1. Field
Aspects of the present invention generally relate to an image forming apparatus which includes a storage portion for temporarily storing a sheet on which an image is formed within the image forming apparatus.
2. Description of the Related Art
Conventionally, there has been an image forming apparatus such as a copying machine or a printer which includes a storage portion for temporarily storing sheets within the apparatus so that a user can receive only the user's sheets while the user's sheets on which images are formed are prevented from being seen by other users.
Japanese Patent Application Laid-Open No. 7-125909 discusses an image forming apparatus which includes a plurality of storage portions for temporarily storing sheets on which images are formed within the apparatus in addition to a normal discharge tray disposed on an upper surface of the apparatus main unit shared by a plurality of users. The sheets stored in the storage portions cannot be seen from the exterior of the apparatus. Further, in the above-described image forming apparatus, a plurality of the storage portions is allocated to the users so that the sheets are sorted into different storage portions for the respective users. In order to receive the sheets, the user gives a discharge instruction to the image forming apparatus, so that the sheets stored in the storage portion corresponding to the user who gives that discharge instruction are discharged to the exterior of the apparatus. With this operation, the user can receive only the user's sheets while the user's sheets on which images are formed are prevented from being seen by other users.
In the configuration in which the storage portions are disposed within the apparatus as discussed in Japanese Patent Application Laid-Open No. 7-125909, the number of sheets storable in the storage portion has an upper limit. Therefore, in Japanese Patent Application Laid-Open No. 7-125909, when the user instructs the image forming apparatus to store the sheets more than the upper limit of the storage portion, the sheets are discharged to a normal discharge tray, or the image forming processing with respect to the sheets is not executed while the user is given a message indicating that the sheets cannot be stored in the storage portion. However, if the sheets are discharged to the normal discharge tray, it is not possible to achieve the original purpose of preventing the sheets on which images are formed from being seen by other users, and not only that, there is a problem in that the user's sheets and other user's sheets are mixed with each other. Moreover, productivity thereof will be naturally lowered if the image forming processing is stopped.
Aspects of the present invention are generally directed to an image forming apparatus capable of suppressing lowering of confidentiality and productivity by continuously executing image forming processing and stores sheets in a storage portion even in a case where the image forming apparatus is instructed to execute the image forming processing to store more sheets than the amount of sheets storable in the storage portion.
According to an aspect of the present invention, an image forming apparatus includes a storage portion configured to store a sheet on which an image is formed, inside a main body of the image forming apparatus, a conveyance unit configured to convey the sheet on which the image is formed, to the storage portion, an opening configured to expose the sheet stored in the storage portion outside the main body of the image forming apparatus, and a moving unit configured to move the sheet and stop the sheet in an exposed state in which a part of the sheet is exposed outside the main body of the image forming apparatus through the opening, wherein, in a case where the image forming apparatus receives a first instruction to convey a first number of sheets, which is more than a storable number in the storage portion, to the storage portion, the conveyance unit starts conveying a second number of sheets, which is at least one and less than the storable number in the storage portion, and in a case where the main body of the image forming apparatus receives a second instruction to take out the sheets stored in the storage portion, the moving unit moves the second number of sheets stored in the storage portion, and stops the second number of the sheets in the exposed state.
Further features of the present disclosure will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
An exemplary embodiment of the present invention will be described in detail with reference to the drawings below.
<Configuration Diagram of Image Forming Apparatus>
An image forming apparatus 100 includes an image forming unit 101, a supply unit 102 for supplying sheets S to the image forming unit 101, and a discharge unit 104 for discharging the sheets S on which images are formed by the image forming unit 101. For example, a sheet of paper, an overhead projector (OHP) sheet, and fabric are included in the sheets S. Further, a storage device 200 which includes a plurality of storage portions 201 to 203 for temporarily storing the sheets S on which images are formed in the apparatus is disposed on the upper side of the image forming unit 101. Furthermore, the image forming apparatus 100 includes a conveyance unit 105 for conveying the sheets S on which images are formed to the storage device 200.
The image forming unit 101 includes a photosensitive drum 111 which rotates in a clockwise (CW) direction in
The supply unit 102 includes a supply cassette 106 in which the plurality of sheets S used for the image formation is stacked and stored, a supply roller 107, a conveyance guide 109, and a registration roller 110.
The discharge unit 104 includes a first switching member 120, a conveyance roller 121, a discharge guide 122, a discharge roller 123, and a discharge tray 124. In
The conveyance unit 105 includes a second switching member 133 and a third switching member 134 for switching a conveyance destination of the sheet S, and conveyance guides 128 to 132 for guiding the sheet S to the respective storage portions 201 to 203. In
<Configuration Diagram of Storage Device>
The first storage portion 201 includes a conveyance roller 211 for conveying the sheets S, a stacking tray 221 for temporarily stacking and storing the sheets S, and a sheet presence-absence sensor 231 for detecting whether the sheets S are stacked on the stacking tray 221. Further, the first storage portion 201 includes a moving unit 241 which pressurizes a trailing end of the stored sheets S (an end portion on the upstream side in the sheets S conveyance direction) and exposes a leading end of the stored sheets S (an end portion on the downstream side in the sheets S conveyance direction) to the exterior of the image forming apparatus 100. The moving unit 241 moves the sheets S up to a position where the user can receive the sheets S, which is a position where the leading end of the sheets S passes through the opening 250. Through these operations, a part of the sheets S can be exposed to the exterior of the apparatus by a predetermined amount. In addition, in the present exemplary embodiment, the predetermined amount of the sheets S exposed to the exterior of the apparatus is set to 3 cm. This predetermined amount is merely one example, and any amount can be set thereto as long as the user can hold the exposed sheets S while the sheets S do not warp remarkably.
The stacking tray 221 has such a length that the leading end of the sheets S is not exposed from the opening 250 even if a maximum size of the sheets S storable in the first storage portion 201 are stacked thereon. The sheet presence-absence sensor 231 is turned on when the sheets S are stacked on the stacking tray 221 and the sheet presence-absence sensor 231 is inclined to the position indicated by the dashed line. The sheet presence-absence sensor 231 is turned off when the sheets S are moved by the moving unit 241 and the sheet presence-absence sensor 231 returns to the position indicated by the solid line. Further, the opening sensor 236 is turned on when the leading end of the sheets S moved thereby inclines the opening sensor 236 arranged in the vicinity of the opening 250 to the position indicated by the dashed line. When the sheets S exposed to the exterior of the apparatus are removed and the opening sensor 236 returns to the position indicated by the solid line, the opening sensor 236 is turned off. When the sheets S are sequentially conveyed to the first storage portion 201, the moving unit 241 is positioned at a stacking position indicated by a solid line. This stacking position illustrates a state where the moving unit 241 is positioned on the leftmost side in
<Block Diagram of Control Unit and Functional Configuration>
The controller 302 receives printing data 352 by communicating with an external device 300 such as a host computer. The received printing data 352 is stored in a memory 305 such as a random access memory (RAM). The controller 302 creates a printing condition by analyzing the printing data 352 stored in the memory 305. For example, the printing condition is the information such as the number of supplied sheets S, a discharge destination of the sheets S on which images are formed, or the printing density of the images. Then, the controller 302 specifies the printing condition created from the printing data 352 to the engine control unit 303 through a serial interface (I/F). The engine control unit 303 controls each mechanism according to the printing condition received from the controller 302. More specifically, the engine control unit 303 controls the image forming unit 101 to form images on the sheets S, and controls the supply unit 102 and the discharge unit 104 to supply or discharge the sheets S.
Further, the controller 302 creates a storage condition and a discharge condition of the storage portions 201 to 203 by analyzing the printing data 352 stored in the memory 305. Then, the controller 302 specifies the storage condition and the discharge condition created from the printing data 352 to the storage device control unit 304 through a serial I/F. The storage condition is the information such as a tray of the storage device 200 serving as a storage destination of the sheets S on which images are formed, or the number of sheets S to be stored therein. Further, the discharge condition is the information such as an amount of sheets S exposed to the exterior from the opening 250. The storage device control unit 304 controls each mechanism according to the storage condition and the discharge condition received from the controller 302. More specifically, the storage device control unit 304 controls the conveyance unit 105 to convey the sheets S on which images are formed to the storage portions 201 to 203, and controls the storage device 200 including the moving unit 241 to move the sheets S stored in the storage portions 201 to 203 to the opening 250. Further, the operation unit controller 306 executes control processing for notifying the controller 302 of various settings and a discharge instruction input by the user through the operation unit 307.
<Details of Storage Device Control Unit>
Control processing for storing the sheet S in the storage device 200 will be described. When the printing data 352 is notified to the controller 302 through the external device 300, the controller 302 temporarily stores the printing data 352 in the memory 305. Thereafter, the controller 302 analyzes the stored printing data 352 and notifies the CPU 350 of the conveyance notification signal 353 and the storage destination signal 354 via the serial communication unit 351. Based on the notified signals, the CPU 350 controls each of the actuators described below, so as to convey the printed sheets S to each of the storage portions 201 to 203.
Next, control processing for exposing the sheets S from the storage device 200 will be described. When the user gives a discharge instruction of the sheets S stored in any of the storage portions 201 to 203 through the external device 300 or the operation unit 307, the discharge instruction signal 357 is notified to the controller 302. After determining the storage portion from which the sheets S are to be discharged, the controller 302 instructs the CPU 350 to discharge the sheets S from the corresponding storage portion by notifying the CPU 350 of the discharge instruction signal 357 via the serial communication unit 351. The CPU 350 controls each of the actuators described below so as to expose the sheets S stored in the notified storage portion to the exterior of the apparatus from the opening 250.
Next, each of the actuators connected to the CPU 350 will be described.
A motor driver 358 is connected to an output terminal of the CPU 350. The motor driver 358 drives a conveyance motor 359. When the conveyance motor 359 is rotated, the conveyance rollers 211, 212, and 213 rotate and convey the sheets S to each of the storage portions 201 to 203.
A motor driver 360 is connected to an output terminal of the CPU 350. The motor driver 360 drives a discharge motor 361. When the discharge motor 361 is rotated in a clockwise (CW) direction, the moving unit 241 of the first storage portion 201 moves toward the opening 250. When the discharge motor 361 is rotated in a counterclockwise (CCW) direction, the moving unit 241 of the first storage portion 201 moves in a direction opposite to the opening 250. Similarly, motor drivers 362 and 364 are connected to output terminals of the CPU 350 and respectively drive discharge motors 363 and 365. The discharge motor 363 drives a moving unit 242 of the second storage portion 202, whereas the discharge motor 365 drives a moving unit 243 of the third storage portion 203.
The sheet presence-absence sensor 231 inputs information indicating whether the sheets S are stored in the first storage portion 201 to the CPU 350 via a buffer 367 by using a pull-up resistor 366. Likewise, a sheet presence-absence sensor 232 inputs information indicating whether the sheets S are stored in the second storage portion 202 to the CPU 350, and a sheet presence-absence sensor 233 inputs information indicating whether the sheets S are stored in the third storage portion 203 to the CPU 350.
The opening sensor 236 inputs information indicating whether the sheets S are exposed to the exterior of the apparatus from the opening 250 to the CPU 350 via a buffer 367 by using a pull-up resistor 375.
The actuator for switching the second switching member 133 is connected to an output terminal of the CPU 350. When the actuator is ON, the second switching member 133 is switched so as to convey the sheets S in a direction of the conveyance guide 129. When the actuator is OFF, the second switching member 133 is switched so as to convey the sheets S in a direction of the conveyance guide 132. Similarly, the actuator for switching the third switching member 134 is connected to an output terminal of the CPU 350. When the actuator is ON, the third switching member 134 is switched so as to convey the sheets S in a direction of the conveyance guide 130, and when the actuator is OFF, the third switching member 134 is switched so as to convey the sheets S in a direction of the conveyance guide 131.
<Description on Operation of Storage Device>
Next, an operation of the storage device 200 will be described. In the present exemplary embodiment, when the sheets S are stored in the storage device 200, the sheets S are sorted to different storage portions according to a job number of the sheets S. Further, when the sheets S are exposed from the storage device 200, the sheets S of the user who gives a discharge instruction of the sheets S are exposed to the exterior of the apparatus from the opening 250. The user can give a discharge instruction by inputting a preset password to the external device 300 or the operation unit 307. Alternatively, the user can give a discharge instruction through user authentication by causing an identification (ID) card reading unit (not illustrated) disposed on the operation unit 307 to read the user's ID card. As described above, in the present exemplary embodiment, the actuators for driving the moving units 241 to 243 are separately provided on the storage portions 201 to 203. Accordingly, even in a case where the same user's sheets S are stored in a plurality of the storage portions, the user can collectively receive the sheets S by driving the respective actuators. Further, the job number of the sheets S and information of the user who instructs printing of the sheets S are stored in the memory 305 disposed on the controller 302. According to the discharge instruction from the user, the controller 302 refers to the memory 305 to specify the sheets S as a discharge target and instructs the storage device 200 to execute a discharge operation.
Further, in a case where the user gives an instruction for storing a number of sheets S more than the sheets S storable in one storage portion, the image forming apparatus 100 sorts the sheets S to different storage portions even if the same job number is assigned thereto. For example, in
The storage device 200 is enclosed on all sides thereof except for the opening 250 that exposes the stored sheets S. Accordingly, in a state where the sheets S are stored in the storage portions 201 to 203, the user cannot see the information printed on the sheets S stored therein. With this configuration, the information printed on the user's sheets S cannot be seen by other users, and thus the confidentiality of the information can be improved.
On the other hand, as a method for improving the confidentiality of the information, there is provided an image forming apparatus which starts image forming processing after executing user authentication by using an ID card. However, in comparison to the above image forming apparatus, because the image forming apparatus 100 according to the present exemplary embodiment simply exposes the sheets S on which the images have already been formed from the storage portions 201 to 203, the user can quickly receive the sheets S after executing the user authentication.
Furthermore, when the user gives a discharge instruction to the image forming apparatus 100, the user can only receive the user's sheets. With this configuration, the user does not have to look for the user's sheets from the discharge tray 124 where the user's sheets and other user's sheets are mixed and stacked thereon.
<Processing with Respect to an Instruction for Storing a Number of Sheets More than the Sheets Storable in a Plurality of Vacant Storage Portions.>
A control method of the above-described image forming apparatus 100 will be described. In the present exemplary embodiment, description will be given of the control processing that is to be executed when the user has formed images on a number of the sheets S more than storable in a plurality of vacant storage portions, and gives an instruction for storing the number of sheets S in the storage portions. In such a case, when the user gives a discharge instruction of the sheets S while the sheets S are being stored in the storage portion, the image forming processing and the processing for storing the sheets S in the storage portions can be continued sequentially. When the image forming processing and the processing for storing the sheets S in the storage portions are continued sequentially, the image forming operation with respect to the sheets S executed by the image forming unit 101 and the conveyance operation of the sheets S with respect to the storage portions executed by the conveyance unit 105 are continued without being stopped temporarily.
The flowchart in
Next, discharge control to be executed when a discharge instruction from the user is received while the sheets S are being stored will be described with reference to the flowchart of
The specific examples thereof are illustrated in
In
With the above-described control method, the user can intentionally make a vacant storage portion by removing the sheets S from the full state storage portion. Then, by switching the storage destination of the sheets S to that vacant storage portion, the image forming operation with respect to the sheets S and the storing operation with respect to the storage portion can be continued sequentially without depending on the capacity of the storage device 200 (i.e., the number of storable sheets S).
Further, in the specific examples of
Furthermore, in the present exemplary embodiment, the maximum number of sheets S storable in each of the storage portions 201 to 203 stored in the memory 305 is fixed to ten. However, this maximum number thereof may be changed according to the thickness of the sheet S. A sensor that detects an amount of transmitted light by irradiating the sheet S with light is provided as a sensor for detecting the thickness of the sheet S. Further, in order to acquire information relating to the thickness, a sensor that detects grammage (i.e., weight per square meter (unit: g/m2)) of the sheet S may be also employed. An ultrasonic sensor is known as a sensor for detecting the grammage. With the ultrasonic sensor, the grammage can be detected by emitting an ultrasonic wave to the sheet S and receiving an attenuated ultrasonic wave via the sheet S. Thus, the maximum number of storable sheets may be dynamically changed by disposing the above-described sensors on the conveyance path of the sheet S. Furthermore, the information such as the thickness or the grammage of the sheet S can be also acquired from a sheet type (i.e., a thick paper, a standard paper, or a thin paper) specified by the user when a printing instruction is provided.
Further, in the present exemplary embodiment, a condition for designating a storage portion as a discharge target, and a condition for switching a conveyance destination of the sheets S have been determined based on whether the storage portion has become full. However, the storage portion does not have to be full, and the storage portion storing a number of the sheets S equal to or greater than a predetermined threshold value may be designated as a discharge target. Similarly, the conveyance destination of the sheets S may be switched to the other storage portion when the number of sheets S stored in the storage portion to which the sheets S are being conveyed has reached the predetermined threshold value.
As described above, description has been given to the exemplary embodiment which enables the image forming operation with respect to the sheet S and the storing operation with respect to the storage portion to be continued sequentially in a case where the user gives a discharge instruction before the storable sheets S are stored in the storage device 200. In another embodiment, the user provides a discharge instruction after the storable sheets S are stored in the storage device 200. In this case, because the storing operation of the sheets S with respect to the storage device 200 is stopped, the image forming operation with respect to the sheets S and the storing operation with respect to the storage portion cannot be continued sequentially. However, the image forming operation with respect to the sheets S and the storing operation with respect to the storage portion can be executed continuously again.
Description will be given to a case where the controller 302 receives a discharge instruction from the user when the storable sheets S have been already stored in the storage device 200 and the operation for storing the sheets S is stopped (as illustrated in step S410 of
In the above-described exemplary embodiment, because the moving units of the respective storage portions are provided with separate actuators, the sheets stored in a plurality of the storage portions can be stacked and exposed by concurrently driving these actuators. On the other hand, for example, a drive transmission switching unit such as a clutch (not illustrated) may be provided together with the actuators the number of which is less than that of storage portions. With this configuration, the plurality of moving units can be selectively moved by a single actuator.
In addition, in the above-described exemplary embodiment, the memory 305 is included in the controller 302. However, the memory 305 may be provided on the engine control unit 303 or the storage device control unit 304, or maybe independently disposed within the image forming apparatus control unit 301.
Further, in the above-described exemplary embodiment, the engine control unit 303 and the storage device control unit 304 have been configured separately. However, the engine control unit 303 and the storage device control unit 304 may be configured integrally. In such a case, the engine control unit 303 may control the conveyance unit 105 and the storage device 200.
Furthermore, in the above-described exemplary embodiment, a configuration having a single opening while the sheet conveyance paths are joined together on the downstream side of the storage portions has been described. However, a plurality of the openings may be disposed separately. Then, the sheets stored in each of the storage portions can be separately exposed from the openings.
In addition, in the above-described exemplary embodiment, a configuration having three storage portions has been described. However, the number of storage portions is not limited to three. The number of storage portions can be set according to the environment where the apparatus main unit is used, the number of users who share the apparatus main unit, or the specification of the apparatus main unit.
Further, in the above-described exemplary embodiment, the storage device 200 and the image forming apparatus 100 have been configured integrally. However, the storage device 200 may be detachably provided on the image forming apparatus 100. In such a case, a control unit disposed on the image forming apparatus 100 may control the operation of the storage device 200. Furthermore, an independent control unit may be disposed on the storage device 200 to control the operation thereof by communicating with the control unit provided on the image forming apparatus 100.
In addition, in the above-described exemplary embodiment, a laser beam printer has been described as an example. Reference to the image forming apparatus as a laser beam printer was provided for description purposes only, and any printer employing other printing methods such as an ink jet printer, or a copying machine, are applicable.
While the present disclosure has been described with reference to exemplary embodiments, it is to be understood that these exemplary embodiments are not seen to be limiting. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2013-191853 filed Sep. 17, 2013 and No. 2014-150777 filed Jul. 24, 2014, which are hereby incorporated by reference herein in their entirety.
Number | Date | Country | Kind |
---|---|---|---|
2013-191853 | Sep 2013 | JP | national |
2014-150777 | Jul 2014 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20060261543 | Miyake et al. | Nov 2006 | A1 |
Number | Date | Country |
---|---|---|
02-233469 | Sep 1990 | JP |
07-125909 | May 1995 | JP |
08-59066 | Mar 1996 | JP |
2776873 | Jul 1998 | JP |
2004-338295 | Dec 2004 | JP |
Entry |
---|
Machine translation of JP H07-125909 to Aihara published on May 16, 1995. |
Number | Date | Country | |
---|---|---|---|
20150078797 A1 | Mar 2015 | US |