This application is based on and claims priority under 35 USC 119 from Japanese Patent Application No. 2021-137624 filed Aug. 25, 2021.
The present disclosure relates to an image forming apparatus.
Japanese Unexamined Patent Application Publication No. 63-11967 discloses an image forming apparatus including a plurality of image formers around an annular belt to be circulated by a driving roller and configured to transport paper (image forming target) to be subjected to image formation. The image formers face the belt and form images on the paper.
Aspects of non-limiting embodiments of the present disclosure relate to the following circumstances. If all the adjacent image formers are positioned at equal intervals, the image former positioned on a downstream side in a belt circulating direction may have a larger image misalignment amount in images formed by the adjacent image formers.
It is appropriate to suppress an increase in the image misalignment amount for the image former positioned on a downstream side in a transport direction of the image forming target compared with the case where all the adjacent image formers are positioned at equal intervals.
Aspects of certain non-limiting embodiments of the present disclosure address the above advantages and/or other advantages not described above. However, aspects of the non-limiting embodiments are not required to address the advantages described above, and aspects of the non-limiting embodiments of the present disclosure may not address advantages described above.
According to an aspect of the present disclosure, there is provided an image forming apparatus comprising an image forming target looped around a plurality of rotators including a driving roller, having at least one straight portion that is shaped straight when viewed in an axial direction of the driving roller, and transported by the driving roller and the rotators, and three or more image formers arranged along the straight portion and configured to form images on the image forming target, wherein an adjacency distance along the straight portion between the image formers adjacent to each other on the straight portion is an integral multiple of an outer peripheral length of the driving roller, and wherein the adjacency distance at a downstream end is shorter than the adjacency distance at an upstream end, and one of the adjacency distances is equal to or shorter than the adjacency distance that is relatively on an upstream side.
An exemplary embodiment of the present disclosure will be described in detail based on the following figures, wherein:
An exemplary embodiment of the present disclosure is described in detail below with reference to the drawings. An upstream side in a transport direction of recording paper P that is an example of a recording medium may hereinafter be referred to simply as “upstream side”. A downstream side in the transport direction may hereinafter be referred to simply as “downstream side”. An upstream side in a circulating direction (transport direction) of a transfer belt (belt) (image forming target) 52 may hereinafter be referred to simply as “upstream side”. A downstream side in the circulating direction (transport direction) may hereinafter be referred to simply as “downstream side”.
As illustrated in
In the following description, a width direction (horizontal direction) of the apparatus body is an X direction, an up-and-down direction (vertical direction) of the apparatus body is a Y direction, and a direction orthogonal to the X direction and the Y direction (direction orthogonal to each drawing sheet) is a Z direction.
<Image Forming Unit>
The image forming unit 12 has a function of forming toner images on the recording paper P. Specifically, the image forming unit 12 includes first photoconductor units 20, second photoconductor units 30, and a transfer device 50.
[Photoconductor Units]
As illustrated in
To distinguish yellow (Y), magenta (M), cyan (C), and black (K), the reference numerals of the members may be suffixed with letters “Y”, “M”, “C”, and “K”. Without the color distinction, the letters “Y”, “M”, “C”, and “K” may be omitted.
In the transfer device 50 described later, the transfer belt 52 made of an elastic material has two straight portions shaped straight when viewed in the Z direction.
The two straight portions are an upper portion 52A and a lower portion 52B. When viewed in the Z direction, the upper portion 52A extends along the X direction, and the lower portion 52B is inclined with respect to the X direction. That is, when viewed in the Z direction, an angle θB (see
The two first photoconductor units 20 face the outer peripheral surface (upper surface) of the upper portion 52A, and are arranged in the X direction along the upper portion 52A. In particular, the two first photoconductor units 20 are arranged so that the flat lower surfaces of support plates 28 of the first photoconductor units 20 described later are parallel to the outer peripheral surface (upper surface) of the upper portion 52A. The lower surface of the support plate 28 and the outer peripheral surface of the upper portion 52A face each other in the Y direction at a short distance therebetween. Each first photoconductor unit 20 includes the first photoconductor drum 22 that rotates in one direction (e.g., a counterclockwise direction in
The two second photoconductor units 30 face the outer peripheral surface (lower surface) of the lower portion 52B, and are arranged along the lower portion 52B. Each second photoconductor unit 30 includes the second photoconductor drum 32 that rotates in one direction (e.g., a counterclockwise direction in
The term “image former” in this specification and in the claims causes a toner or ink to adhere to the image forming target (e.g., the transfer belt 52). That is, the first photoconductor drum 22 of the first photoconductor unit 20 corresponds to the “image former”, and the second photoconductor drum 32 of the second photoconductor unit 30 corresponds to the “image former”. That is, the first charger 24, the first exposer 25, the first developer 26, and the first remover 27 do not correspond to the “image former”. Similarly, the second charger 34, the second exposer 35, the second developer 36, and the second remover 37 do not correspond to the “image former”. When the image forming apparatus 10 uses an ink jet system as described later, an ink jet head corresponds to the “image former”.
As illustrated in
As illustrated in
In each first photoconductor unit 20, the first charger 24 charges the outer peripheral surface of the first photoconductor drum 22. The first exposer 25 exposes the charged outer peripheral surface of the first photoconductor drum 22 to light to form an electrostatic latent image on the outer peripheral surface of the first photoconductor drum 22. The first developer 26 develops the formed electrostatic latent image to form a toner image. After the toner image is transferred onto the transfer belt 52, the first remover 27 removes the residual toner on the outer peripheral surface of the first photoconductor drum 22.
In each second photoconductor unit 30, the second charger 34 charges the outer peripheral surface of the second photoconductor drum 32. The second exposer 35 exposes the charged outer peripheral surface of the second photoconductor drum 32 to light to form an electrostatic latent image on the outer peripheral surface of the second photoconductor drum 32. The second developer 36 develops the formed electrostatic latent image to form a toner image. After the toner image is transferred onto the transfer belt 52, the second remover 37 removes the residual toner on the outer peripheral surface of the second photoconductor drum 32.
[Transfer Device]
As illustrated in
(First Transfer Rollers)
As illustrated in
(Transfer Belt)
As illustrated in
The driving roller 44 having a circular cross section is driven by a driver (not illustrated) to rotate about an axis 44X extending in the Z direction, thereby circulating the transfer belt 52 in a circulating direction indicated by an arrow A at a predetermined speed.
The diameter of the steering roller 45 having a circular cross section is equal to the diameter of the driving roller 44 within a tolerance. In other words, an outer peripheral length 45C of the steering roller 45 is equal to an outer peripheral length 44C of the driving roller 44 within a tolerance. The steering roller 45 is rotatable about an axis 45X extending in the Z direction. The steering roller 45 is configured to swivel about a center in the direction of the axis 45X. Therefore, the steering roller 45 suppresses a winding motion of the transfer belt 52.
Each of the first distance 20B between the two first photoconductor drums 22 and the second distance 30B between the two second photoconductor drums 32 is set to an integral multiple of each of the outer peripheral length 44C of the driving roller 44 and the outer peripheral length 45C of the steering roller 45. The second distance 30B is shorter than the first distance 20B. For example, in this exemplary embodiment, the first distance 20B is set to four times as large as each of the outer peripheral length 44C and the outer peripheral length 45C, and the second distance 30B is set to three times as large as each of the outer peripheral length 44C and the outer peripheral length 45C.
A distance along the transfer belt 52 between the first transfer position T1 of the first photoconductor drum 22 on the downstream side and the first transfer position T1 of the second photoconductor drum 32 on the upstream side differs from the first distance 20B and the second distance 30B. That is, the distance along the transfer belt 52 between the first transfer position T1 of the first photoconductor drum 22 on the downstream side and the first transfer position T1 of the second photoconductor drum 32 on the upstream side does not correspond to the “adjacency distance (first distance, second distance)” in the claims. The distance along the transfer belt 52 between the first transfer position T1 of the first photoconductor drum 22 on the downstream side and the first transfer position T1 of the second photoconductor drum 32 on the upstream side is also set to an integral multiple of each of the outer peripheral length 44C of the driving roller 44 and the outer peripheral length 45C of the steering roller 45.
The backup roller 46 faces the transfer barrel 60 across the transfer belt 52. A contact area between the transfer barrel 60 and the transfer belt 52 is a nip area Np (see
The loop roller 47 positioned on a downstream side of the second photoconductor unit 30K and on an upstream side of the backup roller 46 is rotatably in contact with the inner peripheral surface of the transfer belt 52. The loop roller 48 positioned on an upstream side of the first photoconductor unit 20Y and on a downstream side of the driving roller 44 is rotatably in contact with the inner peripheral surface of the transfer belt 52. The push roller 49 positioned on an upstream side of the loop roller 48 and on a downstream side of the driving roller 44 is rotatably in contact with the outer peripheral surface of the transfer belt 52 and pushes the transfer belt 52 toward the inner periphery. If the push roller 49 is not provided, a portion of the transfer belt 52 between the driving roller 44 and the loop roller 48 is shaped as indicated by an imaginary line in
<Transporter>
As illustrated in
<Fixing Device>
As illustrated in
Next, the image forming apparatus 10 having the structure described above is described in detail.
As described above, each of the first distance 20B between the two first photoconductor drums 22 and the second distance 30B between the two second photoconductor drums 32 is set to an integral multiple of the outer peripheral length 44C of the driving roller 44.
The second distance 30B between the two second photoconductor drums 32 positioned on the downstream side of the first photoconductor drums 22 is shorter than the first distance 20B. In a comparative example (not illustrated) in which the first distance 20B is equal to the second distance 30B, the second distance 30B is adjusted to the first distance 20B. Therefore, a distance along the transfer belt 52 from the driving roller 44 to the second photoconductor unit 30K is shorter in this exemplary embodiment than in the comparative example. As this distance increases, the cumulative amounts of variation in the speed of the transfer belt 52 and variation in the adjacency distance increase. In the comparative example, the misregistration amount of the toner images on the second photoconductor unit 30C and the second photoconductor unit 30K tends to increase compared with the misregistration amount of the toner images on the first photoconductor unit 20Y and the first photoconductor unit 20M. In the exemplary embodiment, the distance between the second photoconductor unit 30C and the second photoconductor unit 30K (second distance 30B) is shorter than in the comparative example. Therefore, the cumulative amounts of the variation in the speed and the variation in the adjacency distance are smaller than in the comparative example.
When viewed in the Z direction, the acute angle θB between the straight lower portion 52B and the horizontal direction (X direction) is larger than the angle θA between the straight upper portion 52A and the horizontal direction. The two second photoconductor units 30 are provided along the lower portion 52B. When viewed in the Z direction, the second distance 30B (adjacency distance) between the two rotation axes 30X is shorter than the first distance 20B (adjacency distance) between the two rotation axes 20X. Therefore, the horizontal dimension 30G of the portion including the lower portion 52B and the two second photoconductor units 30 is small compared with a case where the lower portion 52B extends in the horizontal direction and the first distance 20B is equal to the second distance 30B.
The upper portion 52A and the lower portion 52B are arranged in the Y direction. Therefore, a horizontal dimension 23L of a portion including the upper portion 52A and the lower portion 52B is small compared with a case where the lower portion 52B and the upper portion 52A are positioned away from each other in the horizontal direction.
The horizontal dimension 30L of each second photoconductor unit 30 is smaller than the horizontal dimension 20L of each first photoconductor unit 20.
When viewed in the Z direction, the two second photoconductor units 30 are partly arranged in the up-and-down direction (Y direction). Therefore, the horizontal dimension 30E of the portion including the two second photoconductor units 30 is small compared with a case where the two second photoconductor units 30 are arranged away from each other in the X direction when viewed in the Z direction.
The push roller 49 that is positioned between the driving roller 44 and the loop roller 48 and is rotatably in contact with the outer peripheral surface of the transfer belt 52 pushes the transfer belt 52 toward the inner periphery.
The image forming apparatus 10 may include a transfer belt 52 (belt) having at least one straight portion and three or more photoconductor drums (image formers). For example, a transfer belt 52 of an image forming apparatus 10 according to a first modified example illustrated in
For example, the first distance 20B is set to four times as large as each of the outer peripheral length 44C and the outer peripheral length 45C, the adjacency distance 23B is set to 3.5 times as large as each of the outer peripheral length 44C and the outer peripheral length 45C, and the second distance 30B is set to three times as large as each of the outer peripheral length 44C and the outer peripheral length 45C.
In the image forming apparatus 10, it is appropriate that the adjacency distance at the downstream end be shorter than the adjacency distance at the upstream end and one adjacency distance be equal to or shorter than the adjacency distance that is relatively on the upstream side. Thus, the image forming apparatus 10 according to the exemplary embodiment of the present disclosure has any one of the following relationships 1 to 3 for the adjacency distances.
Relationship 1: first distance 20B>adjacency distance 23B=second distance 30B
Relationship 2: first distance 20B=adjacency distance 23B>second distance 30B
Relationship 3: first distance 20B>adjacency distance 23B>second distance 30B
In a case where the transfer belt 52 has a plurality of straight portions, three or more photoconductor drums (image formers) may be arranged along the straight portions.
When viewed in the Z direction, a distance (adjacency distance) between the rotation axes 20X of the two first photoconductor units 20 is the first distance 20B. When viewed in the Z direction, a distance (adjacency distance) between the rotation axes 30X of the two second photoconductor units 30 is the second distance 30B. As illustrated in
When viewed in the Z direction, the two second photoconductor units 30 are partly arranged in the Y direction. In
In the image forming apparatus 10 of the second modified example illustrated in
Therefore, the horizontal dimension of a portion including the downstream portion 52D and the two second photoconductor units 30 is small compared with a case where the downstream portion 52D is parallel to the horizontal direction and the second distance 30B is equal to the first distance 20B.
When viewed in the Z direction, the two second photoconductor units 30 are partly arranged in the Y direction. Therefore, the horizontal dimension 30F of the portion including the two second photoconductor units 30 is small compared with a case where the two second photoconductor units 30 are arranged away from each other in the X direction when viewed in the Z direction.
In the image forming apparatus 10, the first photoconductor units 20 and the second photoconductor units 30 may form the toner images on the recording paper P (image forming target) transported by a transport belt (not illustrated) provided in place of the transfer belt 52.
The toner image is described as an example of the image, and is formed by a dry type electrophotographic system. The exemplary embodiment of the present disclosure is not limited thereto. For example, the toner image may be formed by a wet type electrophotographic system, or the image may be formed by an ink jet system.
In the image forming apparatus 10, an ink or toner image may be formed on long non-annular continuous paper (image forming target) placed over a plurality of rotators including the driving roller 44, having at least one straight portion by the rotators, and transported by the driving roller 44 and the rotators.
In a case where the image forming apparatus 10 uses the ink jet system, each of a first distance between the centers of ink jet heads (image formers) corresponding to the first photoconductor units 20 and a second distance between the centers of ink jet heads (image formers) corresponding to the second photoconductor units 30 is set to an integral multiple of each of the outer peripheral length 44C and the outer peripheral length 45C.
In the case where the image forming apparatus 10 includes the first photoconductor units 20 and the second photoconductor units 30, the adjacency distances may be equal to each other within a tolerance. In the case where the image forming apparatus 10 includes the ink jet heads, the adjacency distances may similarly be equal to each other within a tolerance.
Both in the cases where the image forming apparatus 10 includes the first photoconductor units 20 and the second photoconductor units 30 and where the image forming apparatus 10 includes the ink jet heads, each adjacency distance need not be an integral multiple of each of the outer peripheral length 44C and the outer peripheral length 45C.
The diameter of the steering roller 45 may differ from the diameter of the driving roller 44. Also in this case, the diameter of the steering roller 45 and the diameter of the driving roller 44 may be set so that each adjacency distance is an integral multiple of each of the outer peripheral length 45C and the outer peripheral length 44C.
The colors of the images (toner or ink images) to be formed on the image forming target (transfer belt 52 or recording medium P) need not be four colors. For example, six colors may be used for the images.
For example, in a case where three or more first photoconductor units 20 are arranged along the upper portion 52A or the upstream portion 52C, all the plurality of first distances may be equal to each other within a tolerance, or at least one first distance may differ from the other first distance. In the claims, description “all the first distances are equal to each other” means that all the plurality of first distances are equal to each other within the tolerance. For example, the first distance between the first photoconductor unit 20 at the downstream end and the first photoconductor unit 20 adjacent to this first photoconductor unit 20 may be shorter than the first distance between the first photoconductor unit 20 at the upstream end and the first photoconductor unit 20 adjacent to this first photoconductor unit 20.
For example, in a case where three or more second photoconductor units 30 are arranged along the lower portion 52B or the downstream portion 52D, all the plurality of second distances may be equal to each other within a tolerance, or at least one second distance may differ from the other second distance. In the claims, description “all the second distances are equal to each other” means that all the plurality of second distances are equal to each other within the tolerance. For example, the second distance between the second photoconductor unit 30 at the downstream end and the second photoconductor unit 30 adjacent to this second photoconductor unit 30 may be shorter than the second distance between the second photoconductor unit 30 at the upstream end and the second photoconductor unit 30 adjacent to this second photoconductor unit 30.
The foregoing description of the exemplary embodiments of the present disclosure has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in the art. The embodiments were chosen and described in order to best explain the principles of the disclosure and its practical applications, thereby enabling others skilled in the art to understand the disclosure for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the disclosure be defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2021-137624 | Aug 2021 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
8126380 | Kawano et al. | Feb 2012 | B2 |
20030108366 | Yamada et al. | Jun 2003 | A1 |
20070242980 | Kikuchi | Oct 2007 | A1 |
20100310281 | Miura | Dec 2010 | A1 |
20170275111 | Nakajima | Sep 2017 | A1 |
Number | Date | Country |
---|---|---|
S63-11967 | Jan 1988 | JP |
2002-108045 | Apr 2002 | JP |
2009-80325 | Apr 2009 | JP |
Entry |
---|
Nov. 28, 2022 Extended European Search Report Issued in European Patent Application No. 22166245.5. |
Number | Date | Country | |
---|---|---|---|
20230066747 A1 | Mar 2023 | US |