The present invention relates to an image forming apparatus that forms images on sheets.
In general, an electrophotographic image-forming apparatus forms an image by transferring a toner image formed on the surface of a photosensitive drum, onto a sheet. For supplying developer, a process-cartridge replacement system or a toner supply system is used. In the process-cartridge replacement system, a process cartridge is replaced with a new cartridge when the developer runs out. In the toner supply system, toner is additionally supplied to a developer container when the toner of the developer container runs out. For example, Japanese Patent Application Publication No. 2021-056323 proposes a process cartridge used for the toner supply system.
The process cartridge described in Japanese Patent Application Publication No. 2021-056323 is exposed to the outside by opening a discharging tray disposed in an upper portion of an image forming apparatus, and a toner pack for supplying toner can be attached to a supplying inlet formed in the process cartridge. In addition, in a state where the discharging tray is opened, the process cartridge can be removed from the apparatus body in an upward direction.
However, in the image forming apparatus described in Japanese Patent Application Publication No. 2021-056323, since the process cartridge is attached to and detached from the apparatus body through a small opening portion exposed to the outside when the discharging tray is opened, the maintainability for the process cartridge has been insufficient.
According to one aspect of the present invention, an image forming apparatus includes an apparatus body including an opening portion, and an opening-and-closing member configured to move between a closing position at which the opening-and-closing member closes the opening portion and an opening position at which the opening-and-closing member opens the opening portion, a process unit detachably attached to and supported by the apparatus body and configured to form an image on a sheet, the process unit including an image bearing member configured to bear a toner image and rotate, a toner storage portion configured to store toner, and a supply portion configured to communicate with the toner storage portion and receive toner supplied from an outside of the process unit in a state where the process unit is attached to the apparatus body, a sheet supporting portion configured to support the sheet, and a rotary feeding member configured to feed the sheet on the sheet supporting portion. When viewed in a gravity direction, the supply portion is disposed on a same side as a side on which the sheet supporting portion is disposed with respect to the image bearing member, and the opening portion is disposed on a side opposite to the side on which the sheet supporting portion is disposed with respect to the image bearing member. In a case where the opening-and-closing member is positioned at the opening position, the process unit is configured to be attached to and detached from the apparatus body through the opening portion.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Hereinafter, embodiments of the present invention will be described in detail, based on examples and with reference to the accompanying drawings. Note that the size, material, shape, and relative arrangement of components described in the embodiments may be changed as appropriate in accordance with a configuration of the apparatus for which the present invention is applied, and with various conditions. That is, the scope of the present invention is not limited to the below-described embodiments.
In the following description, a height direction (opposite to the vertical direction) of the image forming apparatus 1 placed on a horizontal plane is defined as a Z direction. In addition, a direction that intersects the Z direction and that is parallel with a rotation-axis direction (i.e., main scanning direction) of a later-described photosensitive drum 11 is defined as an X direction. In addition, a direction that intersects the X direction and the Z direction is defined as a Y direction. Preferably, the X direction, the Y direction, and the Z direction intersect each other at right angles. For convenience of the description, a positive direction of the X direction is referred to as a right side, a negative direction of the X direction is referred to as a left side, a positive direction of the Y direction is referred to as a front side or a front surface side, a negative direction of the Y direction is referred to as a back side or a back surface side, a positive direction of the Z direction is referred to as an upper side, and a negative direction of the Z direction is referred to as a lower side.
Overall Configuration
As illustrated in
The image forming portion 20 includes a scanner unit 50, an electrophotographic process unit 40, and a transfer unit 7. The transfer unit 7 includes a transfer roller 7a, which transfers a toner image borne by the photosensitive drum 11 of the process unit 40, onto the recording material P that is a sheet. The process unit 40 includes the photosensitive drum 11, a cleaning unit 13, a charging roller 17, a developing roller 12, and a developer container 230 (see
The photosensitive drum 11, which serves as an image bearing member, is a cylindrical photosensitive member. The photosensitive drum 11 of the present embodiment includes a drum-like base body, and a photosensitive layer formed on the base body. The base body is made of aluminum, and the photosensitive layer is made of organic photoreceptor that is negatively charged. In addition, the photosensitive drum 11, which is an image bearing member, is driven and rotated by a motor at a predetermined process speed in a predetermined direction (i.e., R direction in
The charging roller 17 is brought into contact with the photosensitive drum 11 by a predetermined pressure contact force, and forms a charging portion. The charging roller 17 is applied with a desired charging voltage by a charging high-voltage power supply, and thereby uniformly charges the surface of the photosensitive drum 11 at a predetermined electric potential. In the present embodiment, the photosensitive drum 11 is negatively charged by the charging roller 17.
The scanner unit 50 generates a laser beam in accordance with image information sent from an external device, and emits the laser beam to the photosensitive drum 11 via a polygon mirror for scanning and exposing the surface of the photosensitive drum 11. With this exposure, an electrostatic latent image is formed on the surface of the photosensitive drum 11 in accordance with the image information. Note that the scanner unit 50 is not limited to the laser scanner apparatus. For example, the scanner unit 50 used may be an LED exposure apparatus including an LED array, in which a plurality of LEDs is arrayed along a longitudinal direction of the photosensitive drum 11.
As illustrated in
As illustrated in
In the process unit 40 of the present embodiment, a contact developing system is used as a developing system. That is, a toner layer borne by the developing roller 12 contacts the photosensitive drum 11 in a developing portion (developing area) in which the photosensitive drum 11 and the developing roller 12 face each other. The developing roller 12 is applied with a developing voltage by a developing high-voltage power supply. Thus, the toner borne by the developing roller 12 is transferred from the developing roller 12 to the surface of the photosensitive drum 11 by the developing voltage in accordance with the electric potential distribution of the surface of the photosensitive drum 11. As a result, the electrostatic latent image is developed into a toner image.
In addition, the toner of the present embodiment is a so-called one-component nonmagnetic developer that contains no magnetic component. Thus, the toner of the present embodiment is borne by the developing roller 12, mainly due to the intermolecular force or the electrostatic force (image force). However, a one-component developer that contains magnetic component may be used. These one-component developers may contain not only toner particles but also additives (e.g., wax and silica fine particles) for adjusting the fluidity and charging capability of the toner. In another case, two-component developer that contains nonmagnetic toner and magnetic carrier may be used as the developer. In a case where the magnetic developer is used, a cylindrical developing sleeve may be used as a developer bearing member, and the developing sleeve may have a magnet disposed inside the developing sleeve.
The fixing portion 9 is a heat fixing system that performs an image fixing process by heating and melting a toner image formed on a recording material and applying pressure to the toner image. The fixing portion 9 includes a heating roller 9a that includes a fixing heater 9c, and a pressing roller 9b that is in pressure contact with the heating roller 9a.
The feeding portion 30 includes a cassette 4, a pickup roller 3, a feed roller 5a, and a separation roller 5b. The cassette 4 serves as a sheet supporting portion on which the recording material P is stacked. The pickup roller 3 serves as a rotary feeding member. Note that the pickup roller 3 may not be a roller, and may be another rotary member, such as a belt. In a portion of the front surface of the image forming apparatus 1, a front cover 70 is disposed. The front cover 70 covers a circuit board 100. The apparatus body 2 of the image forming apparatus 1 includes a housing 72. The housing 72 includes the front cover 70, a discharging tray 14, a back cover 73 (see
As illustrated in
The circuit board 100 is oriented such that the discharging direction intersects a surface of the wiring board 101 on which the electronic components 111 and 121 are mounted. In addition, the wiring board 101 is disposed between the front cover 70 and the scanner unit 50 in the discharging direction. The electronic components 111 and 121 are mounted on the surface of the wiring board 101 that faces the scanner unit 50.
Next, an image forming operation of the image forming apparatus 1 will be described. When an image forming instruction is received by the image forming apparatus 1, the image forming portion 20 starts an image forming process in accordance with image information sent from an external computer connected to the image forming apparatus 1. The scanner unit 50 emits a laser beam toward the photosensitive drum 11 in accordance with the image information received by the image forming apparatus 1. The photosensitive drum 11 is charged in advance by the charging roller 17. Thus, when the laser beam is emitted to the photosensitive drum 11, an electrostatic latent image is formed on the photosensitive drum 11. The electrostatic latent image is then developed by the developing roller 12, and a toner image is formed on the photosensitive drum 11.
In parallel with the above-described image forming process, the pickup roller 3 of the feeding portion 30 feeds the recording material P supported by the cassette 4. The recording material P fed by the pickup roller 3 is separated from others, one by one, by the feed roller 5a and the separation roller 5b, and conveyed to a conveyance roller pair 5c. The recording material P is then conveyed by the conveyance roller pair 5c, which serves as a conveyance portion, toward a transfer nip N1 formed by the transfer roller 7a and the photosensitive drum 11.
The transfer roller 7a is applied with a transfer voltage by a transfer high-voltage power source, and the toner image borne by the photosensitive drum 11 is transferred onto the recording material P conveyed by the conveyance roller pair 5c. The recording material P onto which the toner image has been transferred is then conveyed to the fixing portion 9, and the toner image is heated and pressed when the recording material P passes through a fixing nip N2 formed between the heating roller 9a and the pressing roller 9b of the fixing portion 9. With this operation, toner particles are melted, and then solidify and adhere to the recording material P, so that the toner image is fixed to the recording material P. The recording material P having passed through the fixing portion 9 is discharged to the outside of the image forming apparatus 1 from the outlet 15 by the discharging roller pair 10, and stacked on the discharging tray 14.
If images are to be formed on both sides of the recording material P, the recording material P having an image formed on a first surface thereof is switch-backed by the discharging roller pair 10, and is guided to a duplex conveyance path 16. The recording material P having been guided to the duplex conveyance path 16 is conveyed again toward the transfer roller 7a through a conveyance path 19, by a duplex-conveyance roller pair 5d. After an image is formed on a second surface of the recording material P by the transfer roller 7a, the recording material P is discharged to the outside of the image forming apparatus 1 by the discharging roller pair 10. The toner left on the photosensitive drum 11 after a toner image is transferred to the recording material P is removed by the cleaning unit 13.
Control Block
The high-voltage power supply portion 120 converts the voltage (e.g., 24 V) supplied from the low-voltage power supply portion 110, into high voltages necessary for image forming processes including the charging process, the developing process, and the transfer process. The voltage supplied from the low-voltage power supply portion 110 is converted into a voltage used for the charging process, by a transformer used for the charging process; and is supplied to the charging roller 17. In addition, the voltage supplied from the low-voltage power supply portion 110 is converted into a voltage used for the developing process, by a transformer used for the developing process; and is supplied to the developing roller 12. In addition, the voltage supplied from the low-voltage power supply portion 110 is converted into a voltage used for the transfer process, by a transformer used for the transfer process; and is supplied to the transfer roller 7a.
The low-voltage power supply portion 110 supplies voltages (e.g., 3.3 V or 5 V) not only to the high-voltage power supply portion 120, but also to the scanner unit 50, the driving motor 311, an engine controller 130, and a video controller 140. The engine controller 130 serves as a control portion, and controls the whole of various process members. The engine controller 130 includes a CPU (not illustrated), a RAM (not illustrated), and a ROM (not illustrated). The RAM is used for performing computation on data necessary for controlling the image forming apparatus 1, and for temporarily storing data. The ROM is used for storing a program that controls the image forming apparatus 1, and for storing a variety of types of data. The video controller 140 receives print data by communicating with an external device such as a personal computer, analyzes the print data, and sends the result of analysis to the engine controller 130. Note that the engine controller 130 and the video controller 140 may be mounted on another board other than the circuit board 100, or may be mounted on the circuit board 100.
The alternating-current electric power that the power-supply input portion receives from a commercial power source is supplied not only to the low-voltage power supply portion 110, but also to the fixing heater 9c. Note that the rollers of the fixing portion 9 are driven by the driving motor 311.
Configuration for Positioning Process Unit
Next, a configuration for positioning the process unit 40 will be described with reference to
As illustrated in
Note that although the boss-shaped positioning bosses and the boss-shaped rotation-prevention bosses are disposed on the process unit 40 in the present embodiment, the present disclosure is not limited to this. That is, positioning portions that are not boss-shaped and rotation-prevention portions that are not boss-shaped may be disposed on the process unit 40.
The apparatus body 2 of the image forming apparatus 1 includes the left side-plate frame 74 and the right side-plate frame 75, which are metal-plate members. The left side-plate frame 74 and the right side-plate frame 75 face each other via a clearance in the longitudinal direction LD that serves as a second direction.
As illustrated in
The first left surface 81Lf has a left positioning portion 81L that the left positioning boss 41L can engage with. The left positioning portion 81L is a cutout whose upstream portion in the attachment direction AD is opened. The second left surface 82Lf has a left rotation-prevention portion 82L that the left rotation-prevention boss 42L can engage with. The left rotation-prevention portion 82L is a U-shaped cutout whose upstream portion in the attachment direction AD is opened. Note that since the second left surface 82Lf is formed through the drawing process, a slope that guides the left positioning boss 41L toward the left positioning portion 81L may be formed in the second left surface 82Lf.
In addition, since the first left surface 81Lf and the second left surface 82Lf are separated from each other by the distance X1 in the longitudinal direction LD, the left rotation-prevention portion 82L is also separated from the left positioning portion 81L by the distance X1 in the longitudinal direction LD. In other words, the left rotation-prevention portion 82L is disposed at a position different from the position of the left positioning portion 81L in the longitudinal direction LD.
Similarly, as illustrated in
The first right surface 81Rf has a right positioning portion 81R that the right positioning boss can engage with. The right positioning portion 81R is a cutout whose upstream portion in the attachment direction AD is opened. The second right surface 82Rf has a right rotation-prevention portion 82R that the right rotation-prevention boss can engage with. The right rotation-prevention portion 82R is a U-shaped cutout whose upstream portion in the attachment direction AD is opened. Note that since the second right surface 82Rf is formed through the drawing process, a slope that guides the right positioning boss toward the right positioning portion 81R may be formed in the second right surface 82Rf.
In addition, since the first right surface 81Rf and the second right surface 82Rf are separated from each other by the distance X2 in the longitudinal direction LD, the right rotation-prevention portion 82R is also separated from the right positioning portion 81R by the distance X2 in the longitudinal direction LD. In other words, the right rotation-prevention portion 82R is disposed at a position different from the position of the right positioning portion 81R in the longitudinal direction LD.
The process unit 40 is positioned in the attachment direction AD by the left positioning boss 41L being engaged with the left positioning portion 81L and the right positioning boss being engaged with the right positioning portion 81R. In addition, the process unit 40 is prevented from rotating on the left positioning boss 41L and the right positioning boss by the left rotation-prevention boss 42L being engaged with the left rotation-prevention portion 82L and the right rotation-prevention boss being engaged with the right rotation-prevention portion 82R. That is, the process unit 40 is positioned in the Z direction that serves as a first direction.
In this state, the process unit 40 is fixed to the left side-plate frame 74 and the right side-plate frame 75 by later-described fixing members 79L and 79R (see
In the present embodiment, since the left positioning portion 81L and the left rotation-prevention portion 82L are formed in the left side-plate frame 74 that is a single metal-plate member, the cumulative tolerance is reduced and the positioning accuracy of the process unit 40 is increased. In addition, since the left positioning portion 81L is disposed upstream of the left rotation-prevention portion 82L in the attachment direction AD, the cutout of the left positioning portion 81L formed in the first left surface 81Lf has less area. Since the cutout formed in the left side-plate frame 74 has less area, the rigidity of the left side-plate frame 74 is kept. Since the rigidity of the left side-plate frame 74 is kept, the positioning accuracy of the process unit 40 with respect to the apparatus body 2 is increased. In addition, since there is no need to make the left side-plate frame 74 thick, the weight and cost of the left side-plate frame 74 are reduced. The same holds true for the right side-plate frame 75.
Developer Container
Next, the developer container 230 and its surroundings will be described with reference to
As illustrated in
As illustrated in HG 8, the supply path portion 203 is joined with a portion of the storage portion 18 formed on one end side of the storage portion 18 in the longitudinal direction of the developer container 230, that is, in the X direction. As illustrated in
In addition, the agitating member 60 circulates the toner having not been used for the developing and removed from the developing roller 12, in the storage portion 18; and thereby makes the toner of the storage portion 18 uniform in the storage portion 18. Note that the agitating member 60 that rotates may not be used. Instead, another agitating member that swings may be used, for example. In addition, another agitating member may be disposed in addition to the agitating member 60.
The storage portion 18 also includes a remaining-amount detection portion 312, which is a sensor for detecting the amount of toner contained in the storage portion 18. The remaining-amount detection portion 312 includes a light emitting portion 312a and a light receiving portion 312b. The light emitted from the light emitting portion 312a passes through the interior of the storage portion 18, and is received by the light receiving portion 312b. That is, the light emitting portion 312a and the light receiving portion 312b produce an optical path Q1, which is formed in the storage portion 18. Note that a light emitting element of the light emitting portion 312a and a light receiving element of the light receiving portion 312b may be disposed inside the storage portion 18. In another case, a light emitting element and a light receiving element may be disposed outside the storage portion 18, and the light may be guided into and out of the storage portion 18 via light guiding portions.
The light emitting portion 312a and the light receiving portion 312b are disposed in a center portion of the storage portion 18 in the X direction. Since the light emitting portion 312a and the light receiving portion 312b are disposed in a center portion of the storage portion 18, the amount of remaining toner of the storage portion 18 can be reliably detected. That is, the developer (toner) is unevenly distributed in end portions of the storage portion 18 in the X direction, but less unevenly distributed in a center portion of the storage portion 18. Thus, in practical use, the amount of remaining toner can be detected in the center portion.
Note that in the present embodiment, the light emitting portion 312a uses an LED, and the light receiving portion 312b uses a phototransistor that turns on when receiving the light from the LED. However, the present disclosure is not limited to this. For example, the light emitting portion 312a may use a halogen lamp or a fluorescent lamp, and the light receiving portion 312b may use a photodiode or an avalanche photodiode.
Supply Portion
Next, the supply portion 200 will be described with reference to
The supply portion 200 is disposed on the same side as the side on which the cassette 4 is disposed, with respect to the photosensitive drum 11 in the Y direction. In other words, when viewed in a gravity direction, the supply portion 200 is disposed on one side (front side) on which the cassette 4 is disposed, with respect to the photosensitive drum 11, and a later-described opening portion 91 (see
As illustrated in
As illustrated in
Note that in
In contrast, when the main-body shutter portion 206 is positioned at an opening position illustrated in
In the main-body shutter portion 206, a driving-force-for-main-body-shutter-portion transmission projection 206a is formed. As described in detail later, the driving-force-for-main-body-shutter-portion transmission projection 206a receives driving force from the supply pack 210, and rotates the main-body shutter portion 206. The operation portion 201 is rotated in a state where the supply pack 210 is attached to the supply portion 200, so that the main-body shutter portion 206 is moved between a closing position and an opening position.
In the operation portion 201, a driving-force-of-operation-portion transmission projection 201d is formed; and the driving-force-of-operation-portion transmission projection 201d projects from the inner circumferential surface of the toner receiving portion 202 inward in a radial direction. The driving-force-of-operation-portion transmission projection 201d is engaged with the driving-force-for-main-body-shutter-portion transmission projection 206a via a pair of driving-force transmission surfaces 214b (see
When an image is formed on the recording material P, the toner is agitated by the agitating member 60 (see
Arrangement and Configuration of Supply Portion
Next, an arrangement and a configuration of the supply portion 200 will be described in detail.
As illustrated in
In addition, a virtual plane S is defined as a virtual plane that extends in parallel with a horizontal plane, and that passes through a top edge portion 18b of a frame 18a of the storage portion 18. In
On the other hand, when the supply portion 200 is viewed in the rotation-axis direction of the photosensitive drum 11, a portion of the storage portion 18 overlaps with a drum frame 11a. In HG 12, the portion of the storage portion 18 that overlaps with the drum frame 11a is indicated by a broken line. Since the capacity of the storage portion 18 is increased in this manner, the amount of toner contained in the storage portion 18 can also be increased. The drum frame 11a supports the photosensitive drum 11 such that the photosensitive drum 11 can rotate; and the storage portion 18 supports the developing roller 12, which bears the developer, such that the developing roller 12 can rotate.
As illustrated in
In addition, in the X direction, the supply portion 200 (having a width of X3) and the scanner unit 50 (having a width of X5) are disposed adjacent to each other in an area (having a width of X4) in which the storage portion 18 is disposed. Thus, disposing the supply portion 200 less affects the size of the image forming apparatus 1.
In addition, when viewed in the gravity direction, at least a portion of the process unit 40 overlaps with the scanner unit 50. Furthermore, as illustrated in
In addition, as illustrated in
Supply Pack
Next, a configuration of the supply pack 210 will be described with reference to
The supply pack 210 that serves as a toner container includes a pouch portion 211, an insertion portion 212, and the pack shutter portion 214. The pouch portion 211 is a pouch that contains toner to be supplied. The insertion portion 212 is a cylindrical portion that is inserted into the supplying inlet 204. The pack shutter portion 214 serves as a container shutter. The insertion portion 212 serves as a nozzle portion, and communicates with the pouch portion 211. In the insertion portion 212, an opening portion 213 is formed, and serves as an opening portion through which the toner of the pouch portion 211 is discharged to the outside. Note that although the pouch portion 211 is a pouch made of easily deformable plastic, the present disclosure is not limited to this. For example, the pouch portion 211 may be a resin bottle, or may be a paper or vinyl container.
In the pouch portion 211, a pouch end portion 216 is formed at an end portion opposite to the insertion portion 212. The pouch portion 211 is formed so as to become flatter as the pouch portion 211 extends toward the pouch end portion 216. The pouch end portion 216 extends in a radial direction of the pack shutter portion 214 orthogonal to a rotation-axis direction of the pack shutter portion 214.
The pack shutter portion 214 is a cylindrical member that is concentric with the insertion portion 212, and is disposed outside the insertion portion 212 in the radial direction. The pack shutter portion 214 includes an opening portion 214c. The pack shutter portion 214 is moved between a closing position at which the pack shutter portion 214 blocks the opening portion 213 of the insertion portion 212, and an opening position at which the pack shutter portion 214 opens the opening portion 213, by rotating the pack shutter portion 214 with respect to the insertion portion 212. When the opening portion 214c of the pack shutter portion 214 and the opening portion 213 of the insertion portion 212 overlap with each other, the toner can be supplied from the supply pack 210 to the supply portion 200.
In addition, a seal member 231 is fixed to the inner circumferential surface of the pack shutter portion 214. The seal member 231 slides on the outer circumferential surface of the insertion portion 212, and blocks the opening portion 213 of the insertion portion 212 when the pack shutter portion 214 is positioned at the closing position.
As illustrated in
In addition, as illustrated in
When the pack shutter portion 214 is positioned at a closing position, the opening portion 214c of the pack shutter portion 214 and the guided portion 232, which is concave with respect to the outer circumferential surface of the insertion portion 212, overlap with each other in a phase of rotation performed in the circumferential direction. In this state, the guide portions 247 and 248 are inserted into the guided portion 232 of the supply pack 210, and the opening portion 214c fits to the periphery of the seal member 243 disposed on the inner circumferential surface of the main-body shutter portion 206. In a state where the supply pack 210 is attached to the supply portion 200, the first guided portions 232a of the guided portion 232 formed upstream in the insertion direction are engaged with the guide portion 247, and the second guided portions 232b formed downstream in the insertion direction face the guide portion 248. Step portions between the first guided portions 232a and the second guided portions 232b form a surface that extends in the circumferential direction, and step portions between the guide portion 247 and the guide portion 248 form a surface that extends in the circumferential direction. Thus, the surface that serves as the step portions between the first guided portions 232a and the second guided portions 232b engages with the surface that serves as the step portions between the guide portion 247 and the guide portion 248, and thereby the position between the insertion portion 212 and the operation portion 201 is determined in the insertion direction. The width of the opening portion 214c increases as the insertion portion 212 extends toward its leading end, and the opening portion 214c is shaped to be opened like a cutout. Thus, in a state where the supply pack 210 is attached to the supply portion 200, a pair of portions of the opening portion 214c that face each other in the circumferential direction sandwich the seal member 243 in the circumferential direction.
The driving-force transmission surfaces 214b of the pack shutter portion 214 engage with the driving-force-of-operation-portion transmission projection 201d of the operation portion 201, and with the driving-force-for-main-body-shutter-portion transmission projection 206a of the main-body shutter portion 206. The pack shutter portion 214 is rotated by the force applied to the operation portion 201, and transmits the force to the main-body shutter portion 206 and moves the main-body shutter portion 206 together with the pack shutter portion 214. That is, the driving-force transmission surfaces 214b has an area, as a force receiving area, that abuts against and engages with the driving-force-of-operation-portion transmission projection 201d. The driving-force-of-operation-portion transmission projection 201d has a convex portion that extends from the inner circumferential surface of the operation portion 201 inward in a radial direction, and the driving-force transmission surfaces 214b has an area, as a force providing area, that abuts against and engages with the driving-force-for-main-body-shutter-portion transmission projection 206a.
Procedure for Supplying Toner
Next, a procedure for supplying toner by using the supply pack 210 will be described with reference to
In a state where the discharging tray 14 is opened and positioned at the opening position and the supply portion 200 is exposed to the outside, the operation portion 201 is positioned at an operation position. The user then aligns the positioning cutout 217 (see
That is, the rotational force of the operation portion 201 is transmitted to the pack shutter portion 214, and the rotational force of the pack shutter portion 214 is transmitted to the main-body shutter portion 206. Thus, the main-body shutter portion 206 and the pack shutter portion 214 are engaged and integrated with each other, so that the operation portion 201, the pack shutter portion 214, and the main-body shutter portion 206 move together with each other.
Then, the user rotates the lever portion 201b of the operation portion 201 counterclockwise by 90 degrees, as illustrated in
In other words, when the operation portion 201 is positioned at the supply position, the supply portion 200 is in a suppliable state in which the toner can be supplied from the supply pack 210 to the storage portion 18. In this state, the opening portion 213 of the supply pack 210 and the side-surface opening portion 205 of the toner receiving portion 202 communicate with each other.
When the supply of toner from the supply pack 210 to the storage portion 18 is completed, the user returns the operation portion 201 from the supply position to the operation position. That is, the user rotates the lever portion 201b of the operation portion 201 clockwise by 90 degrees. With this operation, the pack shutter portion 214 and the main-body shutter portion 206 rotate from the opening position to the closing position.
In other words, when the operation portion 201 is positioned at the operation position, the supply portion 200 is in an unsuppliable state in which the toner cannot be supplied from the supply pack 210 to the storage portion 18. In this state, the opening portion 213 of the supply pack 210 and the side-surface opening portion 205 of the toner receiving portion 202 do not communicate with each other.
Then, the user removes the supply pack 210 from the supply portion 200. Thus, in a state where the supply pack 210 is removed from the supply portion 200, since the pack shutter portion 214 is positioned at a closing position, the leakage of toner from the opening portion 213 of the supply pack 210 can be prevented.
Back Cover and Transfer Unit
Next, surroundings of the back cover 73 and the transfer unit 7 will be described with reference to
On an outside surface 73b of the back cover 73, that is, on a surface that constitutes the exterior surface of the housing 72, a holding portion 73c is disposed. A user can hold the holding portion 73c when the user opens or closes the back cover 73. On an inside surface 73f of the back cover 73 opposite to the outside surface 73b, a plurality of (three in the present embodiment) engaging hooks 73a, a plurality of conveyance ribs 73g, and a pressing rib 73e that serves as a pressing portion are disposed.
The back cover 73 is held at a closing position illustrated in
As illustrated in
The pressing roller 9b of the fixing portion 9 is abutted against or separated from the heating roller 9a via a link (not illustrated) in accordance with the opening-and-closing operation of the back cover 73. Thus, when the back cover 73 is positioned at the opening position and the duplex conveyance path 16 is opened, the pressing roller 9b is separated from the heating roller 9a.
As illustrated in
On the inside surface of the transfer unit 7, conveyance ribs 19a that constitute the conveyance path 19 are disposed. On the outside surface of the transfer unit 7, a holding portion 7b (see
Jam Handling
Next, a jam handling method performed when a jam occurs in the duplex conveyance path 16 or the conveyance path 19 will be described. If a jam of the recording material P occurred during an image forming operation, a user opens the back cover 73 from the closing position to the opening position, as illustrated in
If a jam occurred in the vicinity of the transfer nip N1, a user opens the back cover 73 and positions the back cover 73 at the opening position, and opens the transfer unit 7 and positions the transfer unit 7 at the opening position, as illustrated in
After the jam handling is completed, a user closes the back cover 73 from the opening position to the closing position while the transfer unit 7 is left at the opening position, as illustrated in
Attachment and Detachment of Process Unit
Next, with reference to
Note that although the process unit 40 is fixed to the left side-plate frame 74 and the right side-plate frame 75, in the present embodiment, by using the fixing members 79L and 79R that are metal-plate members, the present disclosure is not limited to this. For example, the process unit 40 may be held in the apparatus body 2 by urging members such as springs, or by using the urging force of the transfer roller 7a of the transfer unit 7 to the photosensitive drum 11.
For removing the process unit 40 from the apparatus body 2, the fixing members 79L and 79R are removed, first. Then, the engagement in the driving-force transmission portion between the pinion gear of the driving motor 311 and the photosensitive drum 11 is disengaged, and the process unit 40 is moved toward a removing direction DD, as illustrated in
In the present embodiment, the fixing portion 9 is held by a fixing stay 78 that is suspended between the left side-plate frame 74 and the right side-plate frame 75. In addition, for reducing the size of the image forming apparatus 1, the supply portion 200, which is a portion of the process unit 40, overlaps with the fixing portion 9 in the X direction and the Z direction. In other words, the supply portion 200 is disposed upstream of the fixing portion 9 in the removing direction DD, and when viewed in the removing direction DD, the supply portion 200 is disposed such that at least a portion of the supply portion 200 overlaps with the fixing portion 9.
Thus, as illustrated in
Note that the process unit 40 may not overlap with the fixing portion 9 in the drawing direction DD so that the process unit 40 can be drawn off from the apparatus body 2 in the drawing direction DD without being rotated. In addition, the process unit 40 may not overlap with the fixing portion 9 in the Z direction so that the process unit 40 can be drawn off from the apparatus body 2 in the −Y direction.
The process unit 40 may be attached to the apparatus body 2 in the order reverse to the order of the above-described method of removing the process unit 40. That is, the process unit 40 is attached to the apparatus body 2 in the attachment direction AD (see
As described above, in the image forming apparatus 1 of the present embodiment that has a toner supply system, the jam handling and the attachment and detachment of the process unit 40 are both performed through the opening portion 91 disposed on the back surface side of the image forming apparatus 1. In this configuration, the space efficiency of the interior of the image forming apparatus 1 can be increased. For example, an area taken for the trajectory of movement of the process unit 40 when the process unit 40 is attached to and detached from the apparatus body 2 can be reduced. In addition, since the opening portion 91 can have a relatively large area, the workability for the attachment and detachment of the process unit 40 and the jam handling is increased. Therefore, the apparatus body 2 can be downsized while the capacity of the storage portion 18 that contains toner can be increased, and the jam handling performance and the maintainability for the process unit 40 can be improved.
Note that although the image forming apparatus 1 includes the duplex conveyance path 16, in the above-described embodiment, for forming images on both sides of the recording material P, the present disclosure is not limited to this. For example, the image forming apparatus 1 may not include the duplex conveyance path 16, and may form an image on only one side of the recording material P. In this case, the transfer unit 7 may not be able to be opened and closed, and the transfer roller 7a may be rotatably supported by the back cover 73, for example. In this configuration, the conveyance path 19 is opened by opening the back cover 73.
In addition, in the above-described embodiment, the supply portion 200 and the cassette 4 are disposed, when viewed in the gravity direction, on one side (i.e., front side) with respect to the photosensitive drum 11, and the opening portion 91 is disposed on the other side (i.e., back surface side). However, the present disclosure is not limited to this. For example, the supply portion 200 may be disposed on the other side (i.e., back surface side) with respect to the photosensitive drum 11.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2021-086127, filed May 21, 2021, which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
10877432 | Saito et al. | Dec 2020 | B2 |
11199794 | Takarada et al. | Dec 2021 | B2 |
20130136497 | Morita et al. | May 2013 | A1 |
20180267431 | Kato | Sep 2018 | A1 |
20200371468 | Johashi et al. | Nov 2020 | A1 |
20210080856 | Hashikawa et al. | Mar 2021 | A1 |
20210109464 | Kaiga | Apr 2021 | A1 |
20210247706 | Mitsumata | Aug 2021 | A1 |
20220082994 | Shuhama | Mar 2022 | A1 |
Number | Date | Country |
---|---|---|
H06273985 | Sep 1994 | JP |
2016173404 | Sep 2016 | JP |
2021026218 | Feb 2021 | JP |
2021056323 | Apr 2021 | JP |
Entry |
---|
Office Action issued in U.S. Appl. No. 17/742,738, mailed on Mar. 6, 2023. |
Notice of Allowance issued in U.S. Appl. No. 17/742,738, mailed on Jun. 20, 2023. |
Number | Date | Country | |
---|---|---|---|
20230408965 A1 | Dec 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17742738 | May 2022 | US |
Child | 18241431 | US |