1. Field of the Invention
The present invention relates to an image forming apparatus such as a copying machine, a printer, and a facsimile.
2. Description of the Related Art
As an existing image forming apparatus, there has been proposed an apparatus using a developing device of a cleaner-less system, which removes a cleaning device in order to downsize the apparatus, and performs cleaning of a photosensitive drum (image bearing member) by a developing sleeve (developer bearing member) at the same time as developing (Japanese Patent Laid-Open No. 2001-215798, and Japanese Patent Laid-Open No. 2001-215799).
In a developing device 4 of the counter developing method, however, the developer carried on the developing sleeve 4b receives a force in the opposite direction of a conveying direction of the developing sleeve 4b at the opposing portion. When this force in the opposite direction becomes large, the developer fails to be conveyed in the conveying direction of the developing sleeve 4b, whereby the developer on the developing sleeve 4b is retained near the opposing portion. Once the retention occurs, it may lead to an image defect such as adhesion of carrier and contamination inside the body of the image forming apparatus caused by the developer overflowed from the developing device 4.
One of such cases in which the retention actually occurs is when an amount of the developer carried on the developing sleeve 4b (hereinafter, referred to as M/S) exceeds an appropriate range relative to a set value of a closest distance between the developing sleeve 4b and the photosensitive drum 1 (hereinafter, referred to as S-D gap).
Such a situation often occurs when the developing sleeve 4b is driven at a lower speed. For example, transfer materials such as thick paper (basis weight of 150 g/m2 or above) and an OHT has a larger heat capacity than plain paper (basis weight from 60 g/m2 to 130 g/m2), whereby fixability in fixing a toner to the transfer material is inferior. Therefore, when performing image forming on these transfer materials, a process speed of the image forming apparatus should be set at a lower speed than that for the plain paper.
Furthermore, even though a developer M/S is within an appropriate range when the developing sleeve 4b is driven at a normal speed, the developer M/S may exceed an upper limit of the appropriate range when the developing sleeve 4b is driven at a lower speed.
Furthermore, a position of a magnetic pole of a magnet roller 4c fixedly disposed in the developing sleeve 4b at the opposing portion also affects the retention of the developer. The developer carried on the developing sleeve 4b forms a magnetic brush along a line of magnetic force formed by the magnet roller 4c on a surface of the developing sleeve 4b.
Generally, a peak of magnetic flux density (developing pole) of the magnet roller 4c is often disposed in the vicinity of the opposing portion. At this time, just above or near the developing pole, the line of magnetic force extends in a vertical direction from the surface of the developing sleeve 4b. Then, as a distance from the developing pole becomes larger, the line of magnetic force formed on the surface of the developing sleeve 4b gradually comes down to a tangential direction of the developing sleeve 4b. Therefore, the force received by the developer in the opposite direction of the conveying direction at the opposing portion, or a force that hinders movement of the developer, is the largest just above the developing pole, and becomes weaker with distance from the developing pole.
The retention is more likely to occur when the force received by the developer in the opposite direction of the conveying direction at the opposing portion is large. Occurrence of the retention may be restrained by shifting the developing pole to a downstream or upstream side of a closest position of the developing sleeve 4b and the photosensitive drum 1. In Japanese Patent No. 4065481, the occurrence of the retention is restrained by shifting the developing pole 15 degrees to the downstream side of the closest position of the developing sleeve 4b and the photosensitive drum 1 at the opposing portion.
However, the technique in Japanese Patent No. 4065481 has a risk of decreasing image quality of an output image.
Just above and near the developing pole, the magnetic brush on the surface of the developing sleeve 4b is standing along the line of magnetic force, and an amount of developer per unit volume on the surface of the developing sleeve 4b is non-dense. Therefore, when a developing bias is applied, the toner existing in between a tip of the magnetic brush and near the surface of the developing sleeve 4b flies to the side of photosensitive drum 1, whereby a moving efficiency of the toner is high.
On the other hand, the magnetic brush on the surface of the developing sleeve 4b at a position away from the developing pole is lying down on the surface of the developing sleeve 4b along the line of magnetic force, and the amount of developer per unit volume on the surface of the developing sleeve 4b is dense. Therefore, it is difficult for the toner near the surface of the developing sleeve 4b to fly to the side of photosensitive drum 1, whereby the moving efficiency of the toner is low.
Therefore, in a case where the developing pole is shifted as in Japanese Patent No. 4065481, the moving efficiency of the toner at the opposing portion is low. Such a phenomenon noticeably appears when the developer deteriorates due to durability and the toner parting properties with the carrier declines, whereby an image defect such as insufficient density of a solid image or poor coarseness occurs.
Therefore, it is desirable for an image forming apparatus of the counter developing method according to an embodiment of the present invention to provide the image forming apparatus capable of stably forming a high-quality image without causing the retention in the vicinity of the opposing portion of the developer bearing member and the image bearing member, even in a case where the image forming is performed by driving the developer bearing member at a lower speed than in the normal speed.
To solve the above problem, a representative configuration of an image forming apparatus according to an embodiment of the present invention includes: an image bearing member configured to carry an electrostatic latent image; and a developer bearing member configured to carry a two-component developer including a toner and a carrier, and develop an electrostatic latent image on the image bearing member into a toner image, in which moving directions of the image bearing member and the developer bearing member are opposite to each other at an opposing portion of the developing device. The image forming apparatus further includes: a speed changing portion configured to change a driving speed of the developer bearing member; and a controller configured to switch a target speed of the developer bearing member so that a rotating speed of the developer bearing member is driven at a second velocity, which is larger than a first velocity, before being driven at the first velocity set in a lower speed mode, when the lower speed mode, in which a rotating speed of the image bearing member is driven at a lower speed than in normal image forming, is executed.
The image forming apparatus of the counter developing method according to the embodiment of the present invention is capable of stably forming the high-quality image without causing the retention in the vicinity of the opposing portion of the developer bearing member and the image bearing member even in the case where the image forming is performed by driving the developer bearing member at a lower speed than the normal speed.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
[First Embodiment] A first embodiment of an image forming apparatus according to the present invention is described herein using the drawings.
In the image forming apparatus 100, a photosensitive drum (image bearing member) 1 is electrically charged by a charging roller 2, exposed to a laser beam L according to image information by an exposure device 3, and formed an electrostatic latent image thereon. The electrostatic latent image formed thereon is developed into a toner image by a developing sleeve (developer bearing member) 4b of a developing device 4 using a toner.
On the other hand, a sheet P housed in a cassette (not illustrated) is conveyed to a nip portion (transfer portion d) between the photosensitive drum 1 and a transfer roller 5 by a conveying roller, where the toner image is transferred thereon. The sheet P, on which the toner image has been transferred, is heated and pressurized by a fixing device 6, is fixed the toner image thereon, and is discharged to outside the apparatus. After the toner image has been transferred, the toner remaining on a surface of the photosensitive drum 1 is removed from the surface of the photosensitive drum 1 by the cleaner-less system (a residual toner uniformizing unit 12, a toner charging amount controlling unit 7, and the developing device 4).
(Developing device 4) The developing device 4 includes a developing container 4a, the developing sleeve 4b, a magnet roller 4c, and a developer regulating blade 4d. The developing container 4a houses two-component developer 4e, and a developer agitating member 4f is disposed inside the developing container 4a at the bottom thereof. The two-component developer 4e includes a non-magnetic toner and a magnetic carrier, which are agitated by the developer agitating member 4f.
The developing sleeve 4b is rotatably arranged inside the developing container 4a with a peripheral surface thereof partially exposed to outside the developing device 4. The magnet roller 4c is non-rotatably fixed inside the developing sleeve 4b. A developer regulating blade 4d is provided opposing the developing sleeve 4b. A supplementary toner is housed in a toner hopper 4g.
The developing sleeve 4b is disposed closely and opposingly to the photosensitive drum 1 by maintaining a closest distance (S-D gap) of 300 μm with the photosensitive drum 1. A developing portion c is an opposing portion of the photosensitive drum 1 and the developing sleeve 4b.
The developing sleeve 4b is rotary driven in an opposite direction of the moving direction of the photosensitive drum 1 at the developing portion c. By a magnetic force of the magnet roller 4c inside the developing sleeve 4b, a part of the two-component developer 4e in the developing container 4a is adsorbed and held on a peripheral surface of the developing sleeve 4b as a magnetic brush layer. This magnetic brush layer is rotary conveyed along with the rotation of the developing sleeve 4b, and formed into a predetermined thin layer by the developer regulating blade 4d. Then, the magnetic brush layer comes in contact with the surface of the photosensitive drum 1, and conveyed thereon at the developing portion c.
At the opposing portion of the developing sleeve 4b and the photosensitive drum 1, from a perspective of high image quality, it is desirable that a peak position of magnetic flux density of the magnet roller 4c be on or near a straight line connecting a central point of the developing sleeve 4b and a central point of the photosensitive drum 1. Practically, it is desirable that the peak position be in the range of ten degrees on the downstream side to ten degrees on the upstream side, and more preferably, in the range of five degrees on the downstream side to five degrees on the upstream side in the direction of rotation of the developing sleeve 4b. In this embodiment, the peak position of the magnetic force of the magnet roller 4c is positioned two degrees on the downstream side of the straight line connecting the central point of the developing sleeve 4b and the central point of the photosensitive drum 1.
A predetermined developing bias is applied to the developing sleeve 4b from a power source S2 (developing bias applying portion). In this embodiment, the developing bias applied to the developing sleeve 4b is an oscillating voltage of a direct current voltage (Vdc) and an alternating current voltage (Vac) superimposed on each other. Specifically, it is a square wave having a direct current component Vdc=−400V, a frequency of the alternating current voltage (developing alternating current bias) f=12.3 kHz, and an amplitude Vpp=1.65 kV, and is configured to repeat two cycles of application and two cycles of blankness.
A toner in the two-component developer 4e, which is conveyed to the developing portion c by the developing sleeve 4b, adheres to an exposure light portion of the electrostatic latent image formed on the photosensitive drum 1 by an electric field of the developing bias, whereby the electrostatic latent image is reversely developed into the toner image.
(Cleaner-less system) The image forming apparatus 100 of this embodiment employs the so-called cleaner-less system, and therefore has no cleaning device dedicated for removing a transfer residual toner remaining on the photosensitive drum 1 after the toner image has been transferred onto the sheet P.
Therefore, the image forming apparatus 100 according to this embodiment includes the residual toner uniformizing unit 12 and the toner charging amount controlling unit 7. The residual toner uniformizing unit 12 and the toner charging amount controlling unit 7 are brush members having moderate conductivity disposed so as to contact with the surface of the photosensitive drum 1 at their respective brush portions.
The residual toner uniformizing unit 12 is provided on the downstream side of the transfer portion d in the direction of rotation of the photosensitive drum 1. The toner charging amount controlling unit 7 is provided on the downstream side of the residual toner uniformizing unit 12 in the direction of rotation of the photosensitive drum 1 and on the upstream side of the charging portion a in the direction of rotation of the photosensitive drum 1.
The transfer residual toner not transferred onto the sheet P at the transfer portion d and remained on the photosensitive drum 1 is a mixture of a reversal toner and a toner with an inappropriate charging amount. Therefore, static electricity of the transfer residual toner is removed once by the residual toner uniformizing unit 12, and then the transfer residual toner is recharged with regular polarity (negative polarity) by the toner charging amount controlling unit 7. Accordingly, adhesion of the transfer residual toner to the charging roller 2 is effectively prevented.
Furthermore, an electric charge of the transfer residual toner is adjusted to a proper charging amount by applying a direct current voltage and an alternating current voltage by the charging roller 2. Accordingly, the transfer residual toner can be completely removed and recovered by the developing device 4, whereby development of the transfer residual toner as a ghost image is prevented.
(Controller)
A speed changing portion 8 changes the driving speed (rotating speed) of the photosensitive drum 1 in response to a signal from the CPU 51. The speed changing portion 19 changes the rotating speed of a developing motor 18 in response to the signal from the CPU 51, and changes the driving speed of the developing sleeve 4b.
The controller 50 is connected to an image processing portion 60. The image processing portion 60 receives an image signal from an external device such as a personal computer, and a document reading device, and sends a signal pertaining to image forming to the controller 50. The controller 50 controls the operation of each portion of the image forming apparatus 100 according to the image forming signal. Furthermore, an operation portion 70 such as a display unit and a key is provided to a body of the image forming apparatus. The operation portion 70 is connected to the CPU 51 of the controller 50.
The controller 50, in a case where a lower speed mode is executed in which the rotating speed of the photosensitive drum 1 is driven at a lower speed than in normal image forming, switches a target speed of the developing sleeve 4b so that the rotating speed of the developing sleeve 4b is driven at a second velocity, which is larger than a first velocity, before driving at the first velocity set in the lower speed mode.
(Control of the driving speed of the developing sleeve 4b) The rotating speed of the photosensitive drum 1 is changed by the speed changing portion 8 according to a type of the sheet P and an image forming mode. The rotating speed of the photosensitive drum 1 in this embodiment is set to 135 mm/sec (normal speed) for a plain paper (basis weight between 60 g/m2 and 130 g/m2) onto which the normal image forming is performed. For thick paper (basis weight between 131 g/m2 and 200 g/m2) and in a high-quality (1200 dpi) mode, the rotating speed is set to 67.5 mm/sec (1/2 speed), which is a lower speed than in the normal image forming. For super-thick paper (basis weight of 201 g/m2 or above) and an OHT sheet, the rotating speed is set to 45 mm/sec (1/3 speed), which is a speed even lower than in the normal image forming.
In this embodiment, to obtain high developability, the developing sleeve 4b is rotated at a speed of 1.7 times the speed of the photosensitive drum 1. An external diameter of the developing sleeve 4b according to this embodiment is φ18 mm, and at the normal speed in which the photosensitive drum 1 is rotated at 135 mm/sec, the developing sleeve is rotated at 229.5 mm/sec (=243 rpm). At the 1/2 speed in which the photosensitive drum 1 is rotated at 67.5 mm/sec, the developing sleeve is rotated at 114.8 mm/sec (=121.5 rpm). At the 1/3 speed in which the photosensitive drum 1 is rotated at 45 mm/sec, the developing sleeve is rotated at 76.5 mm/sec (=81 rpm).
Timing of driving the photosensitive drum 1 and the developing sleeve 4b, and timing of applying the developing bias according to this embodiment is described herein.
As in
Comparing a control in this embodiment in
Next, the CPU 51 sends a signal for driving the photosensitive drum 1 at the speed determined in Step 101 (normal speed, 1/2 speed, or 1/3 speed) (from S102 to S104). Subsequently, when a position on the photosensitive drum charged with a dark electrical potential (Vd) by the charging roller 2 reaches the opposing portion with the developing device 4, a developing direct current bias is applied so as to form a fog-removing potential (Vback) by a potential difference between the photosensitive drum 1 and the developing sleeve 4b (from S105 to S107).
Then, the CPU 51 sends a signal for starting the driving of the developing sleeve 4b at the normal speed (from S108 to S110). Then, only in the case where the image forming is performed in the lower speed mode (1/2 speed or 1/3 speed), 300 msec after S109 and S110, a signal is sent from the CPU 51 for decelerating the driving speed of the developing sleeve 4b (S111 and S112). At this time, the rotating speed of the developing sleeve 4b is linearly decreased from the normal speed to the 1/2 speed in the case of the 1/2 speed, and from the normal speed to the 1/3 speed in the case of the 1/3 speed, respectively, over a period of 200 msec. In this embodiment, a rate of a circumferential speed of the photosensitive drum to a circumferential speed of the developing sleeve is the same in each image forming speed in a steady state after the developing sleeve has been decelerated.
The CPU 51 sends a signal for applying the developing alternating current voltage 300 msec after the driving start of the developing sleeve in S102 in the normal speed, and 400 msec after the start of S111 and S112 in the lower speed developing (S113).
After an image has been formed (S114), the CPU 51 sends a signal for stopping the developing alternating current voltage (S115), a signal for stopping the driving of the developing sleeve 4b (S116), a signal for stopping the developing direct current bias (S117), and a signal for stopping the driving of the photosensitive drum 1 (S118). A series of image forming has been completed through the above flow.
In the image forming apparatus according to this embodiment, a DC brushless motor is used as the developing motor 18. The speed of the developing motor 18 is changed by applying a predetermined voltage to the developing motor 18 and changing a speed designation signal input from the CPU 51 to the speed changing portion 19.
The speed designation signal according to this embodiment is a pulse signal, which alternately applies 0V and 5V. In the normal speed, a signal of 1.5 kHz frequency is input to the speed changing portion 19, and in the 1/2 speed, a signal of 750 Hz frequency is input to the speed changing portion 19, continuously while the developing motor 18 is driven. By receiving the signal and determining the frequency thereof, the speed changing portion 19 changes the timing for applying an electric current to a plurality of coils arranged inside the DC brushless motor, and changes the rotating speed of the developing motor 18.
In a case where the rotary driving of the developing sleeve 4b of the developing device 4 is performed by the developing motor 18 according to this embodiment, the time from the start of applying a voltage by the developing motor to stabilization at the target speed has been the following. That is, a period of 200 msec was necessary to reach the normal speed of 243 rpm from a stopped state. In a case where the DC brushless motor is used, compared to the case where a stepping motor is used, the stability of speed 200 msec after reaching an intended rotating speed is weak, and a speed variation of about ±5% may occur. It may be assumed as reaching a stable speed when the speed variation is within ±10%. Note that there is little change in the developability even if such a level of variations occurs to the rotating speed of the developing sleeve.
In S109 and S110 in
(Retention restraining mechanism) Next, a mechanism for restraining the retention of the developer in the opposing portion of the developing sleeve 4b and the photosensitive drum 1 by the driving speed control of the above-described developing sleeve 4b is described herein.
As in
When the developing sleeve 4b rotates at a relatively lower speed (for example, 1/2 speed), it is unlikely that slipping or rolling occurs to these developer particles. Therefore, a static friction force acts on these developer particles, and the adjacent developer particle moves in the conveying direction at a speed similar to the developer particle on the side near the developing sleeve 4b.
As the rotating speed of the developing sleeve 4b becomes large, the moving velocity of the developer particle on the surface of the developing sleeve 4b becomes large, whereby the slipping or rolling is more likely to occur between the developer particle on the surface of the developing sleeve 4b and the vertically-adjacent developer particle. When the slipping or rolling occurs between these developer particles, a kinetic friction force, which is smaller than the static friction force, acts between these developer particles, whereby the moving velocity of the adjacent developer particle in the direction of rotation of the developing sleeve 4b becomes smaller compared to that of the developer particle on the side near the developing sleeve 4b.
Therefore, as in
Furthermore, when the developing sleeve 4b is once moved at a large speed, the friction force acting on the developer particles is maintained at a low level even if the speed of the developing sleeve 4b is decreased subsequently. Therefore, by rotating the developing sleeve 4b at the normal speed for a predetermined time even during the lower speed developing, it is possible to reduce the efficiency of transmitting the propulsive force from the developer particle on the side near the developing sleeve 4b to the developer particle on the side far therefrom. Then, even if the rotating speed of the developing sleeve 4b is subsequently decreased to the 1/2 speed or the 1/3 speed, a state with reduced efficiency of transmitting the propulsive force can be maintained, whereby the state is realized in which the efficiency of transmitting is sufficiently lower than in a level where an increase of the developer M/S may cause the retention.
As in
(Experiment) To check an effect of this embodiment, an experiment to find out whether or not the retention occurs was carried out by performing image forming of a solid white image on 20 sheets consecutively, in the image forming mode of the following Examples 1 to 3 and Comparative Example, for ten times respectively. In Examples 1 to 3, image forming was performed in the control of this embodiment in
As a result of this experiment, in the control of this embodiment (Examples 1 to 3), no retention occurred in ten times, whereas in Comparative Example, the retention occurred three times out of ten times. Therefore, compared to Comparative Example, the control in this embodiment is effective for restraining occurrence of the retention. Note that when image forming was performed at the 1/3 speed in the control in
As described above, in the image forming apparatus of the counter developing method according to this embodiment, it is possible to restrain the occurrence of the retention in the vicinity of the opposing portion of the developing sleeve 4b and the photosensitive drum 1 even in the case where the image forming is performed by driving the developing sleeve 4b at a lower speed than the normal speed. Accordingly, a high quality image can be formed stably.
Note that the speed of the developing sleeve 4b is not limited to the above-described set speed. Any speed may be used as long as the retention is restrained by changing a target speed of the developing sleeve 4b such that a rotating speed of the developing sleeve 4b is driven at a third velocity, which is larger than the second velocity, before being driven at the second velocity set in the lower speed mode, when executing the lower speed mode in which the rotating speed of the photosensitive drum 1 is driven at the lower speed than in the normal image forming. Furthermore, the DC brushless motor has been used as the developing motor 18 in this embodiment, but needless to say, the same effect may be obtained by using a stepping motor as an alternative for controlling the rotating speed of the developing sleeve by controlling an applied electric current and a clock frequency.
[Second Embodiment] A second embodiment of an image forming apparatus according to the present invention is described herein by using the drawings. Note that any part same as in a description in the above-described first embodiment is denoted with the same reference numeral, and the description is omitted.
As in
Then, at the normal speed, the CPU 51 sends a signal for applying a Vpp=1.65 kV developing alternating current voltage 300 msec after the driving start of the developing sleeve in S102 (S201). In the lower speed developing (1/2 speed), the CPU 51 sends a signal for applying a Vpp=1.5 kV developing alternating current voltage 400 msec after the start of S111 (S202). In the lower speed developing (1/3 speed), the CPU 51 sends a signal for applying a Vpp=1.3 kV developing alternating current voltage 400 msec after the start of S112 (S203).
As in
The developing alternating current bias is superimposed onto the direct current component in order to give a driving force to a toner of the two-component developer on the developing sleeve 4b so that it flies to the photosensitive drum 1. The driving force given by the developing alternating current bias becomes higher as the amplitude (Vpp) of the developing alternating current bias becomes larger. In the two-component developer, however, due to frictional charging between a carrier and the toner, the toner is charged with negative polarity and the carrier is charged with positive polarity. Therefore, there is timing for the developing alternating current bias to give the propulsive force to the side of the photosensitive drum 1 also to the carrier, whereby the effect thereof becomes larger as the Vpp becomes larger.
In the developing portion c, when the propulsive force to the side of the photosensitive drum 1 acts on the carrier, the speed of the developer carried and conveyed by the rotary drive of the developing sleeve 4b is decreased in the tangential direction of the developing sleeve 4b. Therefore, it becomes difficult for the developer to pass through the developing portion c, whereby retention is more likely to occur.
As described above, in the image forming apparatus of the counter developing method according to this embodiment, it is possible to restrain the occurrence of the retention in the vicinity of the opposing portion of the developing sleeve 4b and the photosensitive drum 1 even in the case where the image forming is performed by driving the developing sleeve 4b at a lower speed than the normal speed. Accordingly, a high quality image can be formed stably.
Note that the amplitude of the alternating current component of the developing bias is not limited to the above-described value. Any value may be used as long as the retention is restrained by making the amplitude of the alternating current component of the developing bias smaller than the amplitude of the normal image forming, when the rotating speed of the photosensitive drum 1 is driven at the lower speed than in the normal image forming.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all modifications, equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2012-110628, filed May 14, 2012, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2012-110628 | May 2012 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
7254350 | Kawamura et al. | Aug 2007 | B2 |
7317889 | Suzuki | Jan 2008 | B2 |
7366446 | Sato et al. | Apr 2008 | B2 |
8725015 | Kabashima | May 2014 | B2 |
20120155900 | Suzuki | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
09244382 | Sep 1997 | JP |
2001-215799 | Aug 2001 | JP |
2002-116626 | Apr 2002 | JP |
2003057923 | Feb 2003 | JP |
3647345 | May 2005 | JP |
4065481 | Mar 2008 | JP |
2009025378 | Feb 2009 | JP |
4343376 | Oct 2009 | JP |
2001-215798 | Aug 2010 | JP |
2011128514 | Jun 2011 | JP |
2012198342 | Oct 2012 | JP |
Number | Date | Country | |
---|---|---|---|
20130302053 A1 | Nov 2013 | US |