This application claims priority to Japanese Patent Application No. 2023-010210 filed on Jan. 26, 2023, the entire disclosure of which is incorporated herein by reference.
The present invention relates to an image forming apparatus such as a copier, a printer, or a digital multifunction apparatus called a multifunction peripheral (MFP), a method for processing information relating to a recording medium, and a non-transitory recording medium.
In general, a user who uses an image forming apparatus wants to select an output sheet by checking what kind of sheet is contained in a sheet feed tray. However, it takes time and effort to go to the apparatus to open and close the sheet feed tray for checking. Meanwhile, by setting sheet information of a sheet in the sheet feed tray, it is possible to check the sheet information without going to the apparatus.
However, in an office environment or the like in which a plurality of users uses the image forming apparatus, a user may randomly add different types of sheets to the sheet feed tray. When the addition is performed, the sheet information of the sheet feed tray is no longer up to date. In addition, since the latest sheet information is not reported, the user cannot grasp the latest status. Further, since a sheet history of the sheet feed tray is unknown, it is difficult to determine whether the sheet feed tray is available.
Meanwhile, a medium detection sensor is used as means for detecting the type of sheet. Patent Literature 1 (Japanese Unexamined Patent Application Publication No. 2022-89505) discloses that a medium detection sensor mounted in an image forming apparatus identifies a physical property of a sheet and displays a type and a basis weight of the sheet.
Patent Literature 2 (Japanese Unexamined Patent Application Publication No. 2018-106112) discloses the following image forming apparatus. This image forming apparatus detects characteristics (medium characteristics) of a recording material conveyed to an image forming section. The image forming apparatus interrupts image forming processing when a detected first medium characteristic of a recording material being conveyed is different from a second medium characteristic of the recording material at the time of previous image formation stored in a RAM, and an image forming condition corresponding to the first medium characteristic is different from an image forming condition corresponding to the second medium characteristic. The image forming apparatus allows a user to input a medium characteristic by an input means after the interruption, and resumes the image forming operation under an image forming condition corresponding to the input medium characteristic.
However, Patent Literatures 1 and 2 do not refer to notifying a user of the latest information relating to a sheet in a sheet feed tray. Therefore, in each of the image forming apparatuses described in Patent Literatures 1 and 2, a user cannot know the latest sheet information in a case where a sheet is added to a sheet feed tray. Patent Literatures 1 and 2 cannot provide a solution to the problem that it is difficult to determine whether the tray is available since the sheet history of the tray is unclear.
An object of the present invention is to provide an image forming apparatus, a method for processing information relating to a recording medium, and a non-transitory recording medium that can detect and output the latest information relating to a recording medium in a sheet feed tray.
A first aspect of the present invention relates to
A second aspect of the present invention relates to
A third aspect of the present invention relates to
The advantages and features provided by one or more embodiments of the present invention will become more fully understood from the detailed description given hereinbelow and the appended drawings which are given by way of illustration only, and thus are not intended as a definition of the limits of the present invention.
Hereinafter, one or more embodiments of the present invention will be described with reference to the drawings. However, the scope of the invention is not limited to the disclosed embodiments.
Examples of the image forming apparatus 1 include, but are not limited to, a copier, a printer, and an MFP which is a digital multifunction apparatus.
In
Further, a manual sheet feed tray (not illustrated) is provided on the opposite side of the first sheet feed tray 60a with the sheet conveyance path 8 interposed therebetween. A sheet set on the manual sheet feed tray is supplied to the sheet conveyance path 8 via a manual sheet feed port 8c.
Each of the first sheet feed tray 60a, the second sheet feed tray 60b, and the manual sheet feed tray corresponds to a holder that holds a sheet. A user can open and close the first sheet feed tray 60a, the second sheet feed tray 60b, and the manual sheet feed tray with respect to the image forming apparatus 1. Opening the first sheet feed tray 60a and the second sheet feed tray 60b means removing the first sheet feed tray (sheet feed cassette) 60a and the second sheet feed tray (sheet feed cassette) 60b from a main body of the apparatus for the purpose of replacement of a sheet, addition of a sheet, or the like. Opening the manual sheet feed tray means that a sheet is removed from the manual sheet feed tray to bring the manual sheet feed tray into a non-use state.
On the other hand, closing the first sheet feed tray 60a and the second sheet feed tray 60b means attaching the first sheet feed tray 60a and the second sheet feed tray 60b to the main body of the apparatus. Closing the manual sheet feed tray means setting a sheet on the manual sheet feed tray and bringing the manual sheet feed tray into a use state.
Further, opening the first sheet feed tray 60a, the second sheet feed tray 60b, and the manual sheet feed tray is also referred to as opening the sheet feed ports 8a, 8b, and 8c.
Closing the first sheet feed tray 60a, the second sheet feed tray 60b, and the manual sheet feed tray is also referred to as closing the sheet feed ports 8a, 8b, and 8c. The opening and closing of the first sheet feed tray 60a and the second sheet feed tray 60b can be detected by a sensor (not illustrated). The opening and closing of the manual sheet feed tray can be detected based on whether a sheet is present on the manual sheet feed tray.
The skew correction rollers 72 are rollers for correcting skew (inclination) of a sheet conveyed in the sheet conveyance path 8.
Between the sheet feed port 8a of the first sheet feed tray 60a in the upper stage and the skew correction rollers 72, two medium detection sensors 91 and 92 are arranged on the upstream side and the downstream side in a conveyance direction in the sheet conveyance path 8. The medium detection sensors 91 and 92 detect a physical property value of a sheet that is an example of information relating to the sheet. The medium detection sensor 91 on the upstream side is an optical sensor that detects light emitted to the sheet. The medium detection sensor 92 on the downstream side is an ultrasonic sensor that detects an ultrasonic wave output toward the sheet. The optical sensor 91 may be disposed on the upstream side, and the ultrasonic sensor 92 may be disposed on the downstream side.
In the present embodiment, the image forming apparatus 1 has a user designation mode and an automatic detection mode, and a user can select one of the modes. The user designation mode is a mode in which the user designates a sheet type. When the user designation mode is selected, the detection of a physical property value of a sheet and the determination of the sheet type by the medium detection sensors 91 and 92 are not performed. When the automatic detection mode is selected, the detection and the determination of the sheet type by the medium detection sensors 91 and 92 are performed.
The controller 100 includes a central processing unit (CPU) 101, a read only memory (ROM) 102, a static random access memory (S-RAM) 103, a nonvolatile RAM (NV-RAM) 104, and a timepiece IC 105.
The CPU 101 comprehensively controls the entire image forming apparatus 1 by executing an operation program stored in the ROM 102 or the like. For example, the CPU 101 controls a copy function, a printer function, a scan function, and the like such that the copy function, the printer function, the scan function, and the like are executable. In particular, in this embodiment, the CPU 101 executes detection of physical property values of a sheet based on detection of an amount of light by the optical sensor 91 and detection of an ultrasonic wave by the ultrasonic sensor 92. The CPU 101 determines the sheet type based on the results of the detection, automatically sets an image forming condition corresponding to the sheet type based on the determination result at the time of printing, and executes printing. The CPU 101 stores and accumulates the physical property values of the sheet detected by the optical sensor 91 and the ultrasonic sensor 92, the determination result of the sheet type, and the like in the storage device 110. The CPU 101 further executes control processing such as output to the operation panel section 50 or an external apparatus.
The ROM 102 stores programs to be executed by the CPU 101 and other information.
The S-RAM 103 serves as a work area for the CPU 101 to execute a program, and temporarily stores the program, data for executing the program, and the like.
The NV-RAM 104 is a nonvolatile memory backed up by a battery. The NV-RAM 104 stores various settings relating to image formation, the number of pixels of a display section 54, data of various screens to be displayed on the display section 54, and the like.
The timepiece IC 105 measures time, functions as an internal timer, and measures a processing time.
The storage device 110 includes a hard disk or the like, and stores programs, various types of data, and the like. In particular, in this embodiment, the storage device 110 accumulates the results of detecting the sheet physical property values by the optical sensor 91 and the ultrasonic sensor 92, the determination result of the sheet type, a detection history, and the like.
The image reading device 120 includes a scanner or the like, reads a document set on a platen glass by scanning the document, and converts the read document into image data.
The operation panel section 50 is used for a user to provide an instruction such as a job to the image forming apparatus 1 and set various settings. The operation panel section 50 includes a reset key 51, a start key 52, a stop key 53, the display section 54, and a touch panel 55.
The reset key 51 is used to reset a setting, the start key 52 is used for a start operation such as scanning, and the stop key 53 is pressed to interrupt the operation.
The display section 54 includes, for example, a liquid crystal display device, and outputs and displays messages, various operation screens, and the like. The touch panel 55 is formed on a screen of the display section 54, and detects a user's touch operation.
The image forming section 10 prints, on a sheet, a copy image generated from image data of a document read by the image reading device 120 or from print data transmitted from an external terminal apparatus 3 or the like. The image forming section 10 includes a print engine 18 and a fixing section 19 that fixes an image by heating and pressing a sheet on which the image is formed. The print engine 18 includes hardware components for image formation, such as a photosensitive drum, a charging device, an exposure device, a developing device, a transfer belt, and a transfer roller.
The network I/F160 functions as communication means that transmits and receives data to and from the external apparatus via a network 4. Examples of the external apparatus include an external server, a cloud system, a printer driver of an information terminal apparatus of a user, and other image forming apparatuses.
The medium detection controller 100a causes the optical sensor 91 and the ultrasonic sensor 92, which are medium detection sensors, to operate in a first detection mode and a second detection mode, which will be described later, to detect physical properties and the like of a sheet. The sheet type detection controller 100b detects the sheet type based on the results of the detection by the optical sensor 91 and the ultrasonic sensor 92.
The image forming controller 100c controls the image forming section 10 under an image forming condition corresponding to each sheet type based on the sheet type detected by the sheet type detection controller 100b, and prints an image on the sheet.
The storage section 100d temporarily stores the results of detecting the physical property values of the sheet by the optical sensor 91 and the ultrasonic sensor 92, the result of detecting the sheet type by the sheet type detection controller 100b, the detection history, and the like. The information stored in the storage section 100d is transferred to the storage device 110 illustrated in
The external communication controller 100e corresponds to the network I/F160 illustrated in
The edge processing section 100f has an analyzing function and a learning function, and analyzes a factor of a change in a sheet type and the like using information accumulated in the storage device 110.
Next, the operation of the image forming apparatus 1 will be described focusing on control by the controller 100.
In this embodiment, in each of the first detection mode and the second detection mode, the controller 100 causes the optical sensor 91 and the ultrasonic sensor 92 to detect a physical property value and a sheet type of a sheet conveyed in the sheet conveyance path 8.
The first detection mode is executed on the first sheet conveyed first. For the first sheet to be conveyed first, the first sheet feed tray 60a or the second sheet feed tray 60b is opened (removed) to perform replacement, supplement, addition, or the like of a sheet. The first sheet is a sheet to be conveyed first after the first sheet feed tray 60a or the second sheet feed tray 60b is closed (inserted). Alternatively, in the case of the manual sheet feed tray, the first sheet to be conveyed first is a sheet to be conveyed first after the result of detection as to whether a sheet is present indicates that a sheet is present after a state in which no sheet is present, that is, after the manual sheet feed tray is closed. Alternatively, the first sheet to be conveyed first is a sheet to be conveyed first from a sheet feed port having no sheet type information after sheet type information is reset by turning off and on the image forming apparatus 1, recovering from sleep, or the like. Alternatively, the first sheet to be conveyed first is a sheet to be conveyed first from a sheet feed port when a medium detection function is switched from OFF to ON. Alternatively, the first sheet to be conveyed first is a sheet to be conveyed first in a print job.
The information relating to the first sheet is undetermined. In the first detection mode, the conveyance is performed at a low speed such that detection results can be reflected in a process condition (image forming condition). Further, in order to perform detailed detection, it is preferable to increase the number of times of reading by the sensors within a sheet surface to improve the accuracy. As a result, the type of the sheet in the sheet feed tray is determined. A fixing temperature and a transfer current are determined under the process condition (image forming condition) corresponding to the determined sheet type. From the next sheet, printing is preferably executed after an appropriate condition for the conveyance speed is selected.
On the other hand, the second detection mode is a mode in which a physical property value and a sheet type of a sheet other than the first sheet are detected after the sheet type of the first sheet is determined in the first detection mode and before the first sheet feed tray 60a, the second sheet feed tray 60b, or the manual sheet feed tray is opened. The detection in the second detection mode may be performed on all sheets except for the first sheet. The detection in the second detection mode may be performed on each plurality of sheets, for example, every other sheet or every fifth sheet, or may be performed at the beginning and end of a job except for the first sheet.
In the second detection mode, the conveyance speed corresponds to the sheet type determined by the detection in the first detection mode. Therefore, depending on the sheet type, the conveyance speed is higher than that in the first detection mode. This shortens a time period from when the sheet reaches the medium detection sensors 91 and 92 to when the sheet reaches the skew correction rollers 72. Accordingly, a detection period in the second detection mode is shorter than a detection period in the first detection mode.
In both
On the other hand, in the second detection mode, the detection is performed on all the sheets except for the first sheet in
In the examples illustrated in
The image forming apparatus 1 is configured to be able to perform the detection described with reference to
In the present embodiment, information relating to a sheet detected by the medium detection sensors 91 and 92 is a physical property value or a sheet type of the sheet. The physical property value may include at least one of transmittance information, reflectance information, stiffness information, thickness information, basis weight information, size information, grain direction information, color information, moisture information, smoothness information, resistance information, friction information, and configuration information of the sheet. The configuration information of the sheet includes information of at least one of a pulp material, a coating agent, a fluorescent agent, or a filler.
Table 1 illustrated in
As for a sheet type, the image forming apparatus 1 can determine that a physical property value of a detection target is different by providing a threshold value for the physical property value, for example, transmittance, and can thus detect types of sheets ranging from a thin sheet to a thick sheet. Further, the sheets include a sheet made of at least one of a pulp material, a resin material, a textile material, an envelope made of at least one of a pulp material, a resin material, a textile material, and/or an overhead projector (OHP) sheet.
The controller 100 of the image forming apparatus 1 has a function of controlling execution of each of the first detection mode and the second detection mode, and outputting a detection result. Examples of an output destination of the detection result include the display section 54 of the operation panel section 50 of the image forming apparatus 1, a status display device including an LED and the like, a printer driver of a user's information terminal connected to a network, and a server or cloud system connected to a network.
A display window as illustrated in
Also, in a case where the detection result is output to the printer driver of the user's information terminal, the server or cloud connected to the network, and the like, a similar display window is displayed on display sections of the information terminal, the server or cloud, and the like. The display of the display window may be performed when a user operates an output button displayed on the display section 54 of the operation panel section 50. The display of the display window may be periodically performed at predetermined timings. The outputting of the information to the printer driver of the user's information terminal, the server, and the cloud may be performed by a spontaneous output operation from the image forming apparatus 1, or may be performed in a format in which output requests from the printer driver, the server, and the cloud are received and downloaded. The server and the cloud may collect information from the image forming apparatus 1 or another image forming apparatus as an information collecting service.
As illustrated in
That is, the items are displayed, which are “sheet size”, “direction”, “user designation”, “automatically detected and determined type”, “last sheet type in a job”, “the number of continuous sheets of the same sheet”, “history”, “the number of times of adding a sheet among past 10,000 sheets”, and “real-time display during printing”.
In
“Sheet size” and “direction” respectively indicate a sheet size and a sheet setting direction. “User designation” indicates which one of the user designation mode and the automatic detection mode has been selected. When the user designation mode is selected, a sheet type designated by a user is displayed.
In “automatically detected and determined type”, information of a sheet type determined after closing of a cassette or for the first sheet by the detection in the first detection mode is displayed. In a case where the user designation mode is selected, since the automatic detection by the medium detection sensors 91 and 92 is not performed and the sheet type is not determined, “undetermined” is displayed in the “automatically detected and determined type” item.
In “last sheet type in job”, type information of the last sheet in the job at the current time point when continuous printing is performed is displayed. The number of continuous sheets of the same sheet is displayed in “number of continuous sheets of the same sheet”. Confirmation buttons are displayed in “history”. When a confirmation button is pressed, a history of a tray corresponding to the pressed confirmation button is displayed. This feature will be described later.
The number of times that it has been determined that a sheet has been added among past 10,000 sheets is displayed in “the number of times of adding a sheet among past 10,000 sheets”.
In “real-time display during printing”, the detected latest sheet type and a sheet type detected immediately before are displayed for the tray during printing. In the example illustrated in
The tray history display window indicates details of histories of results of detection by the medium detection sensors 91 and 92 for sheets held on the tray 4. The user can view changes in the sheet type for a predetermined number of sheets on the tray 4 in the past. More specifically, the tray history display window indicates that the sheet type changes in the order of plain paper, thick sheet 1, plain paper, thick sheet 1, and plain paper, and indicates the number of printed sheets for each sheet type. The causes of the changes in the sheet type are analyzed by the edge processing section 100f of the image forming apparatus 1, and results of the analysis are displayed.
For example, when the tray 4 is opened and closed, it is determined that the user has replaced a sheet, and the change after the opening and closing of the tray is displayed. When the image forming apparatus 1 is turned off and on and the user replaces a sheet during the turning off, the change after the turning on is displayed. When the sheet type is changed even though no tray is opened and closed or the image forming apparatus 1 is not turned off and on, it is determined that different types of sheets are mixed, and the change due to the addition of a sheet is displayed. When the number of changes due to the addition of sheets is large, a message describing a disadvantage of adding sheets a large number of times is output as illustrated in
The display is not limited to the pop-up display, and may be a display (state notification display) for notifying the user that the sheet type has been changed by blinking of an indicator such as an LED. Further, even when a print job of the user is not being executed, display for notifying, for example, a user waiting to print in order that a sheet type has been changed during a print job of another user may be performed.
As described above, by providing notification that a sheet type has been switched during the execution of a print job, the user can grasp the latest sheet type information and history information in the trays, and can appropriately select a tray to be used. Further, in a case where the user does not want to use the results of the automatic detection by the medium detection sensors 91 and 92, the user can customize the setting appropriately and safely. For example, in a case where the latest sheet type is thick sheet 1, a sheet is normally conveyed at a conveyance speed corresponding to thick sheet 1, but a user who wants to output quickly may change the setting to plain paper and perform printing. In this case, as in the conventional case, if the sheet type is not the latest and information of a wrong sheet type before switching is output although the sheet type has been switched, the setting may be useless or the setting for plain paper may be inappropriate. For example, when thick sheet 1 is displayed although the latest sheet type held in the tray is plain paper, a change in the setting to the setting for plain paper by the user is useless. On the other hand, in a case where information of a sheet type which is wrong as thick sheet 1 is output although the latest sheet type in the tray is thick sheet 4, when the setting for plain paper is set, the setting may cause a jam or a failure. Also from such a point of view, since the user can recognize the latest sheet type information and history information, it is possible to properly and safely perform customization.
In step S01, the feeding of the first sheet is started. In step S02, it is determined whether it is time to execute the first detection mode. When it is time to execute the first detection mode (YES in step S02), the medium detection is executed in the first detection mode in step S03, and then the process proceeds to step S06. When it is not time to execute the first detection mode (NO in step S02), it is determined in step S04 whether it is time to execute the second detection mode. When it is time to execute the second detection mode (YES in step S04), the medium detection is executed in the second detection mode in step S05, and then the process proceeds to step S06. When it is not time to execute the second detection mode (NO in step S04), the process proceeds to step S09.
In step S06, a detection result in the first detection mode or the second detection mode is stored and updated in the storage device 110.
Next, in step S07, it is checked whether a sheet type has been changed. When the sheet type has been changed (YES in step S07), a notification as illustrated in
In step S09, it is determined whether printing has been completed. When the printing has not been completed (NO in step S09), the process returns to step S01 in order to print the next page. When the printing has been completed (YES in step S09), the process is ended.
In step S11, it is determined whether an output request has been provided. In the case of output (display) to the operation panel section 50, the output request is provided by operating a predetermined operation button displayed on the display section 54 of the operation panel section 50. Alternatively, a request from the external apparatus such as the server or the cloud may be received.
When no output request is not provided (NO in step S11), the process waits for an output request. When the output request is provided (YES in step S11), information of a detection result accumulated in the storage device 110 is acquired in step S12. Thereafter, in step S13, a tray information display window as illustrated in
Next, in step S14, it is determined whether a confirmation button displayed in the “history” item in the tray information display window illustrated in
When the number of changes in the sheet type due to the addition of a sheet is large (YES in step S16), a warning is output (displayed) in step S17, and then the process is ended. When the number of changes in the sheet type due to the addition of a sheet is not large (NO in step S16), the process is ended without the warning being output (displayed).
Although one or more embodiments of the present invention have been described and illustrated in detail, the disclosed embodiments are made for purposes of illustration and example only and not limitation. The scope of the present invention should be interpreted by terms of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2023-010210 | Jan 2023 | JP | national |