This application is based on and claims the benefit of priority from Japanese Patent Application No. 2014-038311 filed on Feb. 28, 2014 and Japanese Patent Application No. 2014-038312 filed on Feb. 28, 2014, the contents of which are hereby incorporated by reference.
The present disclosure relates to an image forming apparatus with a cover for maintenance of the interior thereof, and an opening/closure detecting method, and, more particularly, to an image forming apparatus with an interlock switch for detecting the open/closed state of a cover, and an opening/closure detecting method for the cover.
An image forming apparatus, such as a printer or a copying machine, includes a cover for maintenance of the interior thereof (supplement of toner, resolution of paper jam, or the like), and an interlock switch provided on the cover. Accordingly, the image forming apparatus is controlled in such a way that an image forming operation is not performed to secure safety when the cover is open.
In a typical case of an image forming apparatus, an interlock switch provided between an output control part and a drive part connects the output control part to the drive part with a cover closed. According to this image forming apparatus, the interlock switch provided between an output control part and a drive part connects the output control part to the drive part with a cover closed. With the cover being open, the interlock switch connects a cover opening/closure detecting circuit to the drive part. Further, this image forming apparatus can detect the open/closed state of the cover even if power supply to the drive part is stopped in sleep mode. In sleep mode, therefore, a small power supply different from the power supply that supplies power to the drive part is used for the cover opening/closure detecting circuit.
An image forming apparatus according to the present disclosure includes a first cover, a second cover, a first interlock switch that is set on/off according to opening/closure of the first cover, a second interlock switch that is set on/off according to opening/closure of the second cover, and a cover opening/closure detecting part. The first interlock switch and the second interlock switch are connected in series to a power line through which a load is supplied with power from a supply voltage. The first interlock switch is connected to the supply voltage to supply the supply voltage to the power line when the first interlock switch is on, and is connected to a detection voltage which is lower than the supply voltage and on which the load does not operate to supply the detection voltage to the power line when the first interlock switch is off. The cover opening/closure detecting part detects opening/closure of each of the first cover and the second cover based on a voltage on the power line between the first interlock switch and the second interlock switch and a voltage on the power line between the second interlock switch and the load.
An image forming apparatus according to the present disclosure includes a first cover; a second cover; a first interlock switch that is set on/off according to opening/closure of the first cover, connects a power line through which a load is supplied with power to a supply voltage when the first interlock switch is on, and connects the power line to a detection voltage which is lower than the supply voltage and on which the load does not operate; a second interlock switch that sets the power line between the first interlock switch and the load on/off according to opening/closure of the second cover; a first comparison part that compares a voltage on the power line between the first interlock switch and the second interlock switch with a set threshold; a second comparison part that compares a voltage on the power line between the second interlock switch and the load with the set threshold; a threshold setting part that sets the threshold which is used in each of the first comparison part and the second comparison part; and a cover opening/closure detecting part that detects opening/closure of each of the first cover and the second cover according to results of comparison performed by the first comparison part and the second comparison part. The threshold setting part sets the threshold to be used in the first comparison part to a first threshold between the detection voltage and the supply voltage in normal mode, and sets the threshold to be used in the first comparison part to a second threshold between 0 V and the detection voltage in sleep mode. The threshold setting part sets the threshold to be used in the second comparison part to the second threshold when jamming is not detected, and sets the threshold to be used in the second comparison part to a third threshold higher than a voltage of an electromotive force when jamming is detected. The voltage of the electromotive force lies between 0 V and the supply voltage and is likely generated on the load at a time of dealing with jamming.
An opening/closure detecting method according to the present disclosure is for use in an image forming apparatus in which a first interlock switch that is set on/off according to opening/closure of a first cover, and a second interlock switch that is set on/off according to opening/closure of a second cover are connected in series to a power line through which a load is supplied with power from a supply voltage. The opening/closure detecting method includes connecting the first interlock switch to the supply voltage to supply the supply voltage to the power line when the first interlock switch is on; connecting the first interlock switch to a detection voltage which is lower than the supply voltage and on which the load does not operate to supply the detection voltage to the power line when the first interlock switch is off; and detecting opening/closure of each of the first cover and the second cover based on a voltage on the power line between the first interlock switch and the second interlock switch and a voltage on the power line between the second interlock switch and the load.
<First Embodiment>
The following specifically describes a first embodiment of the present disclosure referring to
Referring to
Referring to
Photo conductor drums 11a, 11b, 11c, and 11d that carry visible images (toner images) of the individual colors are respectively disposed in the four image forming parts 10a, 10b, 10c, and 10d. Provided around the photo conductor drums 11a, 11b, 11c, and 11d are charging units 12a, 12b, 12c, and 12d, developing units 14a, 14b, 14c, and 14d, an exposure unit 13, developing units 14a, 14b, 14c, and 14d, primary transfer rollers 15a, 15b, 15c, and 15d, and cleaning units 16a, 16b, 16c, and 16d. The charging units 12a, 12b, 12c, and 12d respectively charge the photo conductor drums 11a, 11b, 11c, and 11d. The exposure unit 13 exposes the photo conductor drums 11a, 11b, 11c, and 11d to form image information thereon. The developing units 14a, 14b, 14c, and 14d respectively forms toner images on the photo conductor drums 11a, 11b, 11c, and 11d. The primary transfer rollers 15a, 15b, 15c, and 15d respectively transfer the toner images on the photo conductor drums 11a, 11b, 11c, and 11d onto the intermediate transfer belt 20. The cleaning units 16a, 16b, 16c, and 16d respectively removes developers (toners) remaining on the photo conductor drums 11a, 11b, 11c, and 11d.
The toner images formed on the photo conductor drums 11a, 11b, 11c, and 11d are sequentially transferred onto the intermediate transfer belt 20 that moves in abutment with the photo conductor drums 11a, 11b, 11c, and 11d. The toner images sequentially transferred onto the intermediate transfer belt 20 are transferred at a time on a recording sheet of paper P by a secondary transfer roller 17. Recording sheets P are retained in a sheet paper cassette 30 disposed at a lower portion; each recording sheet P is conveyed on a recording paper conveying path 33 to the secondary transfer roller 17 via feed rollers 31 and resist rollers 32. The toner images transferred onto the recording sheet P are fixed thereon in the fixing unit 18. The printed recording sheet P passes through the recording paper conveying path 33 to be ejected onto the first cover 40 by ejection rollers 34.
Referring to
The communication part 60 has a capability of transmitting and receiving various kinds of data to and from peripheral devices 62 such as a personal computer. The communication part 60 receives from each peripheral device 62 a print job including print data, such as color image data, to be used in image formation.
The storage part 70 includes a non-transitory recording medium, and stores print data such as color image data received by the communication part 60.
The control part 3 is connected with a first comparison part 83 and a second comparison part 84 that compare voltages on a power line with specified thresholds, and a current-direction detecting part 86 that detects a current direction on the power line. The control part 3 serves as a cover opening/closure detecting part that detects the opening/closure of the first cover 40 and the second cover 41 according to the outputs of the first comparison part 83, the second comparison part 84 and the current-direction detecting part 86, and displays the results of the detection on the display part 2 as needed to notify a user of the detection results.
Referring to
The first interlock switch 80 is a one-circuit-two-contact switch disposed upstream of the second interlock switch 82. The first interlock switch 80 is connected with the supply voltage at a node that is connected when the first cover 40 is ON or closed, and is connected with a detection voltage via a back-flow preventing diode at a node that is connected when the first cover 40 is OFF or open. Accordingly, when the first cover 40 is closed, the supply voltage is supplied to the power line, and when the first cover 40 is open, the detection voltage is supplied to the power line. The detection voltage is the voltage that is sufficient lower than the supply voltage so that the load 90 does not operate on that voltage; for example, a voltage which is supplied to the CPU of the control part 3 in sleep mode is used as the detection voltage. It is assumed according to the first embodiment that the supply voltage supplied is 24 V, and the detection voltage supplied is 3.3 V.
The first comparison part 83 compares a voltage Va on the power line between the first interlock switch 80 and the second interlock switch 82 (hereinafter called “switch-switch power line”) with a specified threshold, and outputs the result of the comparison to the control part 3.
In normal mode, the first comparison part 83 compares the voltage Va with a first threshold that is set to a voltage lying between the detection voltage and the supply voltage. When the voltage Va is higher than the first threshold, the first comparison part 83 outputs a high-level signal to the control part 3. When the voltage Va is lower than the first threshold, the first comparison part 83 outputs a low-level signal to the control part 3. Referring to
In sleep mode, the first comparison part 83 compares the voltage Va with a second threshold that is set to a voltage lying between 0 V and the detection voltage. When the voltage Va is higher than the second threshold, the first comparison part 83 outputs a high-level signal to the control part 3. When the voltage Va is lower than the second threshold, the first comparison part 83 outputs a low-level signal to the control part 3. Referring to
The second comparison part 84 compares a voltage Vb on the power line between the second interlock switch 82 and the load 90 (hereinafter called “switch-load power line”) with a specified threshold, and outputs the result of the comparison to the control part 3.
The second comparison part 84 compares the voltage Vb with a second threshold that is set to a voltage lying between 0 V and the detection voltage. When the voltage Vb is higher than the second threshold, the second comparison part 84 outputs a high-level signal to the control part 3. When the voltage Vb is lower than the second threshold, the first comparison part 83 outputs a low-level signal to the control part 3. Referring to
In sleep mode, as shown in
According to the first embodiment, the second threshold that is used in the second comparison part 84 and in sleep mode in the first comparison part 83 is a voltage lying between 0 V and the detection voltage. Since the detection voltage is such a voltage on which the load 90 does not operate as mentioned above, the voltage Va and the voltage Vb may exceed the second threshold due to electromotive force that is generated in the load 90. When the load 90 is a motor, for example, the motor rotates through a process of dealing with jamming of the recording sheet P.
According to the first embodiment, therefore, the current-direction detecting part 86 connected to the switch-load power line detects the current direction on the power line to detect electromotive force from the load 90, thereby preventing erroneous detection. For example, the current-direction detecting part 86 includes a resistor R1 connected in series to the power line, and a comparator U1 that compares voltages at both ends of the resistor R1 and outputs the result of the comparison to the control part 3.
When the current-direction detecting part 86 detects electromotive force from the load 90 in sleep mode, the control part 3 disregards a high-level signal if input from the first comparison part 83, and does not detect that the first cover 40 is opened. When the current-direction detecting part 86 detects electromotive force from the load 90 in sleep mode, the control part 3 disregards a high-level signal if input from the second comparison part 84, and does not detect that the second cover 41 is closed.
Although the first cover 40 whose top portion is openable/closable is provided with the first interlock switch 80 according to the first embodiment, the cover on which the first interlock switch 80 is provided is not limited; the first interlock switch 80 should be provided on the cover whose opening/closure needs to be surely detected even in sleep mode.
The above-described configuration provides the following advantages.
According to a typical case where an image forming apparatus includes two covers and two interlock switches are provided on the respective covers, there is a problem such that when the downstream-side interlock switch in the two interlock switches connected in series to the power line is set off, it is not possible to detect the ON/OFF state of the upstream-side interlock switch, disabling detection of the opening/closure of the covers.
In contrast to the typical case, the first embodiment demonstrates an effect of making it possible to detect the ON/OFF state of each of the first interlock switch and the second interlock switch which are connected in series to the power line, thus enabling detection of the opening/closure of each of the first cover and the second cover.
Specifically, the first embodiment is configured so that the first interlock switch 80 that is set on/off according to the opening/closure of the first cover 40, and the second interlock switch 82 that is set on/off according to the opening/closure of the second cover 41 are connected in series to the power line through which power is supplied to the load 90 from the supply voltage (24 V), the first interlock switch is connected to the supply voltage (24 V) to supply the supply voltage (24 V) to the power line when the first interlock switch 80 is on, and is connected to the detection voltage (3.3 V) which is lower than the supply voltage (24 V) and on which the load 90 does not operate to supply the detection voltage (3.3 V) to the power line when the first interlock switch 80 is off, and the control part 3 detects the opening/closure of each of the first cover 40 and the second cover 41 based on the voltage on the switch-switch power line and the voltage on the switch-load power line. The first embodiment is further configured so that the first comparison part 83 compares the voltage on the switch-switch power line with the first threshold set to a voltage lying between the detection voltage (3.3 V) and the supply voltage (24 V), and compares the voltage on the switch-load power line with the second threshold set to a voltage lying between 0 V and the detection voltage (3.3 V), and the control part 3 detects the opening/closure of the first cover 40 and the second cover 41 based on the comparison results from the first comparison part 83 and the second comparison part 84.
This configuration makes it possible to detect the ON/OFF state of each of the first interlock switch 80 and the second interlock switch 82 which are connected in series to the power line, thus enabling detection of the opening/closure of the first cover 40 and the second cover 41.
Further, the first embodiment is configured so that in sleep mode in which the supply voltage (24 V) is disabled, the control part 3 detects the opening/closure of the first cover 40 based on the result of comparison of the voltage between the first interlock switch 80 and the second interlock switch 82 with the second threshold set to a voltage lying between 0 V and the detection voltage (3.3 V). This makes it possible to surely detect the opening/closure of the first cover 40 even in sleep mode.
Furthermore, the first embodiment is configured in such a way that the current-direction detecting part 86 that detects the current direction on the switch-load power line to detect the supply of electromotive force from the load 90 to the power line is provided so that when the current-direction detecting part 86 detects the supply of the electromotive force from the load 90 to the power line, the control part 3 disables detection of the opening/closure of each of the first cover 40 and the second cover 41. This makes it possible to prevent erroneous detection originated from the electromotive force generated in the load 90.
Second Embodiment
Next, referring to
In
Referring to
The second cover 41 is provided with a second interlock switch 82 that is set on/off according to the opening/closure of the second cover 41. The second interlock switch 82 is configured to be set off with the second cover 41 open to thereby shut off the supply voltage that is supplied to the individual components of the color printer 1.
The jam detecting part 71 includes a recording-sheet detecting sensor that detects a recording sheet P which is conveyed on a recording paper conveying path 33. When the jam detecting part 71 detects the recording sheet P for a specified time or longer, or does not detect the recording sheet P at a specified timing, the jam detecting part 71 detects jamming of the recording sheet F (paper jam), and sends a jam detection signal to the control part 3.
The control part 3 is also connected with the first-cover lock part 81. When receiving the jam detection signal from the jam detecting part 71, the control part 3 causes the first-cover lock part 81 to lock the first cover 40 closed. The locking of the first cover 40 by the first-cover lock part 81 may be kept until the jamming of the recording sheet P is cleared, or the first-cover lock part 81 may be configured so that the first cover 40 is unlockable through the operation part 4.
Further, the control part 3 is connected with a first comparison part 83 and a second comparison part 84 that compare voltages on a power line with specified thresholds, and a threshold setting part 85. The control part 3 serves as a cover opening/closure detecting part that detects the opening/closure of the first cover 40 and the second cover 41 according to the outputs of the first comparison part 83 and the second comparison part 84, and displays the results of the detection on the display part 2 as needed to notify a user of the detection results.
The threshold setting part 85 sets thresholds to be compared with voltages on the power line in the first comparison part 83 and the second comparison part 84 in response to an instruction from the control part 3, and changes the threshold in the first comparison part 83 between the normal mode and the sleep mode, and changes the threshold in the second comparison part 84 between a time when jamming is not detected and a time when jamming is detected.
Referring to
The first interlock switch 80 is a one-circuit-two-contact switch disposed upstream of the second interlock switch 82. The first interlock switch 80 is connected with the supply voltage at a node that is connected when the first cover 40 is ON or closed, and is connected with a detection voltage via a back-flow preventing diode at a node that is connected when the first cover 40 is OFF or open. Accordingly, when the first cover 40 is closed, the supply voltage is supplied to the power line, and when the first cover 40 is open, the detection voltage is supplied to the power line. The detection voltage is the voltage that is sufficient lower than the supply voltage so that the load 90 does not operate on that voltage; for example, a voltage which is supplied to the CPU of the control part 3 in sleep mode is used as the detection voltage. It is assumed according to the second embodiment that the supply voltage supplied is 24 V, and the detection voltage supplied is 3.3 V.
The first comparison part 83 compares a voltage Va on the power line between the first interlock switch 80 and the second interlock switch 82 (hereinafter called “switch-switch power line”) with a threshold set by the threshold setting part 85, and outputs the result of the comparison to the control part 3. The second comparison part 84 compares a voltage Vb on the power line between the second interlock switch 82 and the load 90 (hereinafter called “switch-load power line”) with a threshold set by the threshold setting part 85, and outputs the result of the comparison to the control part 3.
Referring to
In normal mode, the threshold setting part 85 sets the threshold to be compared with the voltage Va on the switch-switch power line in the first comparison part 83 to a first threshold that is set to a voltage lying between the detection voltage and the supply voltage. Accordingly, in normal mode, the first comparison part 83 compares the voltage Va on the switch-switch power line with the first threshold. When the voltage Va is higher than the first threshold, the first comparison part 83 outputs a high-level signal to the control part 3. When the voltage Va is lower than the first threshold, the first comparison part 83 outputs a low-level signal to the control part 3. Referring to
In sleep mode, the threshold setting part 85 sets the threshold to be compared with the voltage Va on the switch-switch power line in the first comparison part 83 to a second threshold that is set to a voltage lying between 0 v and the detection voltage. Accordingly, in sleep mode, the first comparison part 83 compares the voltage Va on the switch-switch power line with the second threshold. When the voltage Va is higher than the second threshold, the first comparison part 83 outputs a high-level signal to the control part 3. When the voltage Va is lower than the second threshold, the first comparison part 83 outputs a low-level signal to the control part 3. Referring to
Upon detection of no jamming where the jam detecting part 71 does not detect jamming of a recording sheet P, the threshold setting part 85 sets the threshold to be compared with the voltage Vb on the switch-load power line in the second comparison part 84 to a second threshold that is set to a voltage lying between 0 v and the detection voltage. Accordingly, when jamming is not detected, the second comparison part 84 compares the voltage Vb on the switch-load power line with the second threshold. When the voltage Vb is higher than the second threshold, the second comparison part 84 outputs a high-level signal to the control part 3. When the voltage Vb is lower than the second threshold, the second comparison part 84 outputs a low-level signal to the control part 3. Referring to
In sleep mode, as shown in
When the load 90 is a motor, upon detection of jamming where the jam detecting part 71 detects jamming of a recording sheet P, the motor rotates through a process of dealing with jamming of the recording sheet P, generating electromotive force in the load 90 so that the voltage Vb on the switch-load power line may exceed the second threshold. In other words, the second threshold is a voltage which lies between 0 V and the detection voltage and on which the load 90 does not operate. If the second comparison part 84 compares the voltage Vb on the switch-load power line with the second threshold, therefore, when the second cover 41 that opens the recording paper conveying path 33 is opened and jamming of the recording sheet P is dealt with, the electromotive force generated in the load 90 may cause the second comparison part 84 to input a high-level signal to the control part 3, which may result in erroneous detection of the closure of the second cover 41.
According to the second embodiment, therefore, upon detection of jamming, the control part 3 causes the first-cover lock part 81 to lock the first cover 40 closed, and the threshold setting part 85 sets the threshold to be compared with the voltage Vb on the switch-load power line in the second comparison part 84 to a third threshold equal to or higher than the voltage of the electromotive force which lies between 0 V and the supply voltage and may be generated in the load 90 at the time of dealing with jamming. Accordingly, upon detection of jamming, the second comparison part 84 compares the voltage Vb on the switch-load power line with the third threshold. When the voltage Vb is higher than the third threshold, the second comparison part 84 outputs a high-level signal to the control part 3. When the voltage Vb is lower than the third threshold, the second comparison part 84 outputs a low-level signal to the control part 3. Referring to
Although the first cover 40 whose top portion is openable/closable is also provided with the first interlock switch 80 according to the second embodiment, the cover on which the first interlock switch 80 is provided is not limited; the first interlock switch 80 should be provided on the cover whose opening/closure needs to be surely detected even in sleep mode.
The above-described configuration provides the following effects.
According to a typical case where an image forming apparatus includes two covers and two interlock switches connected in series to the power line are provided on the respective covers, there is a problem such that when the downstream-side interlock switch in the two interlock switches is set off, it is not possible to detect the ON/OFF state of the upstream-side interlock switch, disabling detection of the opening/closure of the covers.
In contrast to the typical case, the second embodiment demonstrates an effect of making it possible to detect the ON/OFF state of each of the two interlock switches which are connected in series to the power line, so that the opening/closure of each of the first cover and the second cover can surely be detected without errors.
Specifically, the image forming apparatus according to the second embodiment includes the first interlock switch 80 that is set on/off according to the opening/closure of the first cover 40, connects the switch-switch power line to the supply voltage when the first interlock switch 80 is on, and connects the switch-load power line to the detection voltage which is lower than the supply voltage and on which the load 90 does not operate, the second interlock switch 82 that enables or disables the switch-load power line according to the opening/closure of the second cover 41, the first comparison part 83 that compares the voltage Va on the switch-switch power line with a set threshold, the second comparison part 84 that compares the voltage Vb on the switch-load power line with a set threshold, the threshold setting part 85 that sets the thresholds which are respectively used in the first comparison part 83 and the second comparison part 84, and the control part 3 that detects the opening/closure of each of the first cover 40 and the second cover 41 according to the results of comparison performed in the first comparison part 83 and the second comparison part 84. The threshold setting part 85 is configured to set the threshold to be used in the first comparison part 83 to the first threshold lying between the detection voltage and the supply voltage in normal mode, and the second threshold lying between 0 V and the detection voltage in sleep mode, and set the threshold to be used in the second comparison part 84 to the second threshold when jamming is not detected, and the third threshold lying between 0 V and the supply voltage and higher than the voltage of the electromotive force, which may be generated in the load 90 at the time of dealing with jamming, when jamming is detected. This configuration provides effects such that the ON/OFF state of each of the first interlock switch and the second interlock switch, which are connected in series to the power line, can be surely detected without errors, and the ON/OFF state of each of the first cover 40 and the second cover 41 can be surely detected without errors. Further, since the third threshold is set equal to or higher than the voltage of the electromotive force which may be generated in the load 90, the electromotive force, which is generated in the load 90 at the time of dealing with jamming, does not cause the second comparison part 84 to input a high-level signal to the control part 3, thereby preventing erroneous detection that the second cover 41 is closed.
Furthermore, the image forming apparatus according to the second embodiment includes the first-cover lock part 81 that locks the first cover closed when jamming is detected. This configuration causes the first cover to be surely set closed when jamming is detected, so that even if the threshold to be used in the second comparison part 84 is set to the third threshold, the opening/closure of the second cover 41 can be detected surely.
The present disclosure is not limited to the above-described first embodiment and second embodiment, and those embodiments may of course be modified as needed within the scope and spirit of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2014-038311 | Feb 2014 | JP | national |
2014-038312 | Feb 2014 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20060226801 | Yoo | Oct 2006 | A1 |
20110182614 | Onuma | Jul 2011 | A1 |
20120062929 | Ishii | Mar 2012 | A1 |
20130188979 | Okada | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
2004-148724 | May 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20150248096 A1 | Sep 2015 | US |