Image forming apparatus with flat pigment control

Information

  • Patent Grant
  • 9383695
  • Patent Number
    9,383,695
  • Date Filed
    Thursday, May 8, 2014
    10 years ago
  • Date Issued
    Tuesday, July 5, 2016
    8 years ago
Abstract
Provided is an image forming apparatus including a first image portion that uses toner including a flat pigment, a second image portion that uses toner that does not include the flat pigment, a fixing portion that fixes an image formed on a recording medium to the recording medium by heat, and a controller that performs a control that switches the fixing portion to a first state in which an amount of heat similar to an amount of heat applied to the image when an image formed by the toner that does not include the flat pigment is fixed to the recording medium is applied to the image, and a second state in which, compared to when the image formed by the toner that does not include the flat pigment is fixed to the recording medium, the amount of heat applied to the image by the fixing portion is large.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is based on and claims priority under 35 USC 119 from Japanese Patent Application No. 2013-261537 filed Dec. 18, 2013.


BACKGROUND
Technical Field

The present invention relates to an image forming apparatus.


SUMMARY

According to an aspect of the invention, there is provided an image forming apparatus including:


a first image portion that uses toner including a flat pigment;


a second image portion that uses toner that does not include the flat pigment;


a fixing portion that fixes an image formed on a recording medium to the recording medium by heat; and


a controller that performs a control that switches the fixing portion to a first state in which, when an image formed by the toner including the flat pigment is fixed to the recording medium, an amount of heat similar to an amount of heat applied to the image by the fixing portion when an image formed by the toner that does not include the flat pigment is fixed to the recording medium is applied to the image, and a second state in which, compared to when the image formed by the toner that does not include the flat pigment is fixed to the recording medium, when the image formed by the toner including the flat pigment is fixed to the recording medium, the amount of heat applied to the image by the fixing portion is large.





BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments of the present invention will be described in detail based on the following figures, wherein:



FIGS. 1A and 1B are cross-sectional views in which postures of flat pigments that are contained in a toner image which is formed by an image forming apparatus according to a first exemplary embodiment of the invention are illustrated along with a comparative example;



FIGS. 2A and 2B are plan views in which the postures of the flat pigments that are contained in the toner image which is formed by the image forming apparatus according to the first exemplary embodiment of the invention are illustrated along with the comparative example;



FIGS. 3A and 3B are a plan view and a side view of the flat pigment that is contained in toner which is used in the image forming apparatus according to the first exemplary embodiment of the invention;



FIG. 4 is a graph illustrating a relationship between a flop index value of the toner image that is formed by the image forming apparatus according to the first exemplary embodiment of the invention and an amount of heat that is applied to the toner image;



FIGS. 5A and 5B are cross-sectional views illustrating a fixing device that is used in the image forming apparatus according to the first exemplary embodiment of the invention;



FIG. 6 is a cross-sectional view illustrating the fixing device that is used in the image forming apparatus according to the first exemplary embodiment of the invention;



FIG. 7 is a side view illustrating a photoconductor drum of the image forming apparatus according to the first exemplary embodiment of the invention;



FIG. 8 is a configuration diagram illustrating an image forming unit of the image forming apparatus according to the first exemplary embodiment of the invention;



FIG. 9 is a schematic configuration diagram illustrating the image forming apparatus according to the first exemplary embodiment of the invention;



FIG. 10 is a view illustrating a state where plural sheet members are transported to the fixing device that is used in the image forming apparatus according to a fourth exemplary embodiment of the invention; and



FIG. 11 is a cross-sectional view showing a fixing device used in an image forming apparatus according to a sixth exemplary embodiment of the present invention.





DETAILED DESCRIPTION
First Exemplary Embodiment

An example of an image forming apparatus according to an exemplary embodiment of the invention will be described with reference to FIGS. 1A to 9. An arrow H in each of the drawings represents an up-down direction of the apparatus, which is a vertical direction. An arrow W in each of the drawings represents a width direction of the apparatus, which is a horizontal direction.


<Overall Configuration of Image Forming Apparatus>



FIG. 9 is a schematic diagram illustrating an overall configuration of an image forming apparatus 10 viewed from a front surface side. As is illustrated in the drawing, the image forming apparatus 10 is configured to include an image forming unit 12 that forms an image on a sheet member P as a recording medium by using electrophotography, a medium transport device 50 that transports the sheet member P, and a post-processing unit 60 that performs post-processing and the like on the sheet member P where the image is formed.


The image forming apparatus 10 is configured to further include a control unit 70 that performs control on each of the above-described units and a power supply unit 80 (described later), and the power supply unit 80 that supplies power to each of the above-described units including the control unit 70.


In addition, the image forming unit 12 is configured to include a toner image forming unit 20 that forms a toner image, a transfer device 30 that transfers the toner image formed by the toner image forming unit 20 to the sheet member P, and a fixing device 40 that fixes the toner image transferred to the sheet member P on the sheet member P.


The medium transport device 50 is configured to include a medium supply unit 52 that supplies the sheet member P to the image forming unit 12, and a medium discharge unit 54 that discharges the sheet member P where the toner image is formed. The medium transport device 50 is configured to further include a medium returning unit 56 that is used when the image is formed on both surfaces of the sheet member P, and an intermediate transport unit 58 (described later).


The post-processing unit 60 is configured to include a medium cooling unit 62 that cools the sheet member P to which the toner image is transferred in the image forming unit 12, a rectification device 64 that rectifies bending of the sheet member P, and an image inspection unit 66 that inspects the image which is formed on the sheet member P. Each of the units that constitute the post-processing unit 60 is arranged in the medium discharge unit 54 of the medium transport device 50.


Each of the units of the image forming apparatus 10, except for a discharged medium receiving unit 541 that constitutes the medium discharge unit 54 of the medium transport device 50, is accommodated in a housing 90. The housing 90 according to this exemplary embodiment is a two-piece structure including a first housing 91 and a second housing 92 that are adjacent to each other in the width direction of the apparatus. In this manner, a unit of transport of the image forming apparatus 10 is reduced in the width direction of the apparatus.


Main parts of the image forming unit 12 except for the fixing device 40 (described later) and the medium supply unit 52 are accommodated in the first housing 91. The fixing device 40 that constitutes the image forming unit 12, the medium discharge unit 54 except for the discharged medium receiving unit 541, the medium cooling unit 62, the image inspection unit 66, the medium returning unit 56, the device control unit 70, and the power supply unit 80 are accommodated in the second housing 92. The first housing 91 and the second housing 92 are, as an example, coupled with each other by fasteners such as bolts and nuts (not illustrated). In the coupled state, a communication opening portion 90C1 for the sheet member P between a transfer nip NT (described later) of the image forming unit 12 and a fixing nip NF and a connecting path 90C2 for the sheet member P between the medium returning unit 56 and the medium supply unit 52 are formed between the first housing 91 and the second housing 92.


(Image Forming Unit)


As described above, the image forming unit 12 is configured to include the toner image forming unit 20, the transfer device 30, and the fixing device 40. The image forming unit 12 includes plural toner image forming units 20 so as to form the toner image by color. In this exemplary embodiment, the toner image forming units 20 are disposed for a total of six colors, that is, a first custom color (V), a second custom color (W), yellow (Y), magenta (M), cyan (C), and black (K). The (V), (W), (Y), (M), (C), and (K) illustrated in FIG. 9 represent the respective colors described above. The transfer device 30 transfers the toner images of the six colors to the sheet member P at the transfer nip NT from an image transfer belt 31 where the toner images of the six colors are superposed and primary image-transferred (described in detail later).


In this example, the first custom color (V) is, for example, silver, in which the toner containing a flat pigment that adds metallic gloss to the image is used. The second custom color (W) is a corporate color specific to a user, which is more frequently used than other colors. The silver toner, a changeover switch 170 that is an example of a controller used when the metallic gloss is added to the image, and the control of each of the units by the control unit 70 performed when the image is formed by using the silver toner will be described later.


Toner Image Forming Unit

Basically, the toner image forming units 20 for the respective colors have the same configuration except for the toner that is used. Accordingly, image forming units 14 for the respective colors will not be particularly distinguished in the following description. The image forming unit 14 of the toner image forming unit 20 is configured to include a photoconductor drum 21 as an example of an image holding member, a charging unit 22, an exposure device 23, a developing device 24 as an example of a developing unit, a cleaning device 25, and an erasing device 26 as illustrated in FIG. 7.


[Photoconductor Drum]


The photoconductor drum 21 is formed into a cylindrical shape and grounded, and is driven to rotate about its own axis by a driver (not illustrated). A photosensitive layer that shows, for example, a negative charge polarity is formed on an outer surface of the photoconductor drum 21. As illustrated in FIG. 9, the photoconductor drums 21 for the respective colors are arranged side by side, in a linear shape, along the width direction of the apparatus when viewed from the front surface.


[Charging Unit]


As illustrated in FIG. 7, the charging unit 22 charges the outer surface of the photoconductor drum 21 (photosensitive layer) with a negative polarity. In this exemplary embodiment, the charging unit 22 is a corona discharge type (non-contact charge type) scoroton charging unit.


[Exposure Device]


The exposure device 23 forms an electrostatic latent image on the outer surface of the photoconductor drum 21. Specifically, the exposure device 23 irradiates the outer surface of the photoconductor drum 21 charged by the charging unit 22 with a modulated exposure light beam L according to image data received from an image signal processing unit 71 (refer to FIG. 9) that constitutes the device control unit 70. The electrostatic latent image is formed on the outer surface of the photoconductor drum. 21 through the irradiation with the exposure light beam L by the exposure device 23.


[Developing Device]


The developing device 24 develops the electrostatic latent image formed on the outer surface of the photoconductor drum 21 with a developer G that contains the toner, and forms the toner image on the outer surface of the photoconductor drum 21.


The toner is supplied to the developing device 24 from a toner cartridge 27 that holds the toner.


[Cleaning Device]


The cleaning device 25 has a blade shape, and scrapes the residual toner on the outer surface of the photoconductor drum 21 from the outer surface of the photoconductor drum 21 after the transfer of the toner image to the transfer device 30.


[Erasing Device]


The erasing device 26 performs charge removal by irradiating the photoconductor drum 21 after the transfer with light. In this manner, charge history of the outer surface of the photoconductor drum 21 is cancelled.


Transfer Device

The transfer device 30 superposes the toner images of the photoconductor drums 21 for the respective colors on the image transfer belt 31 for the primary image transfer, and secondary image-transfers the superposed toner images to the sheet member P. This will be described in detail later.


[Image Transfer Belt]


As illustrated in FIG. 8, the image transfer belt 31 has an endless shape, and a posture thereof is determined with the image transfer belt 31 being wound around plural rollers 32. In this exemplary embodiment, the image transfer belt 31 has a reverse obtuse angle triangular-shape posture and is long in the width direction of the apparatus when viewed from the front surface. Of the plural rollers 32, a roller 32D illustrated in FIG. 8 functions as a driving roller that allows the image transfer belt 31 to revolve in an arrow A direction by driving of a motor (not illustrated).


Of the plural rollers 32, a roller 32T illustrated in FIG. 8 functions as a tensile strength applying roller that applies tensile strength to the image transfer belt 31. Of the plural rollers 32, a roller 32B illustrated in FIG. 8 functions as a roller facing a secondary image transfer roller (described later). A lower end side apex of the image transfer belt 31, having the reverse obtuse angle triangular-shaped posture as described above, which forms an obtuse angle is wound around the roller 32B. The image transfer belt 31 comes into contact, from below, with the photoconductor drums 21 for the respective colors in an upper side portion that extends in the width direction of the apparatus in the posture described above.


[Primary Image Transfer Roller]


Primary image transfer rollers 33 as an example of transfer members are arranged on an inner side of the image transfer belt 31 to transfer the toner images of the respective photoconductor drums 21 to the image transfer belt 31. The respective primary image transfer rollers 33 are arranged to face the photoconductor drums 21 for the corresponding colors across the image transfer belt 31. In addition, an image-transferring bias voltage having the polarity opposite to a toner polarity is applied to the primary image transfer rollers 33. The toner image that is formed in the photoconductor drum 21 is transferred to the image transfer belt 31 when the image-transferring bias voltage is applied.


[Secondary Image Transfer Roller]


In addition, the transfer device 30 includes the secondary image transfer roller 34 that transfers the toner images superposed on the image transfer belt 31 to the sheet member P. The secondary image transfer roller 34 is arranged to nip the image transfer belt 31 between the secondary image transfer roller 34 and the roller 32B, and forms the transfer nip NT between the image transfer belt 31 and the secondary image transfer roller 34. The sheet member P is supplied, on a timely basis, from the medium supply unit 52 to the transfer nip NT. The image-transferring bias voltage having the polarity opposite to the toner polarity is applied to the secondary image transfer roller 34 by a power supply unit (not illustrated). When the image-transferring bias voltage is applied, the toner image is transferred from the image transfer belt 31 to the sheet member P passing through the transfer nip NT.


[Cleaning Device]


The transfer device 30 further includes a cleaning device 35 that cleans the image transfer belt 31 after the secondary image transfer. The cleaning device 35 is arranged on a downstream side of a part where the secondary image transfer is performed (transfer nip NT) and on an upstream side of a part where the primary image transfer is performed in a revolving direction of the image transfer belt 31. The cleaning device 35 includes a blade 351 that scrapes the residual toner on an outer surface of the image transfer belt 31 from the outer surface of the image transfer belt 31.


Fixing Device: Overview

The fixing device 40 fixes the toner image, by using heat, to the sheet member P to which the toner image is transferred by the transfer device 30. A detailed configuration of the fixing device 40 and the control of the fixing device 40 by the device control unit 70 will be described in detail later.


(Medium Transport Device)


As illustrated in FIG. 9, the medium transport device 50 is configured to include the medium transport device 50, the medium supply unit 52, the medium discharge unit 54, the medium returning unit 56, and the intermediate transport unit 58.


Medium Supply Unit

The medium supply unit 52 includes an accommodator 521 in which the sheet members Pare stacked and accommodated. In this exemplary embodiment, two accommodators 521 are arranged side by side, along the width direction of the apparatus, below the transfer device 30.


A medium supply path 52P is formed, from each of the accommodators 521 to the transfer nip NT that is a secondary image transfer position, by plural transport roller pairs 522, a guide (not illustrated), and the like. The medium supply path 52P is shaped (has a substantially “S” shape) to rise and reach the transfer nip NT while being folded back in the width direction of the apparatus in two folded portions 52P1 and 52P2.


A feed roller 523 that feeds the uppermost sheet member P stacked in the accommodator 521 is arranged on an upper side of each of the accommodators 521. Of the plural transport roller pairs 522, a transport roller pair 522S on the most upstream side in a transport direction of the sheet member P functions as a separating roller that separates the sheet members P, which are fed sheet by sheet in a stacked manner from the accommodator 521 by the feed roller 523. Of the plural transport roller pairs 522, a transport roller pair 522R that is positioned on an immediately upstream side of the transfer nip NT in the transport direction of the sheet member P is operated to match a movement timing of the toner image on the image transfer belt 31 with a transport timing of the sheet member P.


The medium supply unit 52 further includes a preliminary transport path 52Pr. The preliminary transport path 52Pr starts from an opening portion 91W of the first housing 91 on the side opposite to a second housing 92 side, and joins the folded portion 52P2 of the medium supply path 52P. The preliminary transport path 52Pr is a transport path that is used when the sheet member P, which is fed from an optional recording medium supply device (not illustrated) arranged to be adjacent to the opening portion 91W side of the first housing 91, is sent to the image forming unit 12.


Intermediate Transport Unit

As illustrated in FIG. 8, the intermediate transport unit 58 includes plural belt transport members 581 that are arranged between the transfer nip NT of the transfer device 30 and the fixing nip NF of the fixing device 40 and include endless-shaped transport belts which are wound around rollers.


The sheet member P is transported by revolving the transport belts while suctioning air (negative pressure suction) from inner sides of the belt transport members 581 and suctioning the sheet member P to outer surfaces of the transport belts.


Medium Discharge Unit

As illustrated in FIG. 9, the medium discharge unit 54 discharges the sheet member P, where the toner image is fixed by the fixing device 40 of the image forming unit 12, out of the housing 90 from a discharge port 92W that is formed in an end portion on the side opposite to the first housing 91 side of the second housing 92.


The medium discharge unit 54 includes the discharged medium receiving unit 541 that receives the sheet member P which is discharged from the discharge port 92W.


The medium discharge unit 54 includes a medium discharge path 54P that transports the sheet member P from the fixing device 40 (fixing nip NF) to the discharge port 92W. The medium discharge path 54P is formed from a belt transport member 543, plural roller pairs 542, a guide (not illustrated), and the like. Of the plural roller pairs 542, a roller pair 542E that is arranged on the most downstream side in a discharge direction of the sheet member P functions as a discharge roller that discharges the sheet member P onto the discharged medium receiving unit 541.


Medium Returning Unit

The medium returning unit 56 includes plural roller pairs 561. The plural roller pairs 561 form a reversal path 56P through which the sheet member P passing through the image inspection unit 66 is sent when it is required for the image to be formed on both surfaces. The reversal path 56P includes a branch path 56P1, a transport path 56P2, and a reverse path 56P3. The branch path 56P1 branches from the medium discharge path 54P. The transport path 56P2 sends the sheet member P received from the branch path 56P1 to the medium supply path 52P. The reverse path 56P3 is disposed in a middle of the transport path 56P2, and turns the sheet member P inside out by folding (switching-transporting) the sheet member P transported through the transport path 56P2 into the direction opposite to the transport direction.


(Post-Processing Unit)


The medium cooling unit 62, the rectification device 64, and the image inspection unit 66 that constitute the post-processing unit 60 are arranged in this order, from an upstream side of the discharge direction, on the upstream side in the discharge direction of the sheet member P with respect to a branch part of the branch path 56P1 on the medium discharge path 54P of the medium discharge unit 54.


Medium Cooling Unit

The medium cooling unit 62 includes a heat absorbing device 621 that absorbs heat of the sheet member P, and a pressing device 622 that presses the sheet member P to the heat absorbing device 621. The heat absorbing device 621 is arranged on an upper side with respect to the medium discharge path 54P, and the pressing device 622 is arranged on a lower side with respect to the medium discharge path 54P.


The heat absorbing device 621 is configured to include an endless-shaped heat absorption belt 6211, plural rollers 6212 that support the heat absorption belt 6211, a heatsink 6213 that is arranged in the heat absorption belt 6211, and a fan 6214 that cools the heatsink 6213.


An outer circumferential surface of the heat absorption belt 6211 is in contact with the sheet member P to be capable of heat exchange. Of the plural rollers 6212, a roller 6212D functions as a driving roller that transmits a driving force to the heat absorption belt 6211. The heatsink 6213 is in surface contact, in a slidable manner, with an inner circumferential surface of the heat absorption belt 6211 in a range that is determined along the medium discharge path 54P.


The pressing device 622 includes an endless-shaped pressing belt 6221, and plural rollers 6222 that support the pressing belt 6221. The pressing belt 6221 is wound around the plural rollers 6222. The pressing device 622 transports the sheet member P with the heat absorption belt 6211 while pressing the sheet member P to the heat absorption belt 6211 (heatsink 6213).


Rectification Device

The rectification device 64 is disposed on a downstream side of the medium cooling unit 62 in the medium discharge unit 54. The rectification device 64 rectifies the bending (curling) of the sheet member P that is received from the medium cooling unit 62.


Image Inspection Unit

An inline sensor 661 that forms a main part of the image inspection unit 66 is arranged on a downstream side of the rectification device 64 in the medium discharge unit 54. The inline sensor 661 detects the presence or absence and degree of a toner concentration defect, an image defect, an image position defect, and the like of the fixed toner image based on the light which is reflected from the sheet member P after the sheet member P is irradiated with the light.


Image Forming Operation (Effect) of Image Forming Apparatus

Next, an image forming process performed on the sheet member P by the image forming apparatus 10 and a post-processing process will be described in summary.


As illustrated in FIG. 9, the device control unit 70 operates the toner image forming unit 20, the transfer device 30, and the fixing device 40 when an image forming command is received. Then, the photoconductor drums 21 of the image forming units 14 for the respective colors and developing rollers 242 of the developing devices 24 rotate as illustrated in FIG. 8, and the image transfer belt 31 revolves. In addition, a pressurizing roller 42 rotates and a fixing belt 411 revolves. Furthermore, the device control unit 70 operates the medium transport device 50 in synchronization with these operations.


In this manner, the photoconductor drums 21 for the respective colors are charged by the charging unit 22 while rotating. The device control unit 70 sends image data image-processed by the image signal processing unit to the respective exposure devices 23. The respective exposure devices 23 emit exposure light beams L according to the image data, and the charged photoconductor drums 21 are exposed. Then, the electrostatic latent image is formed on each of the outer surfaces of the photoconductor drums 21. The electrostatic latent image formed in each of the photoconductor drums 21 is developed by the developer that is supplied from the developing device 24. In this manner, the toner images of the corresponding colors, that is, the first custom color (V), the second custom color (W), yellow (Y), magenta (M), cyan (C), and black (K), are formed in the photoconductor drums 21 for the respective colors.


The toner images of the respective colors formed in the photoconductor drums 21 for the respective colors are sequentially transferred to the revolving image transfer belt 31 as the image-transferring bias voltage is applied through the primary image transfer rollers 33 for the respective colors. In this manner, the superposed toner images in which the toner images for the six colors are superposed are formed on the image transfer belt 31. The superposed toner images are transported to the transfer nip NT since the image transfer belt 31 revolves.


The sheet member P is supplied to the transfer nip NT, as illustrated in FIG. 9, with the timing matched with the transport of the superposed toner images by the transport roller pair 522R of the medium supply unit 52. The toner images superposed from the image transfer belt 31 are transferred to the sheet member P since the image-transferring bias voltage is applied at the transfer nip NT.


The sheet member P to which the toner image is transferred is transported from the transfer nip NT of the transfer device 30 toward the fixing nip NF of the fixing device 40 by the intermediate transport unit 58. The fixing device 40 applies heat and pressure to the sheet member P passing through the fixing nip NF. In this manner, the toner image that is transferred to the sheet member P is fixed.


The sheet member P that is discharged from the fixing device 40 is subjected to processing by the post-processing unit 60 while being transported by the medium discharge unit 54 toward the discharged medium receiving unit 541 out of the apparatus. The sheet member P that is heated through a fixing process is cooled first by the medium cooling unit 62. Then, the bending of the sheet member P is rectified by the rectification device 64. Furthermore, the presence or absence and degree of the toner concentration defect, the image defect, the image position defect, and the like of the toner image that is fixed to the sheet member P are detected by the image inspection unit 66. Then, the sheet member P is discharged to the medium discharge unit 54.


When the image is to be formed on a no-image surface of the sheet member P where the image is not formed (when two-sided printing is performed), the device control unit 70 switches the transport path of the sheet member P after the passage through the image inspection unit 66 from the medium discharge path 54P of the medium discharge unit 54 to the branch path 56P1 of the medium returning unit 56. Then, the sheet member P is turned inside out through the reversal path 56P and sent to the medium supply path 52P, and the image is formed (fixed) on the back surface of the sheet member P through the same image forming process as the above-described image forming process performed on the outer surface. The sheet member P is discharged to the discharged medium receiving unit 541 out of the apparatus by the medium discharge unit 54 through the same process as the above-described process following the image forming performed on the outer surface.


<Main Part Configuration>


Next, the silver toner that is used in the first custom color (V), the fixing device 40 (one example of a fixing unit), the changeover switch 170 (an example of a controller) used to select whether or not to apply the metallic gloss to the image, and the control by the device control unit 70 that is performed when the image is formed by using the silver toner will be described.


(Toner)


As illustrated in FIG. 1B, the silver toner that is used as the first custom color (V) is configured to contain pigments 110 as an example of the flat pigment and a binder resin 111, and is used when the metallic gloss is applied to the image. The image to which the metallic gloss is applied refers to an image that is formed by using the silver toner and a non-silver toner and an image that is formed by using only the silver toner.


The pigment 110 is formed of aluminum. When the pigment 110 is placed on a flat surface and viewed from a side, the pigment 110 is shaped such that a size in a left-right direction in the drawing is greater than a size in the up-down direction in the drawing as illustrated in FIG. 3B.


Furthermore, when the pigment 110 illustrated in FIG. 3B is viewed from above in the drawing, the pigment 110 has a wider shape than when viewed from the side as illustrated in FIG. 3A. In a state where the pigment 110 is placed on the flat surface (refer to FIG. 3B), the pigment 110 has a pair of reflecting surfaces 110A (flat surfaces) directed above or below. In this manner, the pigment 110 has a flat shape.


The non-silver toner (hereinafter, simply referred to as a “toner of another color”) used as the second custom color (W), yellow (Y), magenta (M), cyan (C), and black (K) is configured to contain a pigment (for example, an organic pigment and an inorganic pigment) that does not contain the flat pigment and the binder resin.


(Changeover Switch)


As shown in FIG. 9, the changeover switch 170 is placed on an upward surface 92A, on which a monitor 172 displaying information is positioned, in the second housing 92.


The changeover switch 170 is a switch that is operable by a user. Moreover, when the toner image formed by the silver toner is fixed to the sheet member P, the changeover switch 170 is a switch that may switch between whether or not it is performed according to fixation conditions different from when the toner images formed by other color toners are fixed to the sheet member P.


Specifically, it is possible to switch to a normal mode (an example of a first state) and a metallic gloss appearance mode (an example of a second state) using the changeover switch 170. The normal mode is a mode in which when the image formed by the silver toner is fixed to the sheet member P, an amount of heat similar to the amount of heat for the toner image applied by the fixing device 40 when the images formed by other color toners are fixed to the sheet member P is applied to the toner image. On the other hand, the metallic gloss appearance mode is a mode in which when the image formed by the silver toner is fixed to the sheet member P, an amount of heat for the toner image applied by the fixing device 40 is larger than the case of the normal mode.


(Fixing Device: Detail)


As illustrated in FIG. 6, the fixing device 40 includes a fixing module 120 as an example of a heating member that includes an endless-shaped fixing belt 122, and a pressurizing roller 150 as an example of a contact member that comes in contact with and pressurizes the fixing module 120. In addition, the fixing nip NF where the fixing belt 122 and the pressurizing roller 150 come into contact with each other is formed between the fixing belt 122 and the pressurizing roller 150.


Fixing Module

The fixing module 120 includes the above-described fixing belt 122, a supporting member 124, and an internal heating roller 126. The fixing belt 122 fixes the toner image to the sheet member P by heating the toner image while revolving to transport the sheet member P. The supporting member 124 supports the fixing belt 122 by receiving a pressurizing force of the pressurizing roller 150 at a position on an inner side of the fixing belt 122 which corresponds to the fixing nip NF. The internal heating roller 126 is arranged on the side of the inner side of the fixing belt 122 which is opposite to the fixing nip NF, and the fixing belt 122 is wound around the internal heating roller 126.


Although not illustrated herein, an elastic layer formed of silicone rubber is formed on a polyimide base material, for example, in the fixing belt 122. Furthermore, a fluorine resin-based release layer is formed on the elastic layer.


The supporting member 124 includes a fixing roller 128 as an example of a rotating member and a peeling pad 130 as an example of a peeling member, and the fixing roller 128 and the peeling pad 130 are arranged in this order from an upstream side of the transport direction of the sheet member P. When torque of a motor (not illustrated) is transmitted to the fixing roller 128, the fixing roller 128 rotates and the fixing belt 122 revolves in an arrow C direction.


The peeling pad 130 is configured to have an outer side surface 130A where a corner portion U that bends the fixing belt 122 is formed. When a leading edge of the sheet member P passes through the corner portion U, the leading edge of the sheet member P is peeled off from the fixing belt 122.


Furthermore, a support roller 134, a support roller 136, and a support roller 138 around which the fixing belt 122 is wound are arranged on the inner side of the fixing belt 122.


The support roller 134 is arranged on a downstream side with respect to the peeling pad 130 in a revolving direction of the fixing belt 122. Furthermore, the support roller 136 and the support roller 138 are arranged between the fixing roller 128 and the internal heating roller 126 in the vertical up-down direction.


The fixing module 120 further includes an external heating roller 132 that is arranged on an outer circumferential side of the fixing belt 122 to define a revolving path of the fixing belt 122. The external heating roller 132 is arranged to nip the fixing belt 122 between the support roller 138 and the external heating roller 132.


Halogen lamps 139A, 139B, and 139C are arranged, as an example of heaters, on inner sides of the fixing roller 128, the internal heating roller 126, and the external heating roller 132. The fixing roller 128 and the internal heating roller 126 are in contact with an inner circumferential surface 122B of the fixing belt 122 to heat the inner side of the fixing belt 122, and the external heating roller 132 is in contact with an outer circumferential surface 122A of the fixing belt 122 to heat the fixing belt 122 from outside.


Pressurizing Roller

As for the pressurizing roller 150, an outer circumference of a columnar roller main body 150A formed of, for example, aluminum is coated with an elastic body layer 150B formed of silicone rubber. Although not illustrated, a fluorine resin-based peeling layer with a thickness of 100 μm is formed on an outer circumference of the elastic body layer 150B. When the torque of the motor (not illustrated) is transmitted, the pressurizing roller 150 rotates in an arrow E direction in the drawing at a circumferential speed equal to a circumferential speed of the fixing belt 122.


Others

The fixing device 40 includes a pair of supporting members 140 that allow the pressurizing roller 150 and the fixing belt 122 to come into contact with each other and support the pressurizing roller 150 to be movable to a contact position (refer to FIG. 6) where the pressurizing roller 150 is pressurized to the fixing belt 122 and a separation position (refer to FIG. 5A) where the pressurizing roller 150 is separated from the fixing belt 122. The pair of supporting members 140 are respectively arranged on both sides in a depth direction of the apparatus (page face depth direction) with respect to the pressurizing roller 150, and support a rotation axis 151 of the pressurizing roller 150 via a bearing (not illustrated).


Furthermore, a pair of cylinders 142 that move the pressurizing roller 150 which is supported by the supporting members 140 to the contact position or the separation position are respectively arranged on both of the sides in the depth direction of the apparatus (page face depth direction) with respect to the pressurizing roller 150. The cylinders 142 move the rotation axis 151 of the pressurizing roller 150 via the bearing (not illustrated).


The fixing device 40 further includes a fan 146 as an example of a spraying member that blows air to the pressurizing roller 150.


The fixing device 40 further includes a temperature sensor 160 that detects an outer surface temperature of the fixing belt 122 in a non-contact manner, and a temperature sensor 162 that detects an outer surface temperature of the pressurizing roller 150 in a non-contact manner.


(Control Unit)


In the normal mode, when the image formed by the silver toner is fixed to the sheet member P, the device control portion 70 applies the amount of heat similar to the amount of heat for the toner image applied by the fixing device 40 when the images formed by other color toners are fixed to the sheet member P to the toner image.


On the other hand, in the metallic gloss appearance mode, when the image formed by the silver toner is fixed to the sheet member P, the device control portion 70 makes the amount of heat for the toner image applied by the fixing device 40 be larger than when the toner images formed by other color toners are fixed to the sheet member P.


The control of the device control unit 70 or the like will be described with an effect of the main part configuration (described later).


<Effect of Main Part Configuration>


Next, the effect of the main part configuration will be described.


When the toner image formed by the silver toner is fixed to the sheet member P in the metallic gloss appearance mode, as shown in FIG. 8, the device control portion 70 operates a toner image forming portion 20V of silver similar to the toner image forming portions 20 of other colors.


Specifically, the electrostatic latent image that corresponds to a site where the metallic gloss is applied to the image is formed on an outer surface of a photoconductor drum 21V. The electrostatic latent image is formed on the entire outer surface of the photoconductor drum 21V when the metallic gloss is applied to the entire surfaces of the sheet member P. When the metallic gloss is applied to a part thereof, the electrostatic latent image that corresponds to the part is formed.


The electrostatic latent image that is formed on the photoconductor drum 21V is developed by the developer containing the silver toner which is supplied from a developing device 24V. In this manner, a silver toner image is formed on the photoconductor drum 21V.


The silver toner image is transferred to the revolving image transfer belt 31, and the toner images of the other colors are sequentially transferred to the image transfer belt 31 after the silver toner image is transferred to the image transfer belt 31. In this manner, the superposed toner images, in which the toner images of the six colors are superposed, are formed on the image transfer belt 31. The superposed toner images (hereinafter, simply referred to as “toner images”) are transferred from the image transfer belt 31 to the sheet member P at the transfer nip NT.


The sheet member P to which the toner images are transferred is transported from the transfer nip NT of the transfer device 30 toward the fixing nip NF of the fixing device 40 by the intermediate transport unit 58. The fixing device 40 applies heat and pressure to the sheet member P that passes through the fixing nip NF. In this manner, the toner image transferred to the sheet member P is fixed.


Herein, the device control unit 70 controls the fixing device 40, and increases an amount of heat applied from the pressurizing roller 150 to the toner image during the fixing compared to when the silver toner is not used (normal mode).


Hereinafter, an overall control of the fixing device 40 by the device control unit 70 will be described, and then a control to increase the amount of heat at which the toner image is applied from the pressurizing roller 150 during the fixing will be described.


When the image forming apparatus 10 is off, the pressurizing roller 150 is arranged at the separation position as illustrated in FIG. 5A. When the image forming apparatus 10 is turned on, the device control unit 70 turns on the halogen lamps 139A, 139B, and 139C that are arranged on the inner sides of the fixing roller 128, the internal heating roller 126, and the external heating roller 132. In addition, the device control unit 70 controls the motor (not illustrated), rotates the fixing roller 128, and allows the fixing belt 122 to revolve (rotate) at a predetermined circumferential speed (belt warm-up process).


Furthermore, the device control unit 70 controls the motor (not illustrated) to rotate the pressurizing roller 150 at the circumferential speed equal to the circumferential speed of the fixing belt 122. In addition, the device control unit 70 receives information of the temperature sensor 160. Then, when the fixing belt 122 reaches a predetermined outer surface temperature (for example, 170[° C.]), the control unit 70 controls the cylinders 142 and moves the pressurizing roller 150 from the separation position to the contact position as illustrated in FIGS. 5A and 5B. Then, the control unit 70 allows the pressurizing roller 150 to come into contact with the revolving fixing belt 122. In this manner, the pressurizing roller 150 is heated (roller heating process).


Then, the device control unit 70 receives the information about the outer surface temperature of the pressurizing roller 150 from the temperature sensor 162. When the outer surface temperature of the pressurizing roller 150 reaches a predetermined temperature, the device control unit 70 controls the cylinders 142, and moves the pressurizing roller 150 from the contact position to the separation position (refer to FIG. 5A).


Furthermore, the device control unit 70 controls the lighting of the halogen lamps 139A, 139B, and 139C, maintains the outer surface temperature of the fixing belt 122 at a predetermined temperature, and controls operation and non-operation of the fan 146 so as to maintain the outer surface temperature of the pressurizing roller 150 at a predetermined temperature (standby state).


Here, when the toner image formed by the silver toner is fixed to the sheet member P in the metallic gloss appearance mode, for example, the device control portion 70 maintains the surface temperature of the pressure roller 150 at 135[° C.]. Moreover, in the case of the normal mode, or when the toner images formed by other color toners are fixed to the sheet member P (hereinafter, may be referred to as a “case of normal fixing”) in the metallic gloss appearance mode, for example, the device control portion 70 maintains the surface temperature of the pressure roller 150 at 70[° C.].


That is, compared to the case of normal fixing, when the toner image formed by the silver toner is fixed to the sheet member P in the metallic gloss appearance mode, the device control portion 70 increases the surface temperature of the pressure roller 150. In addition, the surface temperature of the fixing belt 122 is maintained at similar temperature in all cases.


The outer surface temperature of the pressurizing roller 150 may be changed by moving the pressurizing roller 150 to the contact position during the roller heating process and changing a length of time during which the pressurizing roller 150 and the fixing belt 122 are in contact with each other. Specifically, the length of time during which the pressurizing roller 150 and the fixing belt 122 are in contact with each other during the roller heating process in which when the silver toner is used in the metallic gloss appearance mode and the silver toner is used is longer than the length of time during which the pressurizing roller 150 and the fixing belt 122 are in contact with each other during the roller heating process of the case of normal fixing.


When the toner image is fixed to the sheet member P on which the toner image is formed, the pressurizing roller 150 that is maintained at a predetermined temperature is moved from the separation position to the contact position as illustrated in FIG. 6 and the pressurizing roller 150 and the fixing belt 122 are brought into contact with each other (fixable state). Then, the toner image is fixed to the sheet member P by transporting the sheet member P with the sheet member P being nipped between the fixing belt 122 and the pressurizing roller 150.


Here, as described above, compared to the case of normal fixing, when the toner image formed by the silver toner is fixed to the sheet member P in the metallic gloss appearance mode, the device control portion 70 increases the surface temperature of the pressure roller 150. Accordingly, compared to the case of normal fixing, when the toner image formed by the silver toner is fixed to the sheet member P in the metallic gloss appearance mode, the amount of heat applied from the pressure roller 150 side to the toner image is increased.


<Evaluation>


Next, a result of an ASTM E2194-based measurement of the flop index value (FI: flop index value) of the image that is formed on the sheet member P by the silver toner will be described with reference to FIG. 4. The flop index value is an index representing the metallic gloss. The larger the value is, the more the metallic gloss improves.


Evaluation Specification

1. OS coated paper W (manufactured by Fuji Xerox InterField, basis weight: 127 [g/m2], smoothness measured based on JISP 8119: 4,735 [Sec]) is used as the sheet member P.


2. Only the silver toner is used as the toner.


3. The outer surface temperature of the pressurizing roller 150 is 70 [° C.] or 135[° C.], and the amount of heat applied to the toner image formed on the sheet member P is changed by changing the outer surface temperature of the fixing belt 122.


Evaluation Result

A horizontal axis of a graph in FIG. 4 represents the amount of heat that the fixing device 40 applies to the toner image formed on the sheet member P, and a vertical axis of the graph in FIG. 4 represents the flop index value.


The graph shows a relationship between the amount of heat applied to the toner image, which is changed by changing the outer surface temperature of the fixing belt 122 with the outer surface temperature of the pressurizing roller 150 being at 70[° C.], and the flop index value. Furthermore, the graph shows a relationship between the amount of heat applied to the toner image, which is changed by changing the outer surface temperature of the fixing belt 122 with the outer surface temperature of the pressurizing roller 150 being at 135[° C.], and the flop index value.


Evaluation Summary

It is apparent from the graph that the flop index value is improved by increasing the amount of heat applied to the toner image if the outer surface temperature of the pressurizing roller 150 remains unchanged. In other words, it is apparent that the flop index value is improved by increasing the amount of heat applied to the toner image from a fixing belt 122 side.


Furthermore, it is apparent that the flop index value is improved by increasing the outer surface temperature of the pressurizing roller 150 when the amount of heat applied to the toner image remains unchanged. In other words, the flop index value is improved by increasing the amount of heat applied to the toner image from the pressurizing roller 150 side (a side of the sheet member P on which the image is not formed) when the amount of heat applied to the toner image remains unchanged.


In other words, the flop index value is improved by increasing the amount of heat applied to the toner image. During the application of the amount of heat to the toner image, the flop index value is more effectively improved when the amount of heat applied to the toner image from the pressurizing roller 150 side is increased than when the amount of heat applied to the toner image from the fixing belt 122 side is increased.


Hereinafter, a reason for the improvement of the flop index value following the increase in the amount of heat during the fixing of the toner image to the sheet member P will be described.


When the amount of heat is increased during the fixing of the toner image to the sheet member P, a resin binder that constitutes the toner is softened and a movement of the flat-shaped pigments 110 constituting the toner is facilitated in the binder. In this state, the toner image is pressurized toward the fixing belt 122 by the pressurizing roller 150 so that the reflecting surfaces 110A of the pigments 110 are directed to be orthogonal (X direction in the drawing) to a sheet surface of the sheet member P as illustrated in FIG. 1B. Furthermore, the pigments 110 line up in a direction (Y direction in the drawing) along the sheet surface of the sheet member P. The pigments 110 whose reflecting surfaces 110A are directed to be orthogonal to the sheet surface are arranged all over the sheet member P as illustrated in FIG. 2B.


The pigments 110 whose reflecting surfaces 110A are directed to be orthogonal to the sheet surface line up in the direction along the sheet surface as illustrated in FIG. 1B so that diffusion of reflected light reflected from the image is suppressed, as illustrated in FIG. 1A, compared to when the directions of the reflecting surfaces 110A of the pigments 110 are not constant. In this manner, the flop index value is improved.


In addition, when the pigments 110 whose reflecting surfaces 110A are directed to be orthogonal to the sheet surface are arranged all over the sheet member P as illustrated in FIG. 2B, a concealing ratio, that is, a ratio of the pigments 110 concealing the sheet member P, is improved compared to when the pigments 110 having the reflecting surfaces 110A whose directions are not constant are arranged on the sheet member P as illustrated in FIG. 2A. In other words, a reflective area, where the light that is incident from the outer surface of the sheet member P is reflected by the pigments 110, increases. The flop index value is improved in this manner as well.


Hereinafter, a reason for the effective improvement of the flop index value that follows the increase in the amount of heat applied to the toner image from the pressurizing roller 150 side when the total amount of heat applied to the image by the fixing device 40 remains unchanged, which is compared to when the amount of heat applied to the toner image from the fixing belt 122 side is increased, will be described.


As illustrated in FIG. 1B, the binder resin 111 is present also between the sheet member P and the pigments 110. Since the sheet member P is nipped between the fixing belt 122 and the pressurizing roller 150, the pigments 110 are pressed to a sheet member P side by the fixing belt 122. In this case of pressing, the reflecting surfaces 110A of the pigments 110 are along the sheet surface of the sheet member P as a degree of softening of the binder resin 111 present between the sheet member P and the pigments 110 increases, compared to when the degree of the softening is low.


When the heat is applied from a side (pressurizing roller 150 side) of the sheet member P where the toner image is not formed, the degree of the softening of the binder resin 111 present between the sheet member P and the pigments 110 increases. Accordingly, compared to when the amount of heat applied to the toner image from the fixing belt 122 side increases, the reflecting surfaces 110A of the pigments 110 are effectively along the sheet surface of the sheet member P when the amount of heat applied to the toner image from the pressurizing roller 150 side increases. As such, the flop index value is improved.


<Summary of Main Part Configuration>


As described above, the metallic gloss appearance mode and the normal mode are switched between using the changeover switch 170. In this way, when the toner image formed by the silver toner is fixed to the sheet member P, the toner images formed by other color toners being fixed to the sheet member P may be switched to the toner images being fixed to the sheet member P at fixation conditions different from the silver toner image or the toner images being fixed to the sheet member P at the same fixation conditions as the sliver toner image. In other words, it is possible to switch between whether the fixation conditions in which the toner images formed by the toner including pigment 110 are fixed to the sheet member P are preferential or productivity of an output image is preferential.


Moreover, compared to the case of normal fixing, when the toner image formed by the silver toner is fixed to the sheet member P in the metallic gloss appearance mode, the device control portion 70 increases the amount of heat applied to the toner image from the pressure roller 150 side.


As is apparent from the evaluation result described above, the reflecting surfaces 110A of the pigments 110 have a posture along the sheet surface of the sheet member P when the amount of heat applied to the toner image from the pressurizing roller 150 increases compared to when the amount of heat applied to the toner image from the fixing belt 122 side increases.


In addition, when the reflecting surfaces 110A of the pigments 110 have the posture along the sheet surface of the sheet member P, the flop index value is improved.


Moreover, the fixation conditions when the toner image formed by the silver toner is fixed to the sheet member P in the normal mode are similar to the fixation conditions when the toner image formed by the silver toner is fixed to the sheet member P. That is, the surface temperature of the pressure roller 150 is decreased (70° C.) by decreasing the time during which the pressure roller 150 and the fixing belt 122 contact with each other. Accordingly, the productivity when the toner image formed by the silver toner is fixed to the sheet member P in the normal mode is improved.


That is, when the toner image formed by the silver toner is fixed to the sheet member P, in the metallic gloss appearance mode, the flop index value is improved, and in the normal mode, the productivity of the output image is improved.


When the amount of heat applied to the image showing the metallic gloss is larger than the amount of heat applied to the image not showing the metallic gloss, the metallic gloss is further felt when original documents of the two images line up.


Second Exemplary Embodiment

Next, an example of an image forming apparatus according to a second exemplary embodiment of the invention will be described. The same reference numerals will be attached to the same members as in the first exemplary embodiment and description thereof will be omitted. Parts different from those of the first exemplary embodiment will be mainly described.


In the image forming apparatus according to the second exemplary embodiment, the length of time during which the pressurizing roller 150 and the fixing belt 122 are in contact with each other when the silver toner is used and the length of time during which the pressurizing roller 150 and the fixing belt 122 are in contact with each other when the silver toner is not used during the roller heating process are equal to each other.


In the image forming apparatus according to the second exemplary embodiment, the outer surface temperature of the pressurizing roller 150 may be changed by changing a rotation speed (circumferential speed) of the fixing belt 122 when the pressurizing roller 150 is brought into contact with the fixing belt 122 and is rotated, during the roller heating process, so as to heat the pressurizing roller 150.


Specifically, during the roller heating process, a device control unit 200 increases the rotational speed of the fixing belt 122 at a time when the silver toner is used to be greater than the rotational speed of the fixing belt 122 at a time when the silver toner is not used. Likewise, the rotational speed of the pressurizing roller is increased.


In other words, an area of the fixing belt 122 where the pressurizing roller 150 is brought into contact with the fixing belt 122 per unit time is increased. In this manner, the outer surface temperature of the pressurizing roller 150 becomes higher when the toner image formed by the silver toner is fixed to the sheet member P in the metallic gloss appearance mode, compared to the case of normal fixing. As for the other effects, the second exemplary embodiment is the same as the first exemplary embodiment.


Third Exemplary Embodiment

Next, an example of an image forming apparatus according to a third exemplary embodiment of the invention will be described. The same reference numerals will be attached to the same members as in the first exemplary embodiment and description thereof will be omitted. Parts different from those of the first exemplary embodiment will be mainly described.


In the image forming apparatus according to the third exemplary embodiment of the present invention, in the standby state, compared to the case of normal fixing, when the toner image formed by the silver toner is fixed to the sheet member P in the metallic gloss appearance mode, by controlling at least one of an operating time of the fan 146 and a blowing amount (an air blowing amount to the pressure roller 150) by the fan 146, the surface temperature of the pressure roller 150 is increased.


Specifically, a device control portion 210 makes the surface temperature of the pressure roller 150 be higher than the surface temperature of the pressure roller 150 when the silver toner is used in the metallic gloss appearance mode, in the roller heating process. Thereafter, the device control portion 210 makes the fixing device 40 be in the standby state.


In the standby state, the device control unit 210 controls the fan 146 and lowers the outer surface temperature of the pressurizing roller 150 to a predetermined outer surface temperature. When the outer surface temperature of the pressurizing roller 150 is lowered, the device control unit 210 puts the fan 146 into non-operation (stops the fan 146).


Here, compared to the case of normal fixing, when the toner image formed by the silver toner is fixed to the sheet member P in the metallic gloss appearance mode, at least one of the control that decreases the operating time of the fan 146 and the control that decreases the blowing amount by the fan 146 is performed by the device control portion 210. Accordingly, compared to the case of normal fixing, when the toner image formed by the silver toner is fixed to the sheet member P in the metallic gloss appearance mode, the surface temperature of the pressure roller 150 is increased.


In addition, when the surface temperature of the pressure roller 150 placed at the separation position is higher than a predetermined surface temperature due to the heat received from the fixing belt 122 side, the device control portion 210 decreases the surface temperature of the pressure roller 150 to a predetermined surface temperature by operating the fan 146 again.


Moreover, effects other than improvement of the productivity in the normal mode are similar to the first exemplary embodiment.


Fourth Exemplary Embodiment

Next, an example of an image forming apparatus according to a fourth exemplary embodiment of the invention will be described with reference to FIG. 10. The same reference numerals will be attached to the same members as in the first exemplary embodiment and description thereof will be omitted. Parts different from those of the first exemplary embodiment will be mainly described.


In the image forming apparatus according to the fourth exemplary embodiment, a distance between the transported sheet members P is changed when the toner image formed by the silver toner is fixed to sheet member P in the metallic gloss appearance mode and when the normal fixing is performed. Moreover, in descriptions below, the sheet member P, to which the toner image formed using the silver toner is fixed, may be referred to as a “sheet member P1”, and the sheet member P, to which the toner image formed without using the silver toner is fixed, may be referred to as a “sheet member P2”.


Specifically, when the toner images are continuously fixed to the sheet member P, a controller 220 makes a distance (S1 in FIG. 10) between the sheet member P1 and the sheet member P transported immediately before the sheet member P1 by the fixing device 40 be longer than a distance (S2 in FIG. 10) between the sheet member P2 and the sheet member P transported immediately before the sheet member P2 by the fixing device 40. Moreover, a transport speed of the sheet member P is constant.


Here, “the toner images being continuously fixed to the sheet member P” means that the pressure roller 150 and the fixing belt 122 contact with each other to be in a fixable state, and the toner images are continuously fixed to plural sheet members P while the fixable state is maintained.


That is, the pressure roller 150 and the fixing belt 122 contact with each other between the sheet members P continuously transported, and thus, the pressure roller 150 is heated. That is, compared to when the distance between the transported sheet members P is shorter, when the distance is longer, a heating degree of the pressure roller 150 is increased, and thus, the surface temperature of the pressure roller 150 is increased.


Here, as described above, the controller 220 makes the distance (S1 in FIG. 10) between the sheet member P1 and the sheet member P transported immediately before the sheet member P1 be longer than the distance (S2 in FIG. 10) between the sheet member P2 and the sheet member P transported immediately before the sheet member P2. Accordingly, compared to when the sliver toner is not used, when the silver toner is used, the surface temperature of the pressure roller 150 is increased.


Moreover, as the method that increases the distance between the sheet members P, the distance between the sheet members P is lengthened by changing the timing at which the toner image formed using the silver toner is transferred to the sheet member P. For example, by doubling a transfer interval when the toner image formed using the silver toner is transferred to the sheet member P compared to a transfer interval when the toner image formed without using the silver toner is transferred to the sheet member P, the distance between the sheet members P is lengthened.


Moreover, other effects are similar to the first exemplary embodiment.


Fifth Exemplary Embodiment

Next, an example of an image forming apparatus according to a fifth exemplary embodiment of the present invention will be described. Moreover, the same reference numerals are assigned to the same members as in the first exemplary embodiment, descriptions thereof are omitted, and the portions different from the first exemplary embodiment will be mainly described.


In the image forming apparatus according to the fifth exemplary embodiment, when the toner image formed by the silver toner is fixed to sheet member P in the metallic gloss appearance mode and when the normal fixing is performed, a difference between the amount of heat applied to the toner image from the fixing belt 122 side and the amount of heat applied to the toner image from the pressure roller 150 side is decreased.


Specifically, a device control portion 230 decreases the difference between the amount of heat applied to the toner image from the fixing belt 122 side and the amount of heat applied to the toner image from the pressure roller 150 side by increasing the surface temperature of the pressure roller 150. Moreover, other effects are similar to the first exemplary embodiment.


Sixth Exemplary Embodiment

Next, an example of an image forming apparatus according to a sixth exemplary embodiment of the present invention will be described with reference to FIG. 11. Moreover, the same reference numerals are assigned to the same members as in the first exemplary embodiment, descriptions thereof are omitted, and the portions different from the first exemplary embodiment will be mainly described.


In the image forming apparatus according to the sixth exemplary embodiment, when the toner image formed by the silver toner is fixed to sheet member P in the metallic gloss appearance mode, a device control portion 240 changes the transport path of the sheet member P in which the toner image is fixed to one surface.


Specifically, the device control portion 240 switches the transport path of the sheet member P after the sheet member passes through the image inspection portion 66 from the medium discharging path 54P of the medium discharging portion 54 to the branch path 56P1 of the medium returning portion 56. Accordingly, the front and the rear of the sheet member P are reversed via the inversion path 56P, and the sheet member is sent to the medium supply path 52P (refer to FIG. 9).


Moreover, the device control portion 240 does not form the toner image by the toner image forming portion 20. Accordingly, the sheet member P sent to the medium supply path 52P passes through the transfer nip NT without the transfer of the toner image. That is, the sheet member P is transported in a state where the other surface, on which the toner image is not formed in the sheet member P, is directed to above.


In addition, the sheet member P is transported to the fixing nip NF of the fixing device 40 by the intermediate transport portion 58. The fixing device 40 applies heat and pressure to the sheet member P passing through the fixing nip NF. Specifically, as shown in FIG. 11, the fixing belt 122 of the fixing module 120 configuring the fixing device 40 contacts with the other surface on which the toner image (“T” in FIG. 11) of the sheet member P is not formed, and heat is applied to the toner image from the other surface of the sheet member P.


That is, when the sheet member P is initially transported to the fixing device 40, the fixing belt 122 contacts with one surface on which the toner image of the sheet member P is formed, and when the sheet member P is transported to the fixing device 40 again, the fixing belt 122 contacts with the other surface of the sheet member P.


In addition, in the case of normal fixing, the sheet member P is not transported by the fixing device 40 again, and the sheet member is discharged to the discharged medium receiving portion 541 outside the apparatus by the medium discharging portion 54 (refer to FIG. 9).


In this way, compared to the case of normal fixing, when the toner image formed by the silver toner is fixed to the sheet member P in the metallic gloss appearance mode, the device control portion 240 increases the amount of heat applied to the toner image from the other surface of the sheet member P. Moreover, other effects are similar to the first exemplary embodiment.


The certain exemplary embodiments of the invention have been described above in detail, but the invention is not limited to the exemplary embodiments described above and it will be apparent to those skilled in the art that various other exemplary embodiments may be adopted within the scope of the invention. For example, in the exemplary embodiments, the metallic gloss appearance mode and the normal mode are switched between using the changeover switch 170. However, for example, the device control portion receives information with respect to a kind of paper, an environmental temperature, environmental moisture, or the like, and the metallic gloss appearance mode and the normal mode may be switched between by the device control portion.


Moreover, in the exemplary embodiments, it is possible to switch to the metallic gloss appearance mode (an example of a second state) and the normal mode (an example of a first state) using the changeover switch 170. However, the fixing device 40 is operated at a first fixation condition in which the toner images formed by other color toners are fixed to the sheet member P and a second fixation condition in which the amount of heat applied to the toner image is increased compared to the first fixation condition and the toner image formed by the silver toner is fixed to the sheet member P. In addition, the first fixation condition and the second fixation condition may be switched between using the changeover switch.


Moreover, in the exemplary embodiments, it is possible to switch to the metallic gloss appearance mode (an example of the second state) and the normal mode (an example of the first state) using the changeover switch 170. However, a mode other than the metallic gloss appearance mode and the normal mode may be provided, and this mode may be switched to.


In addition, although not particularly described in the exemplary embodiments above, the fixing module 120 may, for example, be configured to include only a heating roller whose outer surface is heated, without using the fixing belt 122, although the fixing module 120 is configured to include the fixing belt 122 in the exemplary embodiments above.


In addition, a member that heats the pressurizing roller 150 may be additionally disposed although the pressurizing roller 150 is heated by the fixing belt 122 in the exemplary embodiments above.


In addition, toner having a metallic color such as a gold color may be used as the toner containing the flat pigment although the toner using the silver toner is used in the exemplary embodiments above. The golden toner is, for example, configured to contain a flat pigment formed of aluminum or the like and a yellow pigment. In other words, the toner containing the flat pigment may contain a pigment other than the flat pigment.


In addition, the pressurizing roller 150 is rotated when the torque of the motor (not illustrated) is transmitted in the exemplary embodiments above. However, even without using a particular motor, the pressurizing roller may be driven and rotated by the fixing belt 122 that revolves when the pressurizing roller 150 and the fixing belt 122 come into contact with each other.


In addition, in the exemplary embodiments, the amount of heat from the other surface of the sheet member P, on which the toner image is not formed, is increased. However, the amount of heat from the one surface of the sheet member P, on which the toner image is formed, may be increased.


The foregoing description of the exemplary embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in the art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, thereby enabling others skilled in the art to understand the invention for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.

Claims
  • 1. An image forming apparatus comprising: a first image portion that uses toner including a flat pigment;a second image portion that uses toner that does not include the flat pigment;a fixing portion that fixes an image formed on a recording medium to the recording medium by heat; anda controller that performs a control that switches the fixing portion between a first state and a second state,wherein in the first state, an image formed by the toner including the flat pigment is fixed to the recording medium, and a first amount of heat similar to an amount of heat applied to the image by the fixing portion when an image formed by the toner that does not include the flat pigment is fixed to the recording medium is applied to the image, andwherein in the second state, the image formed by the toner including the flat pigment is fixed to the recording medium, and a second amount of heat applied to the image by the fixing portion is larger than the first amount of heat,wherein the controller controls the amount of heat applied in the first state or the second state by controlling a temperature of a contact member that comes into contact with a surface of the recording medium which is opposite to the surface on which the image is formed.
  • 2. An image forming apparatus comprising: a first image portion that uses toner including a flat pigment;a second image portion that uses toner that does not include the flat pigment;a fixing portion that is operable at a first fixation condition in which an image formed by the toner that does not include the flat pigment is fixed to the recording medium, and at a second fixation condition in which an amount of heat applied to the image is increased compared to the first fixation condition and an image formed by the toner including the flat pigment is fixed to the recording medium; anda controller that switches the fixation portion to using the first fixation condition or using the second fixation condition, when the image formed by the toner including the flat pigment is fixed to the recording medium,wherein the controller controls the amount of heat applied in the first fixation condition or the second fixation condition by controlling a temperature of a contact member that comes into contact with a surface of the recording medium which is opposite to the surface on which the image is formed.
  • 3. The image forming apparatus according to claim 1, wherein the fixing portion includes a heating member that comes into contact with one surface of the recording medium, on which the image is formed, and heats the image, and a contact member that comes into contact with the other surface of the recording medium, andthe fixing portion is switched to the second state by the controller, and the image formed on the recording medium by the toner including the flat pigment is fixed with the second amount of heat which is larger than the first amount of heat.
  • 4. An image forming apparatus comprising: a first image portion that uses toner including a flat pigment;a second image portion that uses toner that does not include the flat pigment;a fixing portion that is operable at a first fixation condition in which an image formed by the toner that does not include the flat pigment is fixed to the recording medium, and at a second fixation condition in which an amount of heat applied to the image is increased compared to the first fixation condition and an image formed by the toner including the flat pigment is fixed to the recording medium; anda controller that switches the fixation portion to using the first fixation condition or using the second fixation condition, when the image formed by the toner including the flat pigment is fixed to the recording medium, whereinthe fixing portion includes a heating member that comes into contact with one surface of the recording medium, on which the image is formed, and heats the image, and a contact member that comes into contact with the other surface of the recording medium, andthe fixing portion is switched to the second fixation condition by the controller, and the second amount of heat applied from the contact member to the image formed on the recording medium by the toner including the flat pigment is fixed is larger than an amount of heat applied when the image formed on the recording medium by the toner that does not include the flat pigment is fixed.
  • 5. An image forming apparatus comprising: a first image portion that uses toner including a flat pigment;a second image portion that uses toner that does not include the flat pigment;a fixing portion that fixes an image formed on a recording medium to the recording medium by heat; anda controller that performs a control that switches the fixing portion between a first state and a second state,wherein in the first state, an image formed by the toner including the flat pigment is fixed to the recording medium, and a first amount of heat similar to an amount of heat applied to the image by the fixing portion when an image formed by the toner that does not include the flat pigment is fixed to the recording medium is applied to the image, andwherein in the second state, the image formed by the toner including the flat pigment is fixed to the recording medium, and a second amount of heat applied to the image by the fixing portion is larger than the first amount of heat, whereinthe fixing portion includes a heating member that comes into contact with one surface of the recording medium on which the image is formed, and fixes the image to the recording medium by heating the image, and a contact member that comes into contact with the other surface of the recording medium, andthe fixing portion is switched to the second state by the controller, and compared to the first amount of heat applied when the image formed on the recording medium by the toner that does not include the flat pigment is fixed to the image formed on the recording medium by the toner including the flat pigment is fixed, a difference between an amount of heat applied to the image from the heating member and an amount of heat applied to the image from the contact member is smaller than the first amount of heat.
  • 6. An image forming apparatus comprising: a first image portion that uses toner including a flat pigment;a second image portion that uses toner that does not include the flat pigment;a fixing portion that is operable at a first fixation condition in which an image formed by the toner that does not include the flat pigment is fixed to the recording medium, and at a second fixation condition in which an amount of heat applied to the image is increased compared to the first fixation condition and an image formed by the toner including the flat pigment is fixed to the recording medium; anda controller that switches the fixation portion to using the flat fixation condition or using the second fixation condition, when the image formed by the toner including the flat pigment is fixed to the recording medium, whereinthe fixing portion includes a heating member that comes into contact with one surface of the recording medium on which the image is formed, and fixes the image to the recording medium by heating the image, and a contact member that comes into contact with the other surface of the recording medium, andthe fixing portion is switched to the second fixation condition by the controller, and compared to the first amount of heat applied when the image formed on the recording medium by the toner that does not include the flat pigment is fixed to the image formed on the recording medium by the toner including the flat pigment is fixed, a difference between an amount of heat applied to the image from the heating member and an amount of heat applied to the image from the contact member is smaller than the first amount of heat.
  • 7. The image forming apparatus according to claim 1, wherein the fixing portion fixes the image formed on the recording medium to the recording medium by heat while transporting the recording medium, andthe fixing portion is switched to the second state by the controller, and when the image formed on the recording medium by the toner including the flat pigment is fixed, the fixing portion transports the recording medium again after the image formed on the recording medium is fixed to the recording medium by the fixing portion.
  • 8. The image forming apparatus according to claim 2, wherein the fixing portion fixes the image formed on the recording medium to the recording medium by heat while transporting the recording medium, andthe fixing portion is switched to the second fixation condition by the controller, and when the image formed on the recording medium by the toner including the flat pigment is fixed, the fixing portion transports the recording medium again after the image formed on the recording medium is fixed to the recording medium by the fixing portion.
  • 9. A method of using an image forming apparatus, comprising: using a toner including a flat pigment;using a toner that does not include the flat pigment;fixing an image formed on a recording medium to the recording medium by heat with a fixing portion; andswitching the fixing portion between a first state and a second state,wherein in the first state, an image formed by the toner including the flat pigment is fixed to the recording medium, and a first amount of heat similar to an amount of heat applied to the image by the fixing portion when an image formed by the toner that does not include the flat pigment is fixed to the recording medium is applied to the image, andwherein in the second state, the image formed by the toner including the flat pigment is fixed to the recording medium, and a second amount of heat applied to the image by the fixing portion is larger than the first amount of heat.
Priority Claims (1)
Number Date Country Kind
2013-261537 Dec 2013 JP national
US Referenced Citations (15)
Number Name Date Kind
20040131817 Nagafuchi Jul 2004 A1
20070059017 Omura Mar 2007 A1
20090053631 Matsumura Feb 2009 A1
20120321362 Hirota Dec 2012 A1
20130070267 Kosasa Mar 2013 A1
20130078562 Takahashi et al. Mar 2013 A1
20130137030 Sato et al. May 2013 A1
20130206745 Tanaka Aug 2013 A1
20130244163 Sato et al. Sep 2013 A1
20140029966 Kojiri Jan 2014 A1
20140064803 Okabayashi et al. Mar 2014 A1
20140093267 Kubo et al. Apr 2014 A1
20140147148 Kiuchi May 2014 A1
20140356008 Harashima et al. Dec 2014 A1
20140356035 Harashima et al. Dec 2014 A1
Foreign Referenced Citations (3)
Number Date Country
2004-29194 Jan 2004 JP
2006-317632 Nov 2006 JP
2006-317633 Nov 2006 JP
Related Publications (1)
Number Date Country
20150168884 A1 Jun 2015 US