force; a second gear rotatable about the first axis; and a first clutch. The second gear is configured to receive the driving force from the first gear and to transmit the driving force to the photosensitive drum. The first clutch is switchable between a first transmission state where the driving force is transmitted from the first gear to the second gear and a first transmission cutoff state where transmission of the driving force from the first gear to the second gear is cut off.
According to another aspect, the disclosure also provides an image-forming apparatus including a photosensitive drum, a developing roller, a fixing device, a motor, a drum gear train, a developing gear train, a fixing gear train, and a controller. The fixing device includes a heater and is configured to heat a sheet at a fixing temperature. The drum gear train is configured to transmit a driving force from the motor to the photosensitive drum. The drum gear train includes: a first gear rotatable upon receipt of the driving force; a second gear configured to receive the driving force from the first gear and to transmit the driving force to the photosensitive drum; and a first clutch switchable between a first transmission state and a first transmission cutoff state. In the first transmission state of the first clutch, the driving force is transmitted from the first gear to the second gear. In the first transmission cutoff state of the first clutch, transmission of the driving force from the first gear to the second gear is cut off. The developing gear train is configured to transmit the driving force from the first gear to the developing roller. The developing gear train includes a second clutch switchable between a second transmission state where the driving force is transmitted from the first gear to the developing roller and a second transmission cutoff state where transmission of the driving force from the first gear to the developing roller is cut off. The fixing gear train is configured to transmit the driving force from the motor to the fixing device. The controller is configured, after the fixing temperature reaches a target temperature, to: permit the first clutch to be switched to the first transmission state to start transmitting the driving force to the photosensitive drum; and subsequently permit the second clutch to be switched to the second transmission state to start transmitting the driving force to the developing roller.
The particular features and advantages of the embodiment(s) as well as other objects will become apparent from the following description taken in connection with the accompanying drawings, in which:
An image-forming apparatus 1 according to one embodiment of the present disclosure will be described with reference to the accompanying drawings.
An overall configuration of the image-forming apparatus 1 will be described with reference to
The image-forming apparatus 1 includes a housing 2, a sheet supply portion 3, a photosensitive drum 4, a charger 5, an exposing device 6, a developing device 7, a transferring device 8, and a fixing device 9.
The housing 2 accommodates therein the sheet supply portion 3, the photosensitive drum 4, the charger 5, the exposing device 6, the developing device 7, the transferring device 8, and the fixing device 9.
The sheet supply portion 3 is configured to supply a sheet S toward the photosensitive drum 4. The sheet supply portion 3 includes a sheet accommodating portion 31, a pick-up roller 32, and a registration roller 33. In other words, the image-forming apparatus 1 includes the registration roller 33. The sheet accommodating portion 31 is configured to accommodate therein the sheet S. The sheet S in the sheet accommodating portion 31 is configured to be fed to the photosensitive drum 4. The sheet accommodating portion 31A may be a sheet cassette, for example.
The pick-up roller 32 is configured to pick up the sheet S in the sheet accommodating portion 31. The sheet S picked up by the pick-up roller 32 is configured to be conveyed toward the registration roller 33. The registration roller 33 is positioned downstream of the pick-up roller 32 in a conveying direction of the sheet S. The registration roller 33 is configured to temporarily halt conveyance of the sheet S supplied from the pick-up roller 32, and then start conveying the sheet S toward the photosensitive drum 4 at a prescribed timing.
The photosensitive drum 4 is rotatable about a drum axis A1. The drum axis A1 extends in a first direction. As illustrated in
The charger 5 of the present embodiment is a scorotron charger configured to charge the photosensitive drum 4. The charger 5 may be a charge roller.
The exposing device 6 is configured to expose the photosensitive drum 4 charged by the charger 5 to light. Hence, an electrostatic latent image is formed on the photosensitive drum 4. In the present embodiment, a laser scanner unit is used as the exposing device 6. However, an LED print head including an LED array is also available as the exposing device 6.
The developing device 7 includes a casing 71 and a developing roller 72. In other words, the image-forming apparatus 1 includes the developing roller 72. The casing 71 is configured to accommodate toner therein. The developing roller 72 is configured to supply the toner in the casing 71 to the photosensitive drum 4. The developing roller 72 is rotatable about a developing axis A2 extending in the first direction. The developing roller 72 extends in the first direction along the developing axis A2. The developing roller 72 has a solid cylindrical shape. The developing roller 72 is configured to contact the photosensitive drum 4.
The transferring device 8 is configured to transfer a toner image on the photosensitive drum 4 to the sheet S. The transferring device 8 of the embodiment is a transfer roller rotatable about a transfer axis A3. The transfer axis A3 extends in the first direction. The transfer roller extends in the first direction along the transfer axis A3. The transfer roller has a solid cylindrical shape. The transfer roller is configured to contact the photosensitive drum 4. Incidentally, the transferring device 8 may be a belt unit, instead of the transfer roller.
The fixing device 9 is configured to fix the toner image to the sheet S. In the present embodiment, the fixing device 9 employs a heat roller fixing system. Specifically, the fixing device 9 includes a heater 91, a heat roller 92, and a pressure roller 93. The heater 91 is positioned in an internal space of the heat roller 92. The heat roller 92 is configured to receive heat from the heater 91 and apply heat to the sheet S moving along a nip region formed between the heat roller 92 and the pressure roller 93. The pressure roller 93 is in contact with the heat roller 92. The pressure roller 93 is configured to apply pressure to the sheet S passing through the nip region in cooperation with the heat roller 92. The sheet S moved past the fixing device 9 is discharged onto an upper surface of the housing 2.
The image-forming apparatus 1 according to the embodiment will be now described in details with reference to
As illustrated in
As illustrated in
The drum gear train 12 is configured to transmit a driving force of the motor 11 to the photosensitive drum 4. The drum gear train 12 includes an idle gear 12A and a gear unit 12B.
The idle gear 12A is in meshing engagement with the output gear 112 of the motor 11.
The gear unit 12B includes a shaft 121 (see
As illustrated in
The first support part 121A supports the first gear 122. The first support part 121A constitutes one end portion of the shaft 121 in the first direction. The first support part 121A extends in the first direction. The first support part 121A has a solid cylindrical shape. The first support part 121A has a circular shape as viewed in the first direction.
The second support part 121B supports the second gear 123. The second support part 121B is positioned away from the first support part 121A in the first direction. The second support part 121B constitutes another end portion of the shaft 121 in the first direction. The second support part 121B extends in the first direction. The second support part 121B has a D-shape as viewed in the first direction. Specifically, the second support part 121B has an arcuate surface S1 and a flat surface S2. The arcuate surface S1 extends in a rotational direction of the first gear 122. The flat surface S2 extends in a radial direction of the first gear 122. The flat surface S2 extends in a direction crossing the rotational direction of the first gear 122.
The third support part 121C supports the first clutch 124. The third support part 121C is positioned between the first support part 121A and the second support part 121B in the first direction. The third support part 121C extends in the first direction. The third support part 121C has a D-shape as viewed in the first direction. Specifically, the third support part 121C has an arcuate surface S11 and a flat surface S12. The arcuate surface S11 extends in the rotational direction of the first gear 122. The flat surface S12 extends in the radial direction of the first gear 122. The flat surface S12 extends in a direction crossing the rotational direction of the first gear 122.
The flange 121D is positioned between the first support part 121A and the third support part 121C in the first direction. The flange 121D is positioned around a peripheral surface of the shaft 121. The flange 121D protrudes radially outward from the peripheral surface of the shaft 121. The flange 121D may be integral with or fixed to the peripheral surface of the shaft 121. The flange 121D has a disc-like shape. In a state where the first gear 122 is attached to the shaft 121, the flange 121D is slightly apart from the first gear 122 in the first direction.
In the state where the first gear 122 is attached to the shaft 121, the first gear 122 is movable in the first direction toward and away from the first clutch 124 as described later. Specifically, when the first gear 122 is moved toward the first clutch 124 in the first direction, the first gear 122 is brought into contact with the first clutch 124 to prevent further movement of the first gear 122 in the first direction. When the first gear 122 attached to the shaft 121 is moved in the first direction away from the first clutch 124, a frame (not illustrated) supporting the one end portion of the shaft 121 prevents further movement of the first gear 122 in the first direction.
As illustrated in
The first gear 122 is formed with a hole 122A. The hole 122A is positioned at a diametrically center portion of the first gear 122. The hole 122A has a circular shape. As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
The first clutch 124 is configured to provide a first transmission state and a first transmission cutoff state switchable therebetween. In the first transmission state, the first clutch 124 allows power transmission from the first gear 122 to the second gear 123. In the first transmission cutoff state, the first clutch 124 shuts off the power transmission from the first gear 122 to the second gear 123.
The first clutch 124 of the embodiment is an electromagnetic clutch. The electromagnetic clutch includes a coil 124C, a rotor 124D, and an armature 124E. Upon energization of the coil 124C, the armature 124E is rotatable together with the rotor 124D, providing the first transmission state. Upon de-energization of the coil 124C, the armature 124E is rotatable relative to the rotor 124D (independent of the rotor 124D), providing the first transmission cutoff state.
As illustrated in
The third support part 121C of the shaft 121 is fitted with the bore 124B. Hence, the first clutch 124 is supported by the third support part 121C of the shaft 121. The arcuate surface S11 of the third support part 121C faces the inner arcuate surface S31 of the hub 124A. The flat surface S12 of the third support part 121C faces the inner flat surface S32 of the hub 124A. Thus, the shaft 121 is rotatable together with the hub 124A and the rotor 124D.
As illustrated in
The first coupling 125 is formed with a first groove 125A and a second groove 125B. The first groove 125A and the second groove 125B extend in the radial direction of the first gear 122. Hereinafter, the direction in which the first groove 125A extends will be referred to as a second direction. That is, the second direction crosses the rotational direction of the first gear 122, and is coincident with the radial direction of the first gear 122. The first groove 125A is positioned apart from the hole 122A of the first gear 122 in the second direction.
The second groove 125B is positioned apart from the first groove 125A in the second direction. The first groove 125A is positioned apart from the hole 122A of the first gear 122 in the second direction. The second groove 125B is positioned opposite to the first groove 125A with respect to the hole 122A in the second direction (radial direction of the first gear 122). The second groove 125B is positioned opposite to the first groove 125A with respect to the first axis A11 in the second direction. The second groove 125B extends in the second direction. In other words, the second groove 125B extends in the same direction as the first groove 125A.
As illustrated in
The second coupling 126 is configured to be coupled with the first coupling 125. The second coupling 126 and the first coupling 125 are rotated together in a state where the second coupling 126 and the first coupling 125 are coupled to each other.
Specifically, the second coupling 126 includes a first protrusion 126A and a second protrusion 126B. The first protrusion 126A extends in the second direction. The first protrusion 126A is positioned apart from the bore 124B in the second direction. The first protrusion 126A is engaged with the first groove 125A of the first coupling 125 in the coupling state between the second coupling 126 and the first coupling 125.
The second protrusion 126B is positioned apart from the first protrusion 126A in the second direction. The second protrusion 126B is positioned apart from the bore 124B of the hub 124A in the second direction. The second protrusion 126B is positioned opposite to the first protrusion 126A with respect to the bore 124B in the second direction. The second protrusion 126B is positioned opposite to the first protrusion 126A with respect to the first axis A11 in the second direction. The second protrusion 126B extends in the second direction. In other words, the second protrusion 126B extends in the same direction as the first protrusion 126A. The second protrusion 126B is engaged with the second groove 125B of the first coupling 125 in the state where the second coupling 126 and the first coupling 125 are coupled to each other. The second coupling 126 is rotatable together with the first coupling 125 by the engagement between the first protrusion 126A and the first groove 125A and by the engagement between the second protrusion 126B and the second groove 125B.
In the coupling state between the second coupling 126 and the first coupling 125, the second coupling 126 is movable relative to the first coupling 125 in the first direction which is the extending direction of the first axis A11. Hence, the second coupling 126 is movable relative to the first coupling 125 in the first direction while the second coupling 126 rotates together with the first coupling 125. That is, the power transmission between the first coupling 125 and the second coupling 126 can be performed while the first coupling 125 and the second coupling 126 are allowed to be displaced from each other in the first direction.
Further, in the coupling state between the first coupling 125 and the second coupling 126, the second coupling 126 is movable relative to the first coupling 125 in the second direction which is the extending direction of the first protrusion 126A and the second protrusion 126B. That is, the second direction is a direction in which displacement of the second coupling 126 relative to the first coupling 125 is allowed (the second direction is also coincident with the radial direction of the first gear 122). Thus, the second coupling 126 can be displaced relative to the first coupling 125 in the second direction during co-rotation of the second coupling 126 and the first coupling 125. In other words, the second coupling 126 is displaceable with respect to the first coupling 125 in the radial direction of the first gear 122 when the second coupling 126 and the first coupling 125 are co-rotated. That is, the power transmission between the first coupling 125 and the second coupling 126 can be performed while displacement in the second direction between the first coupling 125 and the second coupling 126 is allowed.
The driving force is transmitted from the first gear 122 to the rotor 124D through the first coupling 125, the second coupling 126, and the armature 124E to rotate the rotor 124D when the first clutch 124 is in the first transmission state and the first gear 122 is rotating. Hence, the shaft 121 and the second gear 123 are rotated in accordance with the rotation of the rotor 124D. Accordingly, the driving force can be transmitted from the first gear 122 to the second gear 123 in the first transmission state of the first clutch 124.
On the other hand, the driving force is not transmitted from the armature 124E to the rotor 124D when the first clutch 124 is in the first transmission cutoff state and the first gear 122 is rotating. The rotor 124D is not rotated, and hence, the shaft 121 and the second gear 123 are not rotated. Accordingly, the driving force cannot be transmitted from the first gear 122 to the second gear 123 in the first transmission cutoff state of the first clutch 124.
As illustrated in
Specifically, as illustrated in
The idle gear 131 is in meshing engagement with the first gear 122 of the drum gear train 12. In other words, the developing gear train 13 is drivingly (mechanically) connected to the first gear 122. Hence, the driving force of the motor 11 is received by the developing gear train 13 through the drum gear train 12. The idle gear 132 is in meshing engagement with the idle gear 131.
The developing gear 133 is configured to transmit the driving force to the developing device 7. In other words, the developing gear 133 is configured to transmit the driving force to the developing roller 72.
The second clutch 134 is positioned between the idle gear 132 and the developing gear 133. The second clutch 134 of the present embodiment is an electromagnetic clutch. The second clutch 134 is configured to provide a second transmission state and a second transmission cutoff state switchable therebetween. In the second transmission state, the second clutch 134 performs power transmission from the idle gear 132 to the developing gear 133. Hence, the power transmission to the developing roller 72 can be performed in the second transmission state of the second clutch 134. On the other hand, in the second transmission cutoff state, the second clutch 134 interrupts the power transmission from the idle gear 132 to the developing gear 133. Hence, the power transmission to the developing roller 72 is cutoff in the second transmission cutoff state of the second clutch 134.
As illustrated in
As illustrated in
As illustrated in
How the image-forming apparatus 1 is controlled will next be described with reference to
As illustrated in
At this time, at a point of time to illustrated in
The rotation of the motor 11 is transmitted to the fixing device 9 through the fixing gear train 14 as illustrated in
When the fixing temperature reaches the target temperature at a point of time t1 (S2: YES), the controller 16 then permits the first clutch 124 to be switched from the first transmission cutoff state to the first transmission state at a point of time t2 which is after the point of time t1 (in S3). The photosensitive drum 4 thus starts rotating in S3.
Thereafter, at a point of time t3 which is after the point of time t2, the controller 16 permits the second clutch 134 to be switched from the second transmission cutoff state to the second transmission state (in S4). The developing roller 72 starts rotating in S4. That is, after the fixing temperature reaches the target temperature, the controller 16 permits the first clutch 124 to be switched to the first transmission state to start the power transmission to the photosensitive drum 4, and subsequently permits the second clutch 134 to be switched to the second transmission state to start the power transmission to the developing roller 72.
The controller 16 then permits the pick-up roller 32 to start rotating (in S5), so that the sheet S accommodated in the sheet accommodating portion 31 is picked up by the pick-up roller 32. The sheet S picked up by the pick-up roller 32 is then conveyed to the registration roller 33. The conveyance of the sheet S is then halted by the registration roller 33 when the sheet P contacts the registration roller 33. The controller 16 then permits the registration roller 33 to start rotating after elapse of a predetermined time period from the rotation start timing of the pick-up roller 32. As a result, the sheet S stopped at the registration roller 33 is then conveyed toward the photosensitive drum 4 by the rotation of the registration roller 33.
A leading edge of the sheet S conveyed by the registration roller 33 is brought into contact with the sensor 15 at a point of time t4 which is after the point of time t3. Hence, the sensor 15 is rendered ON at the point of time t4. The leading edge of the sheet S conveyed by the registration roller 33 is then brought into contact with the photosensitive drum 4 at a point of time t5. In other words, the controller 16 permits the second clutch 134 to be switched to the second transmission state at the point of time t3 which is before the point of time t5. Here, a time span T from the point of time t3 to the point of time t5 is set to be greater than a time period during which the photosensitive drum 4 performs one-time rotation.
Thereafter, the controller 16 determines whether the print job is ended (in S6). In a case where the print job is not ended (S6: NO), the controller 16 again permits the pick-up roller 32 to rotate (in S5). On the other hand, in a case where the print job is ended (S6: YES), the last sheet S used in the print job leaves the sensor 15 at a point of time t6. The sensor 15 is thus rendered OFF at the point of time t6. The last sheet S then leaves the photosensitive drum 4 at a point of time t7 after the last sheet S left the sensor 15 at the point of time t6.
At a point of time t8 after elapse of a predetermined time period from the point of time t6 at which the sensor 15 no longer detects the last sheet S (S7: YES), the controller 16 permits the second clutch 134 to be switched to the second transmission cutoff state (in S8). Hence, the rotation of the developing roller 72 is stopped in S8.
Then, at a point of time t9 which is after the point of time t8, the controller 16 permits the first clutch 124 to be switched to the first transmission cutoff state (in S9). The rotation of the photosensitive drum 4 is thus stopped in S9. That is, the controller 16 permits the first clutch 124 to be switched to the first transmission cutoff state to cut off the power transmission to the photosensitive drum 4, after the second clutch 134 is switched to the second transmission cutoff state to cut off the power transmission to the developing roller 72.
The controller 16 then permits the heater 91 to be turned OFF at a point of time t10, and permits the motor 11 to stop rotating at the point of time t10.
(1) According to the image-forming apparatus 1 described above, the gear unit 12B includes: the first gear 122 configured to receive the driving force from the motor 11; the second gear 123 configured to transmit the driving force to the photosensitive drum 4; and the first clutch 124 configured to cut off the transmission of the driving force from the first gear 122 to the second gear 123, as illustrated in
(2) As illustrated in
Here, assume a comparative configuration where the armature 124E is directly connected to the first gear 122. In this comparative example, it is likely that the armature 124E may be pulled or pushed by the first gear 122, so that a load acting in the first direction may be directly applied from the first gear 122 to the armature 124E. Specifically, in the configuration where the armature 124E is directly connected to the first gear 122, since the first gear 122 is a helical gear, the load acting in the first direction may be applied from the first gear 122 to the armature 124E due to thrusting force of the first gear 122. If the load other than the torque for rotations is applied to the armature 124E from the first gear 122, degradation of the first clutch 124 (such as frictional wearing of the mechanical components of the first clutch 124) is likely to be promoted.
In contrast, in the image-forming apparatus 1 according to the embodiment, the armature 124E is connected to the first gear 122 through the first coupling 125 and the second coupling 126. In other words, the first coupling 125 and the second coupling 126 are positioned between the first gear 122 and the first clutch 124.
With this structure, application of the load acting in the first direction from the first gear 122 to the armature 124E can be restrained, since the first coupling 125 and the second coupling 126 are relatively movable in the first direction. That is, application of load other than the torque from the first gear 122 to the armature 124E can be restrained. Accordingly, degradation of the first clutch 124 can be restrained, and a prolonged service life of the first clutch 124 can be realized.
(3) The second coupling 126 is movable in the radial direction of the first gear 122 relative to the first coupling 125 while the second coupling 126 is rotating together with the first coupling 125. Here, a slight gap is provided between the inner surface of the hole 122A of the first gear 122 and the peripheral surface of the first support part 121A of the shaft 121. Therefore, the rotation axis of the first gear 122 may be slightly displaced in the radial direction thereof in the rotating state of the first gear 122.
To this effect, since the second coupling 126 is movable in the radial direction of the first gear 122 relative to the first coupling 125 in the present embodiment, load acting in the radial direction is less likely to be applied from the first gear 122 to the armature 124E than otherwise. That is, application of load other than the torque from the first gear 122 to the armature 124E can be restrained. As a result, degradation of the first clutch 124 can be restrained, and a prolonged service life of the first clutch 124 can be obtained.
(4) The first clutch 124 is positioned between the first gear 122 and the second gear 123, as illustrated in
With this structure, a compact layout of the first gear 122, the first clutch 124, and the second gear 123 in a direction crossing the first axis A11 is attainable. This is in high contrast to an arrangement where the first gear 122, the first clutch 124, and the second gear 123 are arrayed in a direction crossing the first axis A11. As a result, the first clutch 124 can be provided in the drum gear train 12 without increase in size of the drum gear train 12.
(5) In the image-forming apparatus 1 according to the embodiment, the developing gear train 13 includes the second clutch 134. The developing gear train 13 can transmit the driving force to the developing roller 72 in the second transmission state of the second clutch 134. Transmission of the driving force to the developing roller 72 is cut off in the second transmission cutoff state of the second clutch 134. With this structure, the rotation of the developing roller 72 can be stopped at a desired timing by switching the second clutch 134 from the second transmission state to the second transmission cutoff state.
(6) The image-forming apparatus 1 according to the embodiment includes the fixing device 9 and the fixing gear train 14, as illustrated in
(7) As illustrated in
Hence, friction is not generated between the photosensitive drum 4 and the developing roller 72 during the time span from the point of time to to the point of time t1. As a result, degradation of the photosensitive drum 4 can be obviated during the time span from the point of time to to the point of time t1.
Further, after the fixing temperature reaches the target temperature at the point of time t1 (S2: YES), the photosensitive drum 4 is caused to start rotating at the point of time t2 (in S3), and thereafter, the developing roller 72 is caused to start rotating at the point of time t3 (in S4). In this way, the developing roller 72 is configured not to rotate while the rotation of the photosensitive drum 4 is stopped. This configuration can prevent the rotating developing roller 72 from intensively rubbing against only part of the stationary photosensitive drum 4, thereby preventing localized frictional wearing of the photosensitive drum 4. As a result, degradation at the converged part of the photosensitive drum 4 can be obviated.
(8) In the image-forming apparatus 1 according to the embodiment, the leading edge of the sheet S conveyed by the registration roller 33 is brought into contact with the photosensitive drum 4 at the point of time t5 (see
(9) Referring to
(10) The sensor 15 is configured to detect the sheet S which is being conveyed from the registration roller 33 toward the photosensitive drum 4. As illustrated in
(11) Referring to
With this structure, the rotation of the photosensitive drum 4 as well as the rotation of the developing roller 72 are both stopped in the state where printing on the sheet S is not performed. Degradation of the photosensitive drum 4 can be suppressed accordingly. Further, localized degradation of the photosensitive drum 4 can also be restrained, because the rotation of the photosensitive drum 4 can be stopped after the rotation of the developing roller 72 is stopped.
(1) The gear unit 12B may not include the shaft 121 that collectively supports the first gear 122, the second gear 123, and the first clutch 124. For example, each of the first gear 122, the second gear 123, and the first clutch 124 may be supported independently of each other by the housing 2.
(2) The image-forming apparatus 1 may further include a second sensor configured to detect the sheet S moving from the pick-up roller 32 toward the registration roller 33. In this case, the controller 16 may permit the second clutch 134 to be switched to the second transmission cutoff state upon elapse of a predetermined time period from a timing at which the second sensor does not detect the sheet S any longer.
(3) The image-forming apparatus 1 may further include a third sensor configured to detect the sheet S picked up by the pick-up roller 32. In this case, the controller 16 may permit the second clutch 134 to be switched to the second transmission cutoff state upon elapse of a predetermined time period from a timing at which the third sensor no longer detects the sheet S.
(4) The first clutch 124 and the second clutch 134 may be mechanical sensors. instead of the electromagnetic sensors.
(5) In the above-described modifications (1)-(4), the same functions and technical advantages as the above-described embodiment can be obtained.
While the description has been made in detail with reference to the embodiments, it would be apparent to those skilled in the art that many modifications and variations may be made thereto.
The image-forming apparatus 1 is an example of an image-forming apparatus. The photosensitive drum 4 is an example of a photosensitive drum. The motor 11 is an example of a motor. The drum gear train 12 is an example of a drum gear train. The first gear 122 is an example of a first gear. The second gear 123 is an example of a second gear. The first clutch 124 is an example of a first clutch. The second clutch 134 is an example of a second clutch. The first coupling 125 is an example of a first coupling. The second coupling 126 is an example of a second coupling. The shaft 121 is an example of a shaft. The developing roller 72 is an example of a developing roller. The fixing device 9 is an example of a fixing device. The developing gear train 13 is an example of a developing gear train. The fixing gear train 14 is an example of a fixing gear train. The registration roller 33 is an example of a registration roller. The controller 16 is an example of a controller.
Number | Date | Country | Kind |
---|---|---|---|
JP2020-086816 | May 2020 | JP | national |
JP2020-086817 | May 2020 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20020098013 | Kamimura | Jul 2002 | A1 |
20030047407 | Murano | Mar 2003 | A1 |
20030190172 | Makino | Oct 2003 | A1 |
20100303502 | Miwa | Dec 2010 | A1 |
20120243910 | Aratachi et al. | Sep 2012 | A1 |
20150277261 | Suzuki | Oct 2015 | A1 |
20160053859 | Tamura | Feb 2016 | A1 |
20160349664 | Sawashima | Dec 2016 | A1 |
20170269536 | Watanabe | Sep 2017 | A1 |
20180074446 | Izumi | Mar 2018 | A1 |
20180180106 | Hara | Jun 2018 | A1 |
Number | Date | Country |
---|---|---|
2001-199610 | Jul 2001 | JP |
2002-189322 | Jul 2002 | JP |
2002-268503 | Sep 2002 | JP |
2008-101644 | May 2008 | JP |
2010-275075 | Dec 2010 | JP |
2012-203009 | Oct 2012 | JP |
2015-191210 | Nov 2015 | JP |
2016-224418 | Dec 2016 | JP |
2017083006 | May 2017 | JP |
2017-166596 | Sep 2017 | JP |
2017167382 | Sep 2017 | JP |
2020118202 | Aug 2020 | JP |
Number | Date | Country | |
---|---|---|---|
20210356900 A1 | Nov 2021 | US |