The present invention relates to an image forming apparatus, a control method thereof, a printing system, and a non-transitory computer-readable medium and, more particularly, to control when a post-processing apparatus configured to perform crease processing is connected to an image forming apparatus.
On the printing market, various output materials are created using post-processing apparatuses for sheets having undergone image formation by an image forming apparatus. For example, there is a saddle stitching machine aiming to create (saddle-stitch) a simple booklet by folding an output sheet bundle into two at the center and stapling the fold. There is also a sheet folding apparatus aiming to divide an output sheet into three panels, fold one panel inside, and fold (C-fold) one panel on the opposite side to overlap that panel so as to be able to easily insert the sheet into an envelope or the like.
When the above-mentioned folding is executed, a force that stretches an outer sheet against the folding direction acts to crack the crease (to be referred to as a crack of the spine hereinafter), and the spine is visible as a white color. If this portion has a pattern (for example, an image) or a character, the appearance is greatly degraded. To prevent this, a crease processing for making a crease at a fold in advance is known so as to easily fold an outer sheet and not to generate a crack in the spine. A post-processing apparatus that performs crease processing is an apparatus called a creaser.
Types of folding methods can be classified into “mountain fold” and “valley fold” in accordance with a direction in which a sheet is folded after crease processing. The mountain fold is a method of folding, into a mountain shape, a surface against which the creasing blade of a creasing mechanism is pressed. The valley fold is a method of folding, into a valley shape, a surface against which the creasing blade is pressed. Although both the mountain fold and valley fold are effective for preventing a crack of the spine, either fold method is usable, but the mountain fold is generally used. The valley fold is used when it is superior to the mountain fold in terms of the type of sheet to be used, the folding position, the appearance, and the like. There has already been known an image forming system that automatically switches between the mountain fold and the valley fold by using sheet information and bookbinding information.
For example, in Japanese Patent Laid-Open No. 2012-41187, the settings (for example, monochrome, bookbinding designation, bookbinding cover, and medium information) of an output material are obtained from sheet information and bookbinding information, either of the mountain fold and valley fold is decided, and crease processing is executed on a necessary surface. When an image is printed at the crease portion and a crack of the spine is readily generated, crease processing is performed to make a mountain fold. When a crack of the spine is hardly generated, crease processing is performed to make a valley fold.
However, in Japanese Patent Laid-Open No. 2012-41187, when crease processing is performed a plurality of times (at a plurality of portions) on one sheet in order to execute crease processing on a necessary surface in accordance with settings (for example, Z-folding, C-folding, or bookbinding cover), execution of crease processing on two, front and back surfaces is not considered. In the case of such designation, a post-processing apparatus capable of simultaneously executing crease processing on the front and back surfaces can execute crease processing at once by one feeding operation. However, a post-processing apparatus capable of executing crease processing on only either the front or back surface by one feeding operation needs to perform feeding twice to the creasing apparatus for one sheet for which crease processing is set for the two, front and back surfaces. If feeding is performed twice, the procedures and time until a desired printed material is obtained are increased. Since the feeding work is performed a plurality of times, the load on a sheet is also increased, putting an excessive load on the output material.
According to one aspect of the present invention, there is provided an image forming apparatus which is able to connect with a post-processing apparatus configured to perform crease processing on a sheet, comprising: a crease processing determination unit configured to determine whether crease processing at a plurality of portions set on the sheet includes crease processing on two, front and back surfaces of the sheet; a function determination unit configured to, if the crease processing determination unit determines that crease processing includes crease processing on the two surfaces of the sheet, determine whether the connected post-processing apparatus can perform crease processing on the two, front and back surfaces of the sheet by one feeding; and a control unit configured to, if the function determination unit determines that the connected post-processing apparatus cannot perform crease processing on the two surfaces by one feeding, control to change, to one of the front and back surfaces of the sheet based on attribute information of the sheet, a surface to be processed in crease processing at the plurality of portions.
According to another aspect of the present invention, there is provided a printing system comprising an image forming apparatus, and a post-processing apparatus connected to the image forming apparatus and configured to perform crease processing on a sheet, wherein the image forming apparatus comprising: a crease processing determination unit configured to determine whether crease processing at a plurality of portions set on the sheet includes crease processing on two, front and back surfaces of the sheet; a function determination unit configured to, if the crease processing determination unit determines that crease processing includes crease processing on the two surfaces of the sheet, determine whether the connected post-processing apparatus can perform crease processing on the two, front and back surfaces of the sheet by one feeding; and a control unit configured to, if the function determination unit determines that the connected post-processing apparatus cannot perform crease processing on the two surfaces by one feeding, control to change, to one of the front and back surfaces of the sheet based on attribute information of the sheet, a surface to be processed in crease processing at the plurality of portions.
According to another aspect of the present invention, there is provided a method of controlling an image forming apparatus which is able to connect with a post-processing apparatus configured to perform crease processing on a sheet, comprising: determining whether crease processing at a plurality of portions set on the sheet includes crease processing on two, front and back surfaces of the sheet; determining, if crease processing is determined to include crease processing on the two surfaces of the sheet, whether the connected post-processing apparatus can perform crease processing on the two, front and back surfaces of the sheet by one feeding; and controlling, if the connected post-processing apparatus is determined to be unable to perform crease processing on the two surfaces by one feeding, to change, to one of the front and back surfaces of the sheet based on attribute information of the sheet, a surface to be processed in crease processing at the plurality of portions.
According to another aspect of the present invention, there is provided a non-transitory computer-readable medium storing a program for causing a computer of an image forming apparatus which is able to connect with a post-processing apparatus configured to perform crease processing on a sheet, to function as: a crease processing determination unit configured to determine whether crease processing at a plurality of portions set on the sheet includes crease processing on two, front and back surfaces of the sheet; a function determination unit configured to, if the crease processing determination unit determines that crease processing includes crease processing on the two surfaces of the sheet, determine whether the connected post-processing apparatus can perform crease processing on the two, front and back surfaces of the sheet by one feeding; and a control unit configured to, if the function determination unit determines that the connected post-processing apparatus cannot perform crease processing on the two surfaces by one feeding, control to change, to one of the front and back surfaces of the sheet based on attribute information of the sheet, a surface to be processed in crease processing at the plurality of portions.
The present invention can reduce the procedures and time until a printed material, for which crease processing is set as post-processing, is obtained, and reduce the work load on the user for the printed material.
Further features of the present invention will become apparent from the following description of exemplary embodiments (with reference to the attached drawings).
Embodiments of the present invention will now be described with reference to the accompanying drawings.
[System Arrangement]
An overall system including a post-processing apparatus that practices the present invention will be explained with reference to
In
The main controller 201 is further connected to a PC 205 via a network 206. The PC 205 inputs a job to the main controller 201 by using a printer driver or the like.
As another example of the system arrangement, the system may be constituted as shown in
As for input of a job from the print server 204, a job may be input to the main controller 201 after the end of image processing and the like without a user instruction. Alternatively, the system may be configured to temporarily save a job in the print server 204 after the end of image processing and the like, and allow the user to instruct the main controller 201 to input the job at a timing when the user wants to print. In this case, the main controller 201, the scanner unit 202, the printer unit 203, and the print server 204 are recognized altogether as one printing system when viewed from an apparatus on the external network side.
Feeding decks 305 and 306 are arranged in the image forming apparatus 301 and operate as standard feeding units. To form a color image, developing units 307 to 310 are arranged as four Y, M, C, and K stations. A formed image is primarily transferred to an intermediate transfer belt 311. The intermediate transfer belt 311 rotates clockwise in
Sheets can also be fed from three feeding decks 322, 323, and 324 of the large-volume feeding deck 320, in addition to the standard feeding units (in this case, the feeding decks 305 and 306) of the image forming apparatus 301. A fed sheet is conveyed through sheet conveyance paths 325 and 326, supplied to the image forming apparatus 301, and undergoes image formation. When the further large-volume feeding deck 321 is connected, sheets can also be fed from three feeding decks 329, 330, and 331. A sheet conveyed through a sheet conveyance path 332 is delivered to the large-volume feeding deck 320 at a connection portion 333. These large-volume feeding decks have a function of detecting double feed in which a plurality of sheets are conveyed while overlapping each other. When double feeding is detected, the sheet conveyance path is switched from the normal conveyance path 326 to a conveyance path 327, and the overlapping sheets are discharged to an escape tray 328.
The creaser 351 of the post-processing apparatus will be explained next. The creaser 351 is a post-processing apparatus that makes a crease at a predetermined position of a sheet. A sheet having undergone image formation is conveyed from the image fixing apparatus 302 to the sheet conveyance portion of the creaser 351 through the connection portion 317. When the conveyed sheet has crease designation, the sheet passes through a sheet conveyance path 354 from a sheet conveyance path 352, is sandwiched between a male creasing die 355 and a female creasing die 356, and creased. That is, the creasing dies 355 and 356 constitute a creasing mechanism. At this time, the creasing dies 355 and 356 can be changed depending on the grammage and type of sheet, and the user sets appropriate dies every time a sheet is creased. After the end of crease processing, the sheet passes through a connection portion 357 with the finisher 334 serving as another post-processing apparatus, and is unloaded to the finisher 334. When a sheet does not have crease designation, it is unloaded to the connection portion 357 from the sheet conveyance path 352 through a sheet conveyance path 353.
The finisher 334 will be described next. The finisher 334 adds post-processing to a printed sheet in accordance with a function designated by the user. More specifically, the finisher 334 has functions such as stapling (single/double stitching), punching (two holes/three holes), and saddle stitching. The finisher 334 includes two discharge trays 335 and 336, and a sheet is output to the discharge tray 335 through a sheet conveyance path 341. The sheet conveyance path 341 cannot perform processing such as stapling. When performing processing such as stapling, a sheet undergoes finishing of a function designated by the user by a processing unit 343 through a sheet conveyance path 342, and is output to the discharge tray 336. The discharge trays 335 and 336 can be moved up and down. The discharge tray 335 can also be operated to be moved down and stack, from a lower discharge port, a sheet having undergone finishing processing by the processing unit 343.
When an insertion sheet is designated by user designation, the finisher 334 can also be operated to insert, into a predetermined page through a sheet conveyance path 340, an insertion sheet set on an inserter 338. When saddle stitching is designated, a saddle stitching unit 344 staples sheets at the center, folds them into two, and outputs them to a saddle stitching tray 337 through a sheet conveyance path 345. The saddle stitching tray 337 is constituted by a belt conveyor. A saddle-stitched bundle stacked on the saddle stitching tray 337 is conveyed to a further left position in the printing system.
The scanner and the document feeder will be explained. The scanner is used mainly for the copy function. When setting a document on the document table and reading it, the user sets the document on the document table and closes a document feeder. After an opening/closing sensor (not shown) detects that the document table has been closed, a reflection document size detection sensor (not shown) in the housing of the scanner detects the size of the set document. The scanner irradiates the document with a light source in response to the size detection, and a CCD (not shown) reads an image and converts it into a digital signal. The digital signal undergoes desired image processing and is converted into a laser recording signal. The converted recording signal is stored in the internal memory of a controller to be described with reference to
When setting a document on the document feeder and reading it, the user sets the document on the document setting portion (not shown) of the document feeder with the document facing up. Then, a document presence/absence sensor (not shown) detects that the document has been set. In response to this, a document feed roller (not shown) and a conveyor belt (not shown) rotate to convey the document and set it at a predetermined position on the document table. After that, an image is read similarly to reading on the document table, and the read image is stored in the internal memory of the controller.
[Hardware Arrangement]
An example of the hardware arrangements of the controller that controls the image forming apparatus, and the peripheral units of the controller will be explained with reference to
The CPU 402 and the bus controller 403 control the operation of the overall apparatus. The CPU 402 operates based on a program loaded from a ROM 404 via a ROM I/F 405. The CPU 402 interprets PDL (Page Description Language) code data received from the PC 205. This program also describes an operation of rasterizing data into raster image data, and is processed by software. The bus controller 403 controls transfer of data input/output from/to each I/F, and performs bus arbitration and DMA data transfer control.
A DRAM 406 is connected to the main controller 401 by a DRAM I/F 407, and is used as a work area by the CPU 402 to operate and an area for accumulating image data. A Codec 408 compresses raster image data accumulated in the DRAM 406 according to a method such as MH/MR/MMR/JBIG/JPEG, and decompresses compressed/accumulated code data into raster image data. An SRAM 409 is used as a temporary work area for the Codec 408. The Codec 408 is connected to the main controller 401 via an I/F 410, and the bus controller 403 controls data transfer between the Codec 408 and the DRAM 406 by DMA.
A graphic processor 424 performs processes such as image rotation, image scaling, color space conversion, and binarization for raster image data accumulated in the DRAM 406. An SRAM 425 is used as a temporary work area for the graphic processor 424. The graphic processor 424 is connected to the main controller 401 via an I/F, and the bus controller 403 controls data transfer between the graphic processor 424 and the DRAM 406 by DMA.
A network controller 411 is connected to the main controller 401 via an I/F 413 and to an external network via a connector 412. A general example of the network is Ethernet®. An expansion connector 414 for connecting an expansion board (not shown), and an I/O control unit 416 are connected to a general-purpose high-speed bus 415. A general example of the general-purpose high-speed bus is a PCI bus. The I/O control unit 416 includes serial communication controllers 417 of two channels for sending/receiving control commands to/from the respective CPUs of the scanner unit 202 and printer unit 203. The serial communication controllers 417 are connected to a scanner I/F 426 and a printer I/F 430 via an I/O bus 418.
A panel I/F 421 is connected to an LCD controller 420, and includes an I/F for presenting a display on a liquid crystal screen on an operation unit, and a key input I/F for accepting inputs from hard keys and touch panel keys.
A real-time clock module 422 updates/saves the date and time managed in the device, and is backed up by a backup battery 423. An E-IDE interface 439 is an I/F that connects an external storage device. In this embodiment, a hard disk drive 438 is connected via the I/F to store image data in a hard disk 440 and read out image data from the hard disk 440. Connectors 427 and 432 are connected the scanner unit 202 and the printer unit 203, respectively, and include asynchronous serial I/Fs 428 and 433 and video I/Fs 429 and 434, respectively.
The scanner I/F 426 is connected to the scanner unit 202 via the connector 427 and to the main controller 401 via a scanner bus 441. The scanner I/F 426 has a function of performing predetermined processing on an image received from the scanner unit 202, and also has a function of outputting, to the video I/F 429, a control signal generated based on a video control signal sent from the scanner unit 202. The bus controller 403 controls data transfer from the video I/F 429 to the DRAM 406.
The printer I/F 430 is connected to the printer unit 203 via the connector 432 and to the main controller 401 via a printer bus 431. The printer I/F 430 has a function of performing predetermined processing on image data output from the main controller 401 and outputting the processed image data to the printer unit 203. Further, the printer I/F 430 has a function of outputting, to the printer bus 431, a control signal generated based on a video control signal sent from the printer unit 203. The bus controller 403 controls a transfer of raster image data rasterized on the DRAM 406 to the printer unit 203, and transfers the raster image data to the printer unit 203 via the printer bus 431 and the video I/F 434 by DMA.
An SRAM 436 is a memory capable of holding storage contents by power supplied from the backup battery even when the whole apparatus is turned off. The SRAM 436 is connected to the I/O control unit 416 via a bus 435. An EEPROM 437 is similarly connected to the I/O control unit 416 via the bus 435.
[Operation Unit]
The operation unit for making various settings will be explained next. An operation unit 501 shown in
[Folding Method]
A folding method after crease processing will be explained with reference to
[Processing of Restricting Crease Surface on Job Receiving Side]
A sequence when executing crease processing in the printing system will be explained with reference to
Upon receiving a print job, the CPU 402 starts processing shown in
At the portions 103 to 106 and 113 to 116 in
In step S701, the CPU 402 checks whether a plurality of times of crease processing (at a plurality of portions) is set in a received print job. If a plurality of times of crease processing is not set (NO in step S701), the CPU 402 processes the received job in step S702. The CPU then ends this processing sequence.
If a plurality of times of crease processing is set (YES in step S701), the CPU 402 checks the setting of crease processing in the received job in step S703. In the setting check, it is checked whether the set crease processing includes a setting of performing crease processing from the two, front and back surfaces of a sheet. Therefore, crease processing determination according to this embodiment is performed. If the set crease processing is designated for only one surface of a sheet (NO in step S703), the process shifts to step S702. If crease processing is designated for the two surfaces of a sheet (YES in step S703), the process shifts to step S704.
In step S704, the CPU 402 checks whether post-processing apparatuses currently connected to the printing system include an apparatus capable of performing crease processing on the two surfaces of one sheet by one feeding. Here, one feeding represents that crease processing can be executed on the two, front and back surfaces without the mediacy of manual work of a user until a sheet fed from the feeding deck 306 or 307 or the like is discharged to the discharge tray. The function determination regarding a post-processing apparatus is performed by obtaining information about a connected post-processing apparatus from the post-processing apparatus or the like and using the obtained information. If crease processing can be executed on the two surfaces by one feeding (NO in step S704), the process shifts to step S702.
If crease processing cannot be executed on the two surfaces by one feeding (YES in step S704), the CPU 402 checks in step S705 whether a sheet is designated in the job. If a sheet is designated (YES in step S705), the CPU 402 obtains, in step S706, information about the sheet designated in the job from a database that stores sheet information. Although this embodiment will give an explanation based on the grammage as an example of sheet information, attribute information such as the paper type (for example, thick paper or thin paper) or the direction of the orientation may be used. As another attribute, sheet information about crease processing may be obtained. After that, the process shifts to step S708.
If no sheet is designated in the job (NO in step S705), the CPU 402 specifies, in step S707 from information about sheets stored in current feeding trays, a feeding tray matching output information designated in the job. For example, when information designated in the job is only “A4” size information, the CPU 402 specifies a feeding tray storing “A4” sheets out of sheets designated in current feeding trays. The specified feeding tray serves as a feeding tray that is used when executing the job later. The CPU 402 obtains grammage information of the sheet from sheet information set for the feeding tray. The process then shifts to step S708.
In step S708, the CPU 402 compares the grammage information of the sheet obtained in step S706 or S707 with information serving as a determination criterion designated in advance.
If the sheet allows a change to the valley fold (YES in step S708), the CPU 402 displays a window 901 for changing the setting of crease processing, as shown in
In step S710, the CPU 402 displays a window 1001 for changing a crease position, as shown in
In step S711, the CPU 402 executes crease processing on one surface set by the user for the print job. The CPU 402 then ends this processing sequence.
If the sheet inhibits a change to the valley fold (NO in step S708), the CPU 402 prompts the user to cancel crease processing on either surface of the sheet in step S712.
In step S713, the CPU 402 executes crease processing on the surface designated by the user for the print job. Thereafter, the CPU 402 ends the processing sequence. If the user presses a close button 1108 in step S712, the job may be canceled.
If the user presses a crease processing change button 903 on the window 901 of
[Crease Designation Processing (Change)]
A method of performing crease designation from the PC 205, the print server 204, or the printing system will be explained with reference to
When the user designates the setting of crease processing in job setting, the CPU 402 displays the crease designation window 1201 shown in
When newly designating crease processing, the user selects either the front or back surface from a crease surface setting list box 1210, and designates a crease position from a crease position designation list box 1211. After the settings in the list boxes 1210 and 1211, the user presses a crease processing addition button 1212. Then, the CPU 402 accepts new crease processing, and draws the added crease processing by a solid or broken line in the region 1202. Note that the crease position designation can be confirmed using a ruler 1213. Details of the already set crease processing are displayed in a list box 1214. If the user wants to cancel the designated crease processing, he selects crease processing displayed in the list box 1214 and presses a crease processing cancel button 1215. The CPU 402 cancels the selected crease processing in response to the pressing of the crease processing cancel button 1215, and cancels the drawing of the target crease processing drawn in the image 1203. Further, the CPU 402 deletes a corresponding display in the crease setting list box 1214.
When the user presses a cancel button 1216, settings made in the crease designation window 1201 are canceled. When the user presses a setting button 1217, settings made in the crease designation window 1201 are registered. When the printing system executes a job, crease designation set in the crease designation window 1201 is sent.
Note that crease processing in only one direction perpendicular to the sheet conveyance direction is shown. However, crease processing may be possible in a plurality of directions (for example, a direction parallel to the conveyance direction). When bookbinding cover designation is executed, this crease designation processing may be executed automatically.
[Crease Designation Processing (New Setting)]
A method of performing crease designation from the PC 205, the print server 204, or the printing system will be explained with reference to the flowchart of
Upon receiving an instruction from the user to display a crease processing setting window on the operation screen 505, the CPU 402 starts the processing. In step S1301, the CPU 402 obtains information about a connected post-processing apparatus. In step S1302, the CPU 402 determines, from the obtained post-processing apparatus information, whether a crease processing apparatus (creaser) is connected. If no crease processing apparatus is connected (NO in step S1302), the CPU 402 controls not to display the crease processing setting window (
If a crease processing apparatus is connected (YES in step S1302), the CPU 402 determines, in step S1304 based on function information represented by the crease processing apparatus information, whether crease processing can be executed on the two surfaces of one sheet by one feeding. If crease processing can be executed on the two surfaces by one feeding (NO in step S1304), the CPU 402 displays a crease designation window 1401 shown in
If the connected crease processing apparatus cannot execute crease processing on the two surfaces by one feeding (YES in step S1304), the CPU 402 displays the crease designation window 1401 shown in
In a state in which even one setting of crease processing is not made in a crease surface designation list box 1406, the setting of crease processing can be added to the front and back surfaces. After a crease setting is added, it is subsequently controlled that a crease setting can be additionally selected for only the same surface as that of the already set crease processing.
A state in which a plurality of crease designations are set will be explained using a crease setting window 1501 in
When newly designating crease processing, the user selects either the front or back surface from a crease surface setting list box 1510, and designates a crease portion from a crease position designation list box 1511. In this case, an example is assumed, in which a folding surface designated first is “front surface”. It is therefore controlled to display “front surface (mountain fold)” and “front surface (valley fold)” in a list box 1513. When a folding surface designated first is “back surface”, “back surface (mountain fold)” and “back surface (valley fold)” are displayed in the list box 1513. After the crease surface setting and the settings of the list boxes 1510 and 1511 in the crease position designation, the user presses a crease processing addition button 1512. Then, the CPU 402 accepts new crease processing. The CPU 402 draws the added crease processing in the region 1502.
According to the present invention, the setting of crease processing is controlled in accordance with a function capable of crease processing on a sheet by one feeding in the post-processing apparatus of the printing system. As a result, the procedures and time until a printed material is obtained can be reduced, and the work load on the user for printing can be reduced.
Note that a folding direction instruction statement may be printed so that the user can easily recognize the instruction of a folding direction when a job is executed. It may also be controlled to automatically apply crease designation processing according to the present invention to a folding position when a setting implementable on one surface (front surface) is made automatically in advance and a folding position is designated upon executing designation of a bookbinding cover at the time of generating a print job.
Embodiment(s) of the present invention can also be realized by a computer of a system or apparatus that reads out and executes computer executable instructions (e.g., one or more programs) recorded on a storage medium (which may also be referred to more fully as a ‘non-transitory computer-readable storage medium’) to perform the functions of one or more of the above-described embodiment(s) and/or that includes one or more circuits (e.g., application specific integrated circuit (ASIC)) for performing the functions of one or more of the above-described embodiment(s), and by a method performed by the computer of the system or apparatus by, for example, reading out and executing the computer executable instructions from the storage medium to perform the functions of one or more of the above-described embodiment(s) and/or controlling the one or more circuits to perform the functions of one or more of the above-described embodiment(s). The computer may comprise one or more processors (e.g., central processing unit (CPU), micro processing unit (MPU)) and may include a network of separate computers or separate processors to read out and execute the computer executable instructions. The computer executable instructions may be provided to the computer, for example, from a network or the storage medium. The storage medium may include, for example, one or more of a hard disk, a random-access memory (RAM), a read only memory (ROM), a storage of distributed computing systems, an optical disk (such as a compact disc (CD), digital versatile disc (DVD), or Blu-ray Disc (BD™), a flash memory device, a memory card, and the like.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2014-034708, filed Feb. 25, 2014, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2014-034708 | Feb 2014 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | 15418863 | Jan 2017 | US |
Child | 15903056 | US | |
Parent | 14614788 | Feb 2015 | US |
Child | 15418863 | US |