Embodiments described herein relate generally to an image forming apparatus and a control method thereof.
There is an image forming apparatus which can form an image on a label sheet. The label sheet is a sheet on which a label is affixed. The label and the sheet are adhered to each other by an adhesive. Therefore, the adhesive may leak out from an outer edge of the label when the label sheet is heated and pressurized during fixing of a toner image. When the adhesive leaks out from the outer edge of the label due to the fixation, the adhesive may come into contact with a fixing device and a sheet transporting guide, or the like continuously while transporting the label sheet. As a result of this contact, there is a problem that dirt adheres to the fixing device and the sheet transporting guide and the dirt interferes with the printing process and the sheet transport.
Embodiments provide an image forming apparatus and a control method which can suppress dirt that sticks to an adhesive from a label sheet that remains on components of the image forming apparatus when printing is performed on the label sheet.
An image forming apparatus of the embodiment includes a sheet transport path, a toner image transfer section along the sheet transport path at which a toner image is transferred to a sheet conveyed along the sheet transport path, a heating unit downstream from the toner image transfer section in a sheet transporting direction, the heating unit having a plurality of heating members arranged along a sheet width direction, and a control unit. The control unit is configured to determine locations of end portions of a label on the sheet in the sheet width direction, and during heating of the sheet by the heating unit, control heating members at locations facing the end portions of the label to generate less heat than the one or more of the other heating members.
In an image forming apparatus of an embodiment, it is possible to provide the image forming apparatus which can prevent an adhesive from leaking out from an outer edge of a label sheet. Hereinafter, the image forming apparatus of the embodiment will be described in detail.
The image forming unit P includes a laser scanning unit 200 and photosensitive drums 201Y, 201M, 201C, and 201K. The laser scanning unit 200 includes a polygon mirror 208 and an optical system 241, and irradiates the photosensitive drums 201Y to 201K with light of an image formed on the sheet based on an image signal of each color of yellow (Y), magenta (M), cyan (C), and black (K).
The photosensitive drums 201Y to 201K hold toners of respective colors supplied from a developing device (not shown) according to positions of the irradiation. The photosensitive drums 201Y to 201K sequentially transfer the toner images formed thereon to an outer peripheral surface of a transfer belt 207. The transfer belt 207 is an endless belt, and transfers the toner image to a transfer position T by rotationally driving a roller 213.
Along a transport path 101, sheets stacked on the sheet feed cassette unit C are transported in order of the transfer position T, a fixing device 30, and a discharge tray 211. The sheet stacked on the sheet feed cassette unit C is transported to the transfer position T along the transport path 101, and the toner image is transferred onto the sheet at the transfer position T from the transfer belt 207.
The sheet on which the toner image is transferred from the transfer belt 207 is transported to the fixing device 30 along the transport path 101. The fixing device 30 heats and melts the toner image so as to fix the image onto the sheet. With this process, the toner image on the sheet is prevented from being disturbed by an external force. The sheet on which the toner image is fixed, is transported to the discharge tray 211 along the transport path 101 after passing through the fixing device 30.
A control unit 801 is a unit that controls a device and a mechanism in the image forming apparatus 1. A transfer unit 40 transfers a toner image carried by the transfer belt 207 onto the sheet.
The control panel 600 displays various types of information to a user, and receives an operation of the user. In this embodiment, one type label sheet is selected from a plurality of different types of the label sheets, each having a different position for the label. The type of the label sheet can be selected by an operation input through the control panel 600, and the selected type of the label sheet is informed to the control unit 801. The control unit 801 designates a resistance heating member corresponding to an end portion of the label sheet as an end portion resistance heating member. Detail of the resistance heating members will be described later. The control unit 801 controls the temperature of the specified end portion resistance heating member to be a temperature lower than that of another resistance heating member.
The heating member 32 is in contact with an inner surface of the endless belt 34, and presses the endless belt 34 toward the direction of a pressure roller 31. With this arrangement, the heating member 32 nips, heats, and presses a sheet 105 carrying the toner image and transported to a contact portion (nip portion) formed between the heating member 32 and the pressure roller 31. The heating member 32 is in contact with an inner side surface of the endless belt 34, and heats the endless belt 34 in a state where the endless belt 34 is pressed on a pressure roller 31 side. The heating member 32 includes a resistance heating member 60 including a plurality of resistance heating members 61 in the inside thereof. Before the fixing process, a temperature increasing process in which the temperature of the heating member 32 increases by the resistance heating member 60 is performed. As described above, the fixing device 30 transports the sheet while heating and clamping the sheet by the resistance heating member 61. In addition, the resistance heating member 60 is provided downstream from the transfer unit 40 in the sheet transporting direction.
The fixing device 30 includes a nip adjusting mechanism 301 including a gear 37 and a rack 38. One end portion of the rack 38 is in contact with the heating member 32, and meshed with the gear 37. By rotating the gear 37, the rack 38 moves in the horizontal direction (X-axis direction). As described above, with the nip adjusting mechanism 301, rotational movement is converted into linear movement. The rack 38 moves in the horizontal direction such that the heating member 32 also moves in the horizontal direction in conjunction with this movement. When an axis of the pressure roller 31 is at a fixed position, the heating member 32 approaches or is separated from the pressure roller 31 in accordance with the rotation direction of the gear 37. The nip adjusting mechanism 301 may be moved in a direction in which at least one of the pressure roller 31 and the heating member 32 is separated from the other or approaches the other. Accordingly, for example, the nip adjusting mechanism 301 moves a holding member holding the axis of the pressure roller 31 such that the pressure roller 31 may be moved in the direction away from the heating member 32 or toward the heating member 32. As described above, with the nip adjusting mechanism 301, a nip width between the heating member 32 and the pressure roller 31 can be adjusted. In other words, the nip adjusting mechanism 301 adjusts a length A (nip width A) in a sheet transporting direction of a clamping region for clamping the endless belt 34 in the heating member 32 and the pressure roller 31.
In addition, the fixing device 30 includes a temperature sensor 39 as shown. The temperature sensor 39 detects a surface temperature of the endless belt 34, and outputs the detected temperature to the control unit 801.
In this embodiment, the resistance heating members 61 are divided into groups, the resistance heating members 61 are heated on a per group basis. A plurality of groups (e.g., GROUP A-G shown in
A motor 402 is a stepping motor connected to a shaft of the gear 37 of the nip adjusting mechanism 301, and rotates the gear 37. With this configuration, the nip adjusting mechanism 301 moves the heating member 32 in the horizontal direction.
A motor controller 401 controls driving of the motor 402 in accordance with an instruction from the control unit 801. A roller controller 501 controls driving, stopping, and rotation speed of a pair of rollers and the pressure roller 31 in the transport path 101 in accordance with an instruction from the control unit 801.
Since units other than units illustrated in
Next, dirt generated in a case where the sheet 105 is processed as a label sheet P will be described.
If the entire resistance heating member 60 generates heat, the adhesive in the vicinity of the end portion E of the heated label L tends to melt. When the adhesive is melted, the melted adhesive leaks from the end portion E of the label L such that the adhesive begins sticking to the pressure roller 31. Therefore, every time the image forming apparatus 1 performs printing on the label sheet P, the adhesive gradually builds up around the pressure roller 31 as dirt.
Accordingly, in this embodiment, the control unit 801 designates the resistance heating member 61 corresponding to end portions of the label provided in the label sheet P as the end portion heating member. The control unit 801 controls the temperature of the designated end portion heating member to be a temperature lower than that of other resistance heating members 61. In this embodiment, the control unit 801 controls the end portion heating member so that it does not generate heat.
First, in a case of a label sheet P1, the heating member corresponding to an end portion includes resistance heating members 61 belonging to groups C and E. Therefore, in a case of a label sheet P1, the resistance heating members 61 belonging to the groups C and E are the end portion heating member. The groups C and E are stored in the storage unit 803 in association with the label sheet P1.
In a case where the label sheet P1 is selected by the control panel 600, the control unit 801 obtains the groups C and E. With this process, the control unit 801 designates the heating member corresponding to the end portion of the label sheet P1 as the end portion heating member. Then, the control unit 801 controls the designated end portion heating member not to generate heat. It is also not necessary to energize the resistance heating members 61 belonging to the groups A, B, F, and G. Accordingly, the control unit 801 controls the resistance heating members 61 belonging to the groups A, B, C, E, F, and G not to be energized. Meanwhile, the control unit 801 controls the resistance heating members 61 belonging to the group D to generate heat.
Next, in a case of the label sheet P2, the heating member corresponding to an end portion of the label sheet P2 includes the resistance heating member 61 belonging to the groups A and G. Accordingly, in a case of the label sheet P2, the resistance heating members 61 belonging to the groups A and G are the end portion heating member. The groups A and G are stored in the storage unit 803 in association with the label sheet P2.
In a case where the label sheet P2 is selected by the control panel 600, the control unit 801 obtains the groups A and G. With this process, the control unit 801 designates the heating member corresponding to the end portion of the label sheet P2 as the end portion heating member. Then, the control unit 801 controls the designated end portion heating member not to generate heat. Meanwhile, the control unit 801 controls the resistance heating members 61 belonging to the groups B, C, D, E, and F to generate heat.
As described in
The group illustrated in
First, in a case of the label sheet P1, the heating member corresponding to the end portion of the label sheet P1 includes the resistance heating member 61 belonging to the groups D and H. Accordingly, the resistance heating members 61 belonging to the groups D and H are the end portion heating member. The groups D and H are stored in the storage unit 803 in association with the label sheet P1.
When the label sheet P1 is selected by the control panel 600, the control unit 801 obtains the groups D and H. With this process, the control unit 801 designates the heating member corresponding to the end portion of the label sheet P1 as the end portion heating member. Then, the control unit 801 controls the designated end portion heating member not to generate heat.
It is also not necessary for the resistance heating member 61 belonging to the groups A, B, C, I, J, and K to generate heat. Therefore, the control unit 801 controls the resistance heating members 61 belonging to the groups A, B, C, D, H, I, J, and K not to generate heat. Meanwhile, the control unit 801 controls the resistance heating members 61 belonging to the groups E, F, and G to generate heat.
If the toner image can be fixed on the label sheet P1 by heating with only the resistance heating member 61 belonging to the group F, the resistance heating members 61 belonging to the groups E and G may also be controlled not to generate heat. As described above, by subdividing the groups, it is possible to more flexibly control the heating, according to e.g., thermal conductivity of the heating member 32, a calorific value of the resistance heating member 61, and the like.
Next, in a case of the label sheet P2, the heating member corresponding to the end portion of the label sheet P2 includes the resistance heating members 61 belonging to the groups A and K. Accordingly, the resistance heating members 61 belonging to the groups A and K are the end portion heating member. The groups A and K are stored in the storage unit 803 in association with the label sheet P2.
In a case where the label sheet P2 is selected by the control panel 600, the control unit 801 obtains the groups A and K. With this process, the control unit 801 designates the heating member corresponding to the end portion of the label sheet P2 as the end portion heating member. Then, the control unit 801 controls the designated end portion heating member not to generate heat.
If the toner image can be fixed on the label sheet P2 by heating with only the resistance heating members 61 belonging to the groups C, D, E, F, G, H, and I, the resistance heating members 61 belonging to the groups B and J may also be controlled so as not to generate heat. As described above, by subdividing the group, it is possible to more flexibly control the heating, according to, e.g., the thermal conductivity of the heating member 32, the calorific value of the resistance heating member 61, and the like.
As illustrated in
In examples illustrated in
The label sheets P3 and P4 of different types are illustrated in
First, in a case of the label sheet P3, the heating member corresponding to an end portion of the label sheet P3 includes the resistance heating members 61 belonging to the groups A and C. Accordingly, the resistance heating members 61 belonging to the groups A and C become the end portion heating member. The groups A and C are stored in the storage unit 803 in association with the label sheet P3.
When the label sheet P3 is selected by the control panel 600, the control unit 801 obtains the groups A and C. With this process, the control unit 801 designates the heating member corresponding to the end portion of the label sheet P3 as the end portion heating member. Then, the control unit 801 controls the designated end portion heating member not to generate heat. It is also not necessary for the resistance heating members 61 belonging to the groups D and E to generate heat. Therefore, the control unit 801 controls the resistance heating members 61 belonging to the groups A, C, D, and E not to generate heat. Meanwhile, the control unit 801 controls the resistance heating members 61 belonging to the group B to generate heat.
Next, in a case of the label sheet P4, the heating member corresponding to an end portion of the label sheet P4 includes the resistance heating members 61 belonging to the groups A and E. Accordingly, the resistance heating members 61 belonging to the groups A and E are the end portion heating member. The groups A and E are stored in the storage unit 803 in association with the label sheet P4.
When the label sheet P4 is selected by the control panel 600, the control unit 801 obtains the groups A and E. With this process, the control unit 801 designates the heating member corresponding to the end portion of the label sheet P4 as the end portion heating member. Then, the control unit 801 controls the designated end portion heating member not to generate heat. Meanwhile, the control unit 801 controls the resistance heating members 61 belonging to the groups B, C, and D to generate heat.
As illustrated in
Next, an example in which the control unit 801 controls the temperature of the resistance heating members 61 corresponding to the region on which a toner image is not formed to be a temperature lower than that of another resistance heating member 61, will be described.
In
In a case of the label sheet P, the heating member corresponding to the end portion of the label sheet P includes the resistance heating members 61 belonging to the groups A and G. Accordingly, the resistance heating members 61 belonging to the groups A and G are the end portion heating member. The groups A and G are stored in the storage unit 803 in association with the label sheet P. Furthermore, the heating members corresponding to the resistance heating members 61 corresponding to the region on which the toner image is not formed include the resistance heating members 61 belonging to the groups B, C, E, and F.
When the label sheet P is selected by the control panel 600, the control unit 801 obtains the groups A and G. With this, the control unit 801 designates the heating member corresponding to the end portion B of the label sheet P as the end portion heating member. Furthermore, the control unit 801 designates the group of the resistance heating members 61 corresponding to the region on which the toner image is not formed. With this process, the control unit 801 controls the resistance heating members 61 belonging to the groups B, C, E, and F not to generate heat, in addition to the resistance heating members 61 belonging to the above-described groups A and G. Meanwhile, the control unit 801 controls the resistance heating members 61 belonging to the group D to be heated as usual. “Heating as usual” means heating to a temperature at which print quality can be ensured.
As described above, the control unit 801 controls the temperature of the resistance heating member 61 corresponding to the end portion of the label sheet to be a temperature lower than that of another resistance heating member 61. Furthermore, the control unit 801 controls the temperature of the resistance heating members 61 corresponding to the region on which the toner image is not formed to be a temperature lower than that of another resistance heating member 61. With this, as compared to the case where all the resistance heating members 61 generate heat, it is possible to suppress the dirt that is formed due to the adhesive that leaks from the label sheet. Furthermore, as compared to the case where all the resistance heating members 61 are heated, it is possible to reduce power consumption.
According to the image forming apparatus 1 of the embodiment described above, it is possible to provide an image forming apparatus which can suppress dirt build-up due to the adhesive that leaks from the label sheet.
As described above, in the fixing device 30, since the label sheet is not only heated, but also clamped, the adhesive tends to leak very easily. Then, as illustrated in this embodiment, by controlling the temperature of the end portion heating member to be a temperature lower than that of another heating member, it is possible to suppress the dirt that is formed due to the adhesive that leaks from the label sheet. Meanwhile, since a position to which the toner image is transferred is heated according to this embodiment, it is possible not only to suppress the dirt build-up due to the adhesive, but also to ensure the print quality and reduce power consumption.
In the above-described embodiment, the end portion heating member is controlled not to generate heat, but may be controlled to generate heat and increase in temperature to a lower point than that of another resistance heating member 61. This control is suitable for the following cases. For example, there are cases where printing is continuously performed on the label sheets of different types and the heating member which has been designated as the end portion heating member is not designated as the end portion heating member in the label sheet to be printed next. In such a case, it is possible to quickly perform next printing as compared to a case where heat is not generated at all.
In the above-described embodiment, a fixing device 70 illustrated in
An application example of such a fixing device 70 to the above embodiment will be described. First, for example, the end portion heater 702 is set as a group X and the center heater 703 is set as a group Y. Then, the groups X and Y generated heat according to the label sheet. For example, in a case where an end portion of a label sheet Z corresponds to a position of the group X, only the group Y generates heat and the group X does not generate heat. By doing so, as compared to a case where the end portion heater 702 and the center heater 703 generate heat, it is possible to suppress the dirt that is formed due to the adhesive that leaks from the label sheet Z. Furthermore, as compared to a case where the end portion heater 702 and the center heater 703 generate heat, it is possible to reduce power consumption.
As described above, the heating member 32, the end portion heater 702, and the center heater 703, in a general image forming apparatus, are controlled to partially generate heat. According to the image forming apparatus which can partially generate heat, the embodiment can be applied similar to a case where it is applied to the fixing device 70.
A function of the image forming apparatus in the above-described embodiment may be implemented in a computer. In this case, a program for implementing this function may be recorded on a computer-readable recording medium, and the program recorded on this recording medium may be read and executed in a computer system. The “computer system” referred thereto includes an OS and hardware such as peripheral devices. In addition, the “computer-readable recording medium” refers to a storage medium such as a portable medium such as a flexible disk, a magneto-optical disk, a ROM and a CD-ROM, or a hard disk built in the computer system. Furthermore, the “computer-readable recording medium” may include a medium that holds program dynamically for a short time, as a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and may include a device holding a program for a certain period of time such as a volatile memory in a computer system serving as a server or a client in that case. In addition, the program may implement a part of the above-described function, and may be a program in which the above-described function can be implemented by combining with the program already recorded in the computer system.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
Number | Date | Country | Kind |
---|---|---|---|
2017-141236 | Jul 2017 | JP | national |
This application is a continuation of U.S. patent application Ser. No. 15/877,564, filed Jan. 23, 2018, which application is based upon and claims the benefit of priority from Japanese Patent Application No. 2017-141236, filed Jul. 20, 2017, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6882804 | Eskey | Apr 2005 | B2 |
7034855 | Muto et al. | Apr 2006 | B2 |
7228082 | Davidson et al. | Jun 2007 | B1 |
7738805 | Lofthus et al. | Jun 2010 | B2 |
10108119 | Yahata | Oct 2018 | B1 |
Number | Date | Country | |
---|---|---|---|
20190025740 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15877564 | Jan 2018 | US |
Child | 16138770 | US |