This application is based on and claims the benefit of Japanese Patent Application No. 2020-119975 filed on Jul. 13, 2020, the contents of which are hereby incorporated by reference.
The present disclosure relates to image forming apparatuses.
It is known that in image forming apparatuses relying on electrophotography, such as copiers and printers, the outer circumferential surface of an image carrying member such as a photosensitive drum is prone to be deposited with electric discharge products produced through electric discharge by a charging device. Such electric discharge products, when they absorb moisture, reduce the electrical resistance of the outer circumferential surface of the photosensitive drum and disturb an electrostatic latent image, a trouble called image deletion.
As a remedy, according to a known method, a tiny amount of an additive (abrasive) is mixed in toner, and the toner settled on the outer circumferential surface of a photosensitive drum is removed by use of a polishing roller combined with a cleaning blade. Here, the toner (abrasive) is attached to the outer circumferential surface of the photosensitive drum so that, with the toner, the electric discharge products deposited on the outer circumferential surface of the photosensitive drum are polished off, thereby achieving cleaning.
For example, a known image forming apparatus includes a cleaning roller (polishing roller), a cleaning blade, and a plate roll (toner keeping member). The cleaning roller rotates, while in contact with a photosensitive drum, about a rotation axis parallel to the rotation axis of the photosensitive drum, and removes deposits on the outer circumferential surface of the photosensitive drum by using toner as abrasive. The cleaning blade is disposed downstream, in the drum rotation direction, of a contact part between the photosensitive drum and the cleaning roller, and makes contact with the outer circumferential surface of the photosensitive drum to scrape toner off. The plate roll is disposed near the cleaning roller, and forms a storage space for the toner scraped off the outer circumferential surface of the photosensitive drum by the cleaning blade. The plate roll makes it easier for the toner in the storage space to attach to the outer circumferential surface of the cleaning roller. This achieves effective cleaning operation on the outer circumferential surface of the photosensitive drum.
According to one aspect of the present disclosure, an image forming apparatus includes an image carrying member, a charging device, an exposing device, a developing device, and a cleaning device. The image carrying member has a photosensitive layer on its outer circumferential surface. The charging device electrostatically charges the outer circumferential surface of the image carrying member. The exposing device exposes to light the outer circumferential surface of the image carrying member electrostatically charged by the charging device to form an electrostatic latent image on the outer circumferential surface of the image carrying member. The developing device includes a developing roller, which extends parallel to an axial direction of the image carrying member and is disposed close to the image carrying member and which attaches toner to the electrostatic latent image to form a toner image. The cleaning device includes a cleaning blade, which extends along the axial direction of the image carrying member and which makes contact with the outer circumferential surface of the image carrying member to remove toner on the outer circumferential surface of the image carrying member, and a polishing roller, which extends parallel to the axial direction of the image carrying member and which rotates while in contact with the outer circumferential surface of the image carrying member to polish the outer circumferential surface of the image carrying member. The developing roller has a guaranteed development region that extends over a predetermined length from the middle toward opposite end sides along an axial direction, Opposite end parts of the polishing roller along the axial direction are located outward of opposite end parts of the developing roller. The cleaning device has a toner keeping member, which has toner keeping portions that are disposed at opposite end sides of the polishing roller along the axial direction with a gap left from an outer circumferential surface of the polishing roller and that keep between themselves and the polishing roller the toner removed off the outer circumferential surface of the image carrying member. The toner keeping portions extend along the axial direction of the polishing roller, and of each of the toner keeping portions, one end part along the axial direction is located outward of an end part of the guaranteed development region but inward of an end part of the developing roller and another end part is located outward of the end part of the polishing roller.
An embodiment of the present disclosure will be described below with reference to the accompanying drawings. The following description is in no way meant to limit the scope of the present disclosure.
As shown in
The sheet feeding portion 3 stores a plurality of sheets S and, during printing, feeds out the sheets S one by one separately. The sheet conveying portion 4 conveys a sheet S fed out from the sheet feeding portion 3 to a secondary transfer portion 33 and then to the fixing device 6. The sheet conveying portion 4 also discharges a sheet S having undergone fixing through a sheet discharge port 4a to the sheet discharge portion 7. When duplex printing is performed, the sheet conveying portion 4 directs, with a branch portion 4b, a sheet S having undergone fixing on its first side to a reversal conveying portion 4c, thereby to convey the sheet S once again to the secondary transfer portion 33 and then to the fixing device 6. The exposing device 5 irradiates the image forming portion 20 with laser light controlled based on image data.
The image forming portion 20 is disposed under the intermediate transfer belt 31. The image forming portion 20 includes an image forming portion 20Y for yellow, an image forming portion 20C for cyan, an image forming portion 20M for magenta, and an image forming portion 20B for black. These four image forming portions 20Y, 20C, 20M, and 20B have basically the same construction. Accordingly, in the following description, unless distinction is necessary the suffixes “Y”, “C”, “M”, and “B” distinguishing different colors will be omitted.
The image forming portion 20 includes a photosensitive drum (image carrying member) 21 supported so as to be rotatable in a predetermined direction (clockwise in
The photosensitive drum 21 has a photosensitive layer on its outer circumferential surface. The charging device 40 electrostatically charges the outer circumferential surface of the photosensitive drum 21 up to a predetermined potential. The exposing device 5 exposes to light the outer circumferential surface of the photosensitive drum 21 electrostatically charged by the charging device 40, and thereby forms an electrostatic latent image of a document image on the outer circumferential surface of the photosensitive drum 21. The developing device 50 develops the electrostatic latent image by attaching toner to it, and thereby forms a toner image. The four image forming portions 20Y, 20C, 20M, and 20B form toner images of different colors respectively.
The transfer portion 30 includes the intermediate transfer belt 31, primary transfer portions 32Y, 32C, 32M, and 32B, the secondary transfer portion 33, and a belt cleaning portion 34. The intermediate transfer belt 31 is disposed over the four image forming portions 20Y 20C, 20M, and 20B. The intermediate transfer belt 31 is an intermediate transfer member that is supported so as to be rotatable in a predetermined direction (counter-clockwise in
The primary transfer portions 32Y, 32C, 32M, and 32B are disposed over the image forming portions 20Y, 20C, 20M, and 20B for the different colors, across the intermediate transfer belt 31. The secondary transfer portion 33 is disposed, in relation to the sheet conveying portion 4, upstream of the fixing device 6 in the sheet conveyance direction and, in relation to the transfer portion 30, downstream of the image forming portions 20Y, 20C, 20M, and 20B for the different colors in the rotation direction of the intermediate transfer belt 31. The belt cleaning portion 34 is disposed upstream of the image forming portions 20Y, 20C, 20M, and 20B for the different colors in the rotation direction of the intermediate transfer belt 31.
Toner images are primarily transferred to the outer circumferential surface of the intermediate transfer belt 31 in the primary transfer portions 32Y, 32C, 32M, and 32B for the different colors. As the intermediate transfer belt 31 rotates, the toner images formed in the four image forming portions 20Y, 20C, 20M, and 20B are transferred sequentially to the intermediate transfer belt 31 with predetermined timing so as to be overlaid on each other. Thus on the outer circumferential surface of the intermediate transfer belt 31 is formed a color toner image having toner images of four colors, namely yellow, cyan, magenta, and black, overlaid on each other. The drum cleaning device 60 cleans the outer circumferential surface of the photosensitive drum 21 by removing the residual toner and the like left behind there after primary transfer.
The color toner image on the outer circumferential surface of the intermediate transfer belt 31 is, in a secondary transfer nip portion formed in the secondary transfer portion 33, transferred to a sheet S conveyed there in a coordinated manner by the sheet conveying portion 4. The belt cleaning portion 34 cleans the outer circumferential surface of the intermediate transfer belt 31 by removing the residual toner and the like left behind there after secondary transfer.
The fixing device 6 heats and presses the sheet S having the toner image transferred to it, and thereby fixes the toner image to the sheet S.
The control portion 8 includes a CPU, an image processing portion, a storage portion, and other electronic circuits and electronic components (of which none are illustrated). The CPU controls the operation of the individual components provided in the image forming apparatus 1 based on control programs and data stored in the storage portion, and thereby performs processes related to the functions of the image forming apparatus 1. The sheet feeding portion 3, the sheet conveying portion 4, the exposing device 5, the image forming portion 20, the transfer portion 30, and the fixing device 6 each individually receive instructions from the control portion 8, and operate in a coordinated manner to perform printing on a sheet S. The storage portion can be configured as, for example, a combination of a nonvolatile memory device, such as a program ROM (read-only memory) and a data rom, and a volatile memory device, such as a RAM (random-access memory).
Next the configuration of the image forming portion 20 will be described with reference to
As mentioned previously, the image forming portion 20 includes the photosensitive drum 21, the charging device 40, the developing device 50, and the drum cleaning device 60, all shown
The photosensitive drum 21 has the shape of a cylinder that is rotatably supported with its center axis horizontal, and is rotated about the center axis at a constant speed by a driving portion (not illustrated). The photosensitive drum 21 is a plain drum formed of metal such as aluminum of which the outer circumferential surface is coated with a photosensitive layer formed of an inorganic photosensitive substance such as amorphous silicon. On the outer circumferential surface of the photosensitive drum 21, an electrostatic latent image is formed.
The charging device 40 includes, for example, a charging roller 41 and a charging cleaning roller 42.
The charging roller 41 extends parallel to the axial direction of the photosensitive drum 21, and is rotatably supported with its center axis horizontal. The charging roller 41 stays in contact with the outer circumferential surface of the photosensitive drum 21, and thus rotates as the photosensitive drum 21 rotates. The charging roller 41 has, for example, an electrically conductive layer formed of crosslinked rubber blended with an ion-conductive material on the outer circumferential surface of a metal base. When a predetermined charging voltage is applied to the charging roller 41, which stays in contact with the outer circumferential surface of the photosensitive drum 21 and rotates by following it, the outer circumferential surface of the photosensitive drum 21 is electrostatically charged uniformly. The charging cleaning roller 42 stays in contact with the outer circumferential surface of the charging roller 41, and cleans the outer circumferential surface of the charging roller 41.
The developing device 50 includes a developer container 51, a first stirring-conveying member 52, a second stirring-conveying member 53, a developing roller 54, and a restricting member 55.
The developer container 51 has an elongate shape extending along the axial direction of the photosensitive drum 21 (the direction toward the far side of the plane of
The partition 511 is provided in a lower part inside the developer container 51. The partition 511 is provided in a substantially middle part, in a direction (in
The first and second conveying chambers 512 and 513 are provided inside the developer container 51. The first and second conveying chambers 512 and 513 are formed by the interior of the developer container 51 being divided by the partition 511, and are located side by side. The second conveying chamber 513 is disposed inside the developer container 51, under the region where the developing roller 54 is disposed, adjacent to it. The first conveying chamber 512 is disposed inside the developer container 51, in a region farther from the developing roller 54 than is the second conveying chamber 513. The first conveying chamber 512 is supplied with developer through a developer supply pipe (not illustrated).
The first stirring-conveying member 52 is disposed inside the first conveying chamber 512. The second stirring-conveying member 53 is disposed inside the second conveying chamber 513. The second stirring-conveying member 53 is disposed close to, and extends parallel to, the developing roller 54. The first and second stirring-conveying members 52 and 53 are supported on the developer container 51 so as to be rotatable about axes extending parallel to the photosensitive drum 21. The first and second stirring-conveying members 52 and 53 rotate about their respective axes, and convey, while stirring, developer in opposite directions along the axis of their rotation.
As the first and second stirring-conveying members 52 and 53 rotate, developer circulates between the first and second conveying chambers 512 and 513 by passing through the developer communication portions provided in opposite end parts of the partition 511 along the axial direction. In the first and second conveying chambers 512 and 513, the toner (positively charged toner) supplied from outside is mixed with magnetic carrier and is stirred to be electrostatically charged.
The developing roller 54 is disposed inside the developer container 51, over the second stirring-conveying member 53. The developing roller 54 is supported on the developer container 51 so as to be rotatable about an axis extending parallel to the axis of the photosensitive drum 21. The developing roller 54 includes, for example, a cylindrical developing sleeve that rotates counter-clockwise in
Part of the outer circumferential surface of the developing roller 54 is exposed out of the developer container 51 to face the photosensitive drum 21 close to it. The developing roller 54 carries on its outer circumferential surface the toner to be supplied to the outer circumferential surface of the photosensitive drum 21 in a region where the developing roller 54 faces the photosensitive drum 21. The developing roller 54 attaches the toner in the second conveying chamber 513 to an electrostatic latent image on the outer circumferential surface of the photosensitive drum 21, and thereby forms a toner image.
The restricting member 55 is disposed upstream, in the rotation direction of the developing roller 54, of the region where the developing roller 54 faces the photosensitive drum 21. The restricting member 55 is disposed so as to face the developing roller 54 close to it with a predetermined gap left between the tip end of the restricting member 55 and the outer circumferential surface of the developing roller 54. The restricting member 55 extends over the entire region of the developing roller 54 in its axial direction (in
The toner in the developer container 51 is stirred, circulated, and electrostatically charged by the first and second stirring-conveying members 52 and 53, and is passed to the outer circumferential surface of the developing roller 54 by the second stirring-conveying member 53. On the outer circumferential surface of the developing roller 54, a magnetic brush (not illustrated) is formed by toner and magnetic carrier. The magnetic brush has its layer thickness restricted by the restricting member 55, and is then, as the developing roller 54 rotates, conveyed to the region where the developing roller 54 faces the photosensitive drum 21. When a predetermined developing voltage is applied to the developing roller 54, a potential difference there from the potential on the outer circumferential surface of the photosensitive drum 21 causes the toner carried on the outer circumferential surface of the developing roller 54 to fly to the outer circumferential surface of the photosensitive drum 21, and thereby the electrostatic latent image on the outer circumferential surface of the photosensitive drum 21 is developed.
As shown in
The collection container 61 has an elongate shape extending along the axial direction (the direction toward the far side of the plane of
The polishing roller 62 is supported on the collection container 61 so as to be rotatable about an axis extending parallel to the axis of the photosensitive drum 21. Part of the outer circumferential surface of the polishing roller 62 is exposed out of the collection container 61 to face the photosensitive drum 21, and stays in contact with the outer circumferential surface of the photosensitive drum 21 under a predetermined pressure. The polishing roller 62, while in contact with the outer circumferential surface of the photosensitive drum 21, rotates in such a direction that the region where the polishing roller 62 makes contact with the photosensitive drum 21 moves in the same direction as the photosensitive drum 21. The polishing roller 62 may be rotated at a speed different from the speed at which the photosensitive drum 21 is rotated. The roller member of the polishing roller 62 is formed of a layer of a foam material such as EPDM (ethylene-propylene-diene rubber). The polishing roller 62 polishes the outer circumferential surface of the photosensitive drum 21.
The toner that is supplied from the developing device 50 to the outer circumferential surface of the photosensitive drum 21 is blended with abrasive as an additive. The toner is used not only to form a toner image by being attached to the electrostatic latent image on the outer circumferential surface of the photosensitive drum 21 but also, in the form of the residual toner that is not transferred to the intermediate transfer belt 31 during primary transfer, to polish the outer circumferential surface of the photosensitive drum 21.
The cleaning blade 63 is disposed downstream of the polishing roller 62 in the drum rotation direction. The cleaning blade 63 has the shape of a plate extending along the axis of the photosensitive drum 21, and is formed of, for example, an elastic material such as polyurethane rubber. So that the cleaning blade 63 forms a predetermined angle to the direction tangential to the photosensitive drum 21 at the point of their contact, the cleaning blade 63 is disposed downstream of the point of contact in the drum rotation direction. The cleaning blade 63 is in contact with the outer circumferential surface of the photosensitive drum 21 under a predetermined pressure. The cleaning blade 63 removes the residue such as toner that is left behind on the outer circumferential surface of the photosensitive drum 21 after primary transfer.
The collecting spiral 64 is disposed under the polishing roller 62, in a region away from the photosensitive drum 21 across the cleaning blade 63. The collecting spiral 64 is supported on the collection container 61 so as to be rotatable about an axis extending parallel to the axis of the photosensitive drum 21. The collecting spiral 64 conveys the residue such as toner that has been removed off the outer circumferential surface of the photosensitive drum 21 to a collected material disposal container (not illustrated) provided outside the drum cleaning device 60.
The toner keeping member 65 is disposed under the polishing roller 62, between the cleaning blade 63 and the collecting spiral 64. The toner keeping member 65 is a plate-form member extending along the axial direction of the polishing roller 62, and is formed by bending a metal plate.
The support portion 651 is disposed in a region away from the photosensitive drum 21 across the cleaning blade 63, and extends in the up-down direction. The support portion 651 has a fixed portion 651a and connecting portions 651b. The fixed portion 651a is disposed in a lower part of the support portion 651, and extends from one end side to the other end side of the polishing roller 62 in its axial direction. The fixed portion 651a is fixed to the collection container 61. The connecting portions 651b are provided at the opposite end sides of the polishing roller 62 along its axial direction. The two connecting portions 651b extend upward from an upper end part of the fixed portion 651a.
The two toner keeping portions 652 extend substantially horizontally from respective upper edge parts of the two connecting portions 651b of the support portion 651 in a direction away from the photosensitive drum 21. That is, the two toner keeping portions 652 are disposed at the opposite end sides of the polishing roller 62 along its axial direction. The toner keeping portions 652 are disposed under the polishing roller 62, with a gap left from the outer circumferential surface of the polishing roller 62. The toner keeping portions 652 extend in the axial direction of the polishing roller 62 and in the direction orthogonal to that axial direction, and are formed each in a rectangular shape as seen from the up-down direction. The toner keeping portions 652 stores between themselves and the polishing roller 62 the toner removed off the outer circumferential surface of the photosensitive drum 21.
As shown in
As shown in
As shown in
In the construction described above, toner can be attached to both of the following regions on the polishing roller 62: a region 62w corresponding to the guaranteed development region 54w and a region 62n corresponding to outside the guaranteed development region 54w along the axial direction Dx. The toner keeping portions 652 are not disposed near the region 62w on the polishing roller 62 corresponding to the guaranteed development region 54w, toner is prevented from piling up at where the photosensitive drum 21 and the cleaning blade 63 make contact with each other. It is thus possible to electrostatically charge the entire outer circumferential surface of the photosensitive drum 21 adequately, and to attach toner over the entire outer circumferential surface of the polishing roller 62.
With the construction described above, it is possible to secure, with respect to the direction Dc orthogonal to the axial direction of the polishing roller 62, a satisfactorily large space for storage of toner. It is thus possible to attach toner adequately in the region 62n (see
The toner keeping member 65 has the two toner keeping portions 652 and the support portion 651 formed integrally (see
The toner keeping member 65 is formed of metal. More specifically, the toner keeping member 65 is formed of a material with high thermal conductivity, such as aluminum. With this structure, the toner keeping member 65 contributes to enhanced heat dissipation. It is thus possible to suppress a rise in the temperature in the image forming portion 20.
As shown in
The unit sensing portion 11 includes, for example, an optical sensor or the like, and is disposed in the main body 2 such that its optical path is intercepted by the drum unit 22. The unit sensing portion 11 senses the mounting and removal of the drum unit 22 with respect to the main body 2. The control portion 8 can, by receiving the output signal of the unit sensing portion 11, recognize the replacement of the drum unit 22 as sensed by the unit sensing portion 11.
The temperature/humidity sensing portion 12 includes, for example, a temperature/humidity sensor of an electrical resistance type, a capacitance type, or the like, and is disposed near the casing of the main body 2. The temperature/humidity sensing portion 12 senses the temperature and humidity in the environment in which the image forming apparatus 1 is installed. The control portion 8 can, by receiving the output signal of the temperature/humidity sensing portion 12, recognize the temperature and humidity in the environment in which the image forming apparatus 1 is installed.
After the manufacture of the image forming apparatus 1, when it is shipped from the factory, settings are made on the image forming apparatus 1 so that it can recognize the timing of its being turned on for the first time after delivery to a user. Thus, after the image forming apparatus 1 is delivered to a user, it can recognize the timing of its being turned on for the first time.
The control portion 8 can execute a toner ejection mode in which toner is supplied from the developing device 50 to the outer circumferential surface of the photosensitive drum 21, is then removed by the cleaning blade 63, and is then stored in the toner keeping portion 652.
When the image forming apparatus 1 starts up, the control portion 8 checks whether or not this is the first time that it is turned on after its delivery to the user (step #101). After the manufacture of the image forming apparatus 1, when it is shipped from the factory, settings are made on the image forming apparatus 1 so that it can recognize the timing of its being turned on for the first time after delivery to a user.
If it is not the first time that the image forming apparatus 1 is turned on after its delivery to the user (step #101, “No”), the control portion 8 checks whether or not the drum unit 22 has been replaced (step #102). The control portion 8 can, by receiving the output signal from the unit sensing portion 11, sense replacement of the drum unit 22.
If the drum unit 22 has not been replaced (step #102, “No”), the control portion 8 checks whether or not the number of sheets S printed (having undergone image formation) has reached a predetermined number that is defined beforehand (step #103). More precisely, it checks whether or not after the toner ejection mode was executed the last time the number of sheets S printed has reached a predetermined number (e.g., 100 sheets). The predetermined number for the number of sheets S printed is stored in, for example, the storage portion or the like beforehand.
If it is the first time that the image forming apparatus 1 is turned on after its delivery to the user (step #101, “Yes”), and also if the drum unit 22 has been replaced (step #102, “Yes”), the control portion 8 check whether or not the temperature and humidity sensed by the temperature/humidity sensing portion 12 correspond to a predetermined high-temperature high-humidity condition (step #104).
If after the toner ejection mode was executed the last time the number of sheets S printed (having undergone image formation) has reached the predetermined number (step #103, “Yes”), and also if the environment in which the image forming apparatus 1 is installed is a high-temperature high-humidity condition (step #104, “Yes”), the control portion 8 executes the toner ejection mode so that the developing device 50 ejects toner to both outside and inside the guaranteed development region 54w (see
If the environment in which the image forming apparatus 1 is installed is not a high-temperature high-humidity condition (step #104, “No”), the control portion 8 executes the toner ejection mode so that the developing device 50 ejects toner to only outside the guaranteed development region 54w (see
As described above, the control portion 8 can perform the toner ejection mode when the image forming apparatus 1 is turned on for the first time after its delivery to a user and when the drum unit 22 is replaced. With this configuration, it is possible, when a new drum cleaning device 60 starts to be used, to store toner on the toner keeping portion 652. Thus, as soon as the new drum cleaning device 60 starts to be used, it is possible to electrostatically charge the entire outer circumferential surface of the photosensitive drum 21 adequately, and to attach toner over the entire area of the outer circumferential surface of the polishing roller 62.
In the toner ejection mode, based on the temperature and humidity in the installation environment of the image forming apparatus 1 as sensed by the temperature/humidity sensing portion 12, the control portion 8 makes the developing device 50 eject toner to at least outside the guaranteed development region 54w on the developing roller 54. With this configuration, based on the temperature and humidity in the installation environment of the image forming apparatus 1, in the toner ejection mode, toner can be ejected to also inside the guaranteed development region 54w on the developing roller 54.
In the toner ejection mode, when the temperature and humidity in the installation environment of the image forming apparatus 1 as sensed by the temperature/humidity sensing portion 12 correspond to a predetermined high-temperature high-humidity condition, the control portion 8 makes the developing device 50 eject toner to both outside and inside the guaranteed development region 54w on the developing roller 54. In the toner ejection mode, when the temperature and humidity in the installation environment of the image forming apparatus 1 as sensed by the temperature/humidity sensing portion 12 does not correspond to a high-temperature high-humidity condition, the control portion 8 makes the developing device 50 eject toner to only outside the guaranteed development region 54w on the developing roller 54.
With the configuration described above, in particular under a high-temperature high-humidity condition, which is prone to cause image deletion, it is possible to attach toner over the entire area of the outer circumferential surface of the polishing roller 62. That is, it is possible to suppress image deletion. Unless under a high-temperature high-humidity condition, image deletion is unlikely, and toner only needs to be attached in the region 62n (see
The amount of toner ejected to outside the guaranteed development region 54w on the developing roller 54 is larger than the amount of toner ejected to inside the guaranteed development region 54w. That is, the amount of toner ejected to inside the guaranteed development region 54w is smaller than amount of toner ejected to outside the guaranteed development region 54w. With this configuration, it is possible to reduce the amount of toner consumed in the toner ejection mode.
Every time a predetermined number of sheets S are printed (undergo image formation), the control portion 8 executes the toner ejection mode. With this configuration, it is possible to execute the toner ejection mode on a regular basis during the normal operation of the image forming apparatus 1.
While an embodiment of the present disclosure has been described it is in no way meant to limit the scope of the present disclosure, which can thus be implemented with any modifications made without departure from the spirit of the present disclosure.
For example, while the embodiment described above deals with an example where the image forming apparatus 1 is what is called a tandem-type color-printing image forming apparatus that forms images of a plurality of colors sequentially while overlaying one on another, this is not meant as any limitation to models of a particular type; the image forming apparatus may instead be a color-printing image forming apparatus of other than a tandem type, or a monochrome-printing image forming apparatus.
Number | Date | Country | Kind |
---|---|---|---|
JP2020-119975 | Jul 2020 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
8254820 | Hanano | Aug 2012 | B2 |
8320785 | Ishida | Nov 2012 | B2 |
9261820 | Wakayama | Feb 2016 | B2 |
9541888 | Hanano | Jan 2017 | B2 |
Number | Date | Country |
---|---|---|
2011-13349 | Jan 2011 | JP |
Number | Date | Country | |
---|---|---|---|
20220011702 A1 | Jan 2022 | US |