Image forming apparatus with highly operable sheet discharge device

Information

  • Patent Grant
  • 6279892
  • Patent Number
    6,279,892
  • Date Filed
    Friday, April 16, 1999
    25 years ago
  • Date Issued
    Tuesday, August 28, 2001
    23 years ago
Abstract
An image forming system includes a digital copy machine to form an image on a group of sheets from an image of a group of documents, and a staple sorter sorting and discharging copied sheets from the digital copy machine, According to the staple sorter, control is provided so that a sheet of a long left period of time is transported from the bin to a nonsort tray when all of a plurality of bins provided in the staple sorter are used during a print operation. The left time of a sheet is monitored even when a print operation is not carried out. When the left time exceeds a predetermined time, control is provided so that the sheet left in the bin is transferred to the nonsort tray. As a result, a sheet discharge device is provided improved in operability of sheet discharge.
Description




This application is based on Japanese Patent Application Nos. 10-107789 and 10-170068 filed in Japan, the contents of which are hereby incorporated by reference.




BACKGROUND OF THE INVENTION




The present invention relates to a sheet processing device to sort and discharge a sheet on which an image is formed, and an image forming system including this sheet processing device and an image forming apparatus.




DESCRIPTION OF RELATED ART




In an image forming apparatus including a conventional sheet processing device, there are cases when a plurality of users share one printer. In order to prevent a subsequent printed sheet from being mixed up at the sheet discharge unit, a sensor is provided to detect the presence of a sheet corresponding to each of a plurality of discharge bins to select an appropriate discharge bin to discharge a sheet.




Such a printer is limited in the number of the discharge bins. When a sheet is discharged and left at all the discharge bins, discharge of another sheet will cause that sheet to be mixed up with the sheet already left on any of the discharge bins.




As an image forming apparatus including such a sheet processing device, the technique disclosed in Japanese Patent Laying Open Nos. 8-9169, 6-92538, and 8-20457 is known.




According to the technique disclosed in Japanese Patent Laying-Open No. 8-9169, a sheet will be discharged to a particular discharge unit when all the discharge bins have sheets output therein. However, the problem of a newly output sheet being mixed up with the sheet left on the discharge bin will not be solved. This is inconvenient for the user. The operability in discharging a sheet is not satisfactory.




According to the technique disclosed in Japanese Patent Laying-Open Nos. 6-92538 and 8-20457, the position of the discharge bin is shifted to the left and the right to easily identify the interval between a job (one set of a series of printing process for a group of original documents). However, such a structure will increase the cost, and mixture of the discharge sheets cannot be avoided even when the output sheets are shifted and mounted for every job at the discharge bin. Furthermore, the interval between the jobs cannot be easily detected at a glance even when shifting is carried out on the discharge bins arranged in the vertical direction. This may cause the user inconvenience. The operability in discharging a sheet is not of the satisfactory level.




It is to be noted that the capacity of storing sheets in the bin of the sheet output device (bin capacity) is limited. The sheet output must be suppressed during the operation when the bin capacity has come to its limit.




A sheet output device is proposed to continue the sheet output at another bin when the capacity of the current bin arrives at its limit. When sheets are output into separate plurality of bins, there is a possibility that not all the sheets may be collected. The user may forget about the other sheets in another bin. There is a problem that, not only the operability of the user specifying the current sheet output, but also the operability of other users, will be degraded.




SUMMARY OF THE INVENTION




In view of the foregoing, an object of the present invention is to provide a sheet processing device improved in operability, connected to an image forming apparatus.




Another object of the present invention is to prevent sheets discharged corresponding to a plurality of image forming jobs, if any, from being mixed up at the discharge unit in a sheet processing device connected to an image forming apparatus.




A further object of the present invention is to prevent a discharged sheet of another job from being mixed up when the number of the sections where sheets are discharged corresponding to a plurality of image forming jobs, if any, is limited and all the sections are occupied by one job in a sheet processing device connected to an image forming apparatus.




Still another object of the present invention is to provide a sheet processing device improved in operability.




A still further object of the present invention is to provide an image forming system including an image forming apparatus and a sheet discharge device connected thereto and improved in operability.




The above objects can be achieved by a sheet processing device that processes a discharge sheet.




According to an aspect of the present invention, a sheet processing device which processes sheets discharged from an image forming apparatus executing a print job, includes: a first discharge tray; a plurality of second discharge trays; a plurality of sensors which detects whether there is a sheet on each of the plurality of second discharge trays, a transport unit which transports a bundle of sheets from the second discharge tray to the first discharge tray; and a controller which controls the transport unit so that, when detection is made of a sheet on all the second discharge trays by the sensor at the time of discharging a sheet by a new job, at least one of second discharge trays is selected according to a predetermined condition to transport a bundle of sheets from the selected second discharge tray.




When the sensor detects that sheets are discharged at all the plurality of second discharge trays in the event of discharging a sheet according to a new process job, a second discharge tray is selected according to a predetermined condition. The sheet already discharged on the selected second discharge tray is transported onto the first discharge tray. The sheet output from the new process job is discharged onto the second discharge tray from which the sheet has been removed.




Accordingly, a second discharge tray on which a sheet is not placed is prearranged. A sheet is discharged corresponding to the new job onto the prearranged second discharge tray. Therefore, the sheet output corresponding to a new job will not be mixed up at the discharge tray. Thus, the operability of the device is improved




According to another aspect of the present invention, a sheet processing device includes: a first discharge tray; a plurality of second discharge trays; a plurality of timers which count the time of a bundle of sheets left on each of the plurality of second discharge trays; a transport unit which transports the bundle of sheets discharged on the second discharge tray to the first discharge tray; and a controller which controls the transport operation of the transport unit according to the count result of the timers. The bundle of sheets discharged on the second discharge tray is transported to the first discharge tray according to the time of the bundle of discharged sheets left at the plurality of second discharge trays. As a result, the bundle of sheets left for a long period are discharged to the first discharge tray, and the second discharge tray is prepared for a new job.




According to a further aspect of the present invention, a sheet processing device which processes sheets discharged from an image forming apparatus that executes a print job, includes: a memory which stores identification information of a user requesting a job corresponding to a plurality of jobs; a first discharge tray; a plurality of second discharge trays; a transport unit which transports to the first discharge tray a bundle of sheets discharged on the second discharge tray; and a controller which controls the transport unit so that a bundle of sheets of a previous job is transported from a second discharge tray when the user of a new job differs from the user of the previous job at the time of discharging a sheet by the new job to that second discharge tray from which the sheet of the previous job has been discharged




When a sheet according to a newly processed job is to be discharged onto a second discharge tray in which a sheet is already discharged according to the detection by the sensor, the sheet according to the newly processed job is discharged onto the second discharge tray on which a sheet is already discharged when the user processing the new job is the same user processing the previous job corresponding to the sheet already discharged on the second discharge tray, and the sheet already discharged on the second discharge tray is transported to the first discharge tray so that the sheet according to the newly processed job is discharged onto that second discharge tray from which the sheet has been removed by the transportation when the user processing the new job differs from the user processing the previous job corresponding to the sheet already discharged on the second discharge tray.




Thus, a second discharge tray on which no sheet is placed is prearranged. A sheet corresponding to a new job is discharged onto the prearranged second discharge tray. The sheet output corresponding to the new job will not be mixed up at the discharge sheet unit. Thus, the operability of the device is improved.




According to still another aspect of the present invention, a sheet processing apparatus includes: a first discharge tray; a plurality of second discharge trays; a detector which detects a state that a sheet cannot be discharged to at least one of the plurality of second discharge trays; a transport unit which transports a bundle of sheets discharged on the second discharge tray to the first discharge tray; and a controller which controls the transport operation of the transport unit according to a detect result of the detector.




Detection such as capacity overflow is made for at least one of the plurality of second discharge trays. A sheet is transported to the first discharge tray according to the detection. Thus, a sheet processing device improved in operability can be provided.




The foregoing and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

schematically shows an entire structure of an image forming system including a staple sorter and a digital copy machine connected to the staple sorter according to a first embodiment of the present invention.





FIG. 2

is a schematic sectional view of a structure of a digital copy machine.





FIG. 3

is a plan view of a structure of an operation panel


150


provided at a top plane of a digital copy machine.





FIG. 4

is a diagram to describe a structure of a staple sorter.





FIGS. 5

,


6


,


7


,


8


,


9


and


10


are diagrams to describe the movement of a sheet bundle transport gate in a staple sorter.





FIG. 11

is a block diagram showing a structure of a control unit controlling a digital copy machine and a staple sorter connected to the digital copy machine.





FIG. 12

shows a bin information management table stored in a RAM.





FIG. 13

is a flow chart showing the control procedure of a CPU at a staple sorter.





FIG. 14

shows a user information management table stored in a RAM produced by the CPU that controls a staple sorter of an image forming system according to a second embodiment of the present invention.





FIG. 15

shows a bin information management table stored in a RAM produced by the CPU that controls the staple sorter.





FIG. 16

is a flow chart showing the control procedure at the CPU that controls the staple sorter.





FIGS. 17

,


18


,


19


,


20


,


21


,


22


,


23


,


24


and


25


are flow charts showing a select process A, B, C, D, E, F, G, H and I, respectively, of a bin for stacking.





FIG. 26

shows a user information management table stored in a RAM produced by the CPU that controls a staple sorter of an image forming system according to a third embodiment of the present invention.





FIG. 27

is a flow chart showing a control procedure of the CPU that controls the staple sorter.





FIG. 28

specifically shows a bin information management table according to a fourth embodiment of the present invention.





FIGS. 29A and 29B

are flow charts of the process of the CPU of the fourth embodiment.





FIG. 30

is a flow chart showing a subroutine of a stack process in the fourth embodiment.





FIG. 31

is a diagram to describe a mechanism of shifting a nonsort tray.





FIG. 32

shows a shifted state of the nonsort tray.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




An image forming system including a staple sorter and a digital copy machine connected to the staple sorter according to embodiments of the present invention will be described hereinafter with reference to the drawings.




FIRST EMBODIMENT





FIG. 1

is a diagram to describe an entire structure of an image forming system including a staple sorter


10


and a digital copy machine


200


connected to staple sorter


10


according to a first embodiment of the present invention.




In digital copy machine


200


, an operation of a user is input via an operation panel


150


(refer to

FIGS. 2 and 3

) in forming an image. In response to a user input, a circulation type automatic document transport device


500


mounted on digital copy machine


200


feeds out one document at a time of one group of documents placed on a predetermined document supply tray onto a glass platen. When an exposure process is applied on the document on the glass platen, document transport device


500


discharges the document on the platen glass sequentially onto a document discharge tray.




As shown in

FIG. 2

, digital copy machine


200


forms an image on a sheet from the image of a document read by an exposure process according to electrophotography. The sheet on which an image is formed is transferred to staple sorter


10


to be discharged on a nonsort tray


20


of staple sorter


10


or on a discharge bin of a bin assembly


30


.




Referring to

FIG. 2

, digital copy machine


200


is constituted mainly by an automatic document transport device


500


transporting a document and inverting the front and back side of a document, if necessary, a reader IR reading out an image of a document to generate image data, a memory unit


230


temporarily storing image data obtained by reader IR, a printer device PRT printing out on a copy sheet according to the image data stored in memory unit


230


, an operation panel


150


(provided at the top plane of digital copy machine


200


(vertical direction in the drawing) to enter an operation, and an external input/output control unit


250


to input/output data.




When a print operation is designated at automatic document transport device


500


, the document set on a document supply tray


501


is set at the readout position on glass platen


215


automatically starting from the bottom sheet of documents. When the reading operation by reader IR is completed, the document is discharged on discharge tray


502


.




Reader IR includes a scanning system


210


and an image signal processor


220


. At scanning system


210


, the image of the document set at the read position is exposed by an exposure lamp


211


attached to a scanner


216


that travels below the document. The reflected light from the document passes through a reflection mirror and a condenser lens


212


to enter photoelectric conversion elements


213


and


214


employing a CCD array and the like. The signal obtained by scanning system


210


is sent to image signal processor


220


. Image signal processor


220


applies various image processes on the input signal such as binailization, picture quality correction, variable scale magnification, and image editing. The image data subjected to the image process is stored in memory unit


230


.




Printer device PRT includes a print processor


240


, an optical system


260


, an image forming system


270


, and a sheet transport system


280


. Print processor


240


drives optical system


260


according to the image data from memory unit


230


. At optical system


260


, semiconductor lasers


261


and


262


emit a laser beam respectively according to the signal under control of print processor


240


. The laser beams are combined at a dichroic. mirror


263


and reflected by a polygon mirror


265


that is rotated by a motor


264


. The reflected beam passes through a main lens


266


to be directed to a photoconductor


271


of image forming system


270


.




At image forming system


270


, photoconductor


271


is charged by a corona charger


272


. Then, the laser beam from optical system


260


is directed thereto. Accordingly, an electrostatic latent image is formed on photoconductor


271


. Then, toner is placed on the electrostatic latent image by a developing device


273


. The toner image on photoconductor


271


is transferred onto a copy sheet fed from a sheet feed cassette


280




a


or a sheet feed cassette


280




b


of sheet transport system


280


. The sheet is then delivered to a fixer


282


by a sheet feed transport belt


281


. The toner is fixed on the sheet by heat and pressure. Then, the sheet is discharged towards a pair of input rollers


81


of staple sorter


10


(refer to

FIG. 4

) connected to digital copy machine


200


.




External input/output control unit


250


transfers data between a local network (LAN) and a public telephone line (PSTN). External input/output control unit


250


includes a facsimile converter to transmit/receive data to/from memory unit


230


in a facsimile operation mode to carry out conversion of the pixel density, coding method and the like, a G


3


unit providing communication control such as modulation and demodulation of image data and control signals in a facsimile operation mode and also connected to a telephone line for communication control with a PSTN, and a network controller connected to a LAN to provide network control for transferring control signals and image data with an external device connected to the LAN.





FIG. 3

is a plan view to describe the structure of operation panel


150


on the top plane of digital copy machine


200


.




Operation panel


150


includes a touch panel


151


on which the copy condition and the internal status of digital copy machine


200


are displayed by liquid crystal, and through which a predetermined operation can be input to set the copy condition and the like, a ten key


152


to input numerics of the number of copies, the copy scale rate and the like, a reset key


153


to reset the copy condition specified by the user, an interrupt key


154


to interrupt the current process, and a start key


155


to designate initiation of the copy operation.





FIG. 4

is a diagram to describe the internal structure of staple sorter


10


.




Staple sorter


10


includes a sheet transport unit


80


, a bin assembly


30


of five stages of discharge bins


311


-


315


(referred to as bins


315


-


335


hereinafter), a staple unit


70


for stapling a bundle of sheets, if necessary, a remove unit


40


driven by a motor M


70


to deliver the bundle of sheets on bins


311


-


315


to a sheet bundle transport gate


100


for removal, a nonsort tray


20


, and sheet bundle transport gate


100


transporting the bundle of sheets removed from bins


311


-


315


by remove unit


40


onto nonsort tray


20


.




The following description is mainly focused on sheet transport unit


80


, bin assembly


30


, staple unit


70


and sheet bundle transport gate


100


with reference to FIG.


4


.




Sheet transport unit


80


includes a roller pair


81


to receive a sheet discharged from digital copy machine


200


(refer to FIG.


1


), a first transport unit


83


to transport a sheet in substantially a vertical direction, a switching claw


82


to switch the sheet transport direction towards first transport unit


83


or sheet bundle transport gate


100


, and a second transport unit


90


to transport the sheet from first transport unit


80


towards bin assembly


30


in a substantially horizontal direction.




Here, switching claw


82


can be made to rotate about a support shaft


82




a


according to the ON/OFF of a solenoid SL


50


.




When solenoid SL


50


is off, switching claw


82


is set at the position shown in FIG.


4


. In this case, the sheet discharged from digital copy machine


20


and received by input roller pair


81


is guided by the curved right surface of switching claw


82


to be sent to first transport unit


83


.




When solenoid SL


50


is on, switching claw


82


rotates clockwise from the position shown in FIG.


4


. In this case, the sheet discharged from digital copy machine


200


and received by roller pair


81


is guided on the upper surface of switching claw


82


by a guide plate


79


to be transported to nonsort tray


20


through sheet bundle transport gate


100


.




First transport unit


83


includes guide plates


84


-


87


to guide the sheet, transport roller pairs


88


and


89


to transport a sheet. A punch unit


75


is arranged at the middle stage portion to form a binding hole at the leading end or trailing end in the transportation direction of the sheet. Second transport unit


90


includes a pair of transport rollers


91


and


92


to transport a sheet, and guide plates


93


and


94


to guide a sheet. Guide plate


94


is attached to the side plate portion of guide plate


93


. Transport roller


91


is attached to one end of guide plate


94


. Second transport unit


90


can be moved about a support shaft


95


approximately 90° in the direction of arrow a from the position shown in FIG.


4


.




In staple sorter


10


, second transport unit


90


takes the position shown in

FIG. 4

when sheets are distributed towards bins


311


-


315


. The sheet delivered from first transport unit


83


by transport rollers


91


and


92


is sent towards bin assembly


30


. Second transport unit


90


rotates substantially 90° in the direction of arrow a about support shaft


95


to be withdrawn from the sheet transport position when a bundle of sheets from bins


315


-


316


are to be output on nonsort tray


20


.




A sensor SE


21


is arranged at second transport unit


90


. Sensor SE


21


senses the sheet stored in bins


311


-


315


and the bundle of sheets removed from bins


311


-


315


.




Input roller pair


81


, transport roller pairs


88


and


89


, transport rollers


91


and


92


, and remove rollers


42


and


43


of remove unit


40


to deliver the bundle of sheets to sheet bundle transport gate


100


in removing the bundle of sheets from bins


311


-


315


are rotated by a driving force transmission means not shown by a motor M


50


.




Bin assembly


30


includes five stages of bins


311


-


315


. Each of bins


311


-


315


is arranged at a constant interval in a slanted manner. A pin


32


provided at the lower end side of each of bins


311


-


315


engages with a spiral groove formed at the outer perimeter of a drive shaft not shown provided in the vertical direction. The drive shaft is rotated in one direction or the opposite direction by a motor M


60


to raise/lower each of bins


311


-


315


.




Bin assembly takes the home position shown in FIG.


4


. In this home position, first bin


311


faces transport rollers


91


and


92


. Second bin


312


faces staple unit


70


. The position of bins


311


-


315


corresponding to transport rollers


91


and


92


is referred to as position X


1


hereinafter. The position of bins


311


-


315


corresponding to staple unit


70


is referred to as position X


2


hereinafter.




When the drive shaft is contrarotated once from the state where first bin


311


takes position X


1


, first bin


311


is lowered to position X


2


and second bin


312


is lowered to the position in contact with third bin


313


. The bundle of sheets on first bin


311


can be bound by staple unit


70


when first bin


311


takes position X


2


. When the drive shaft is rotated once in the positive direction after the bundle of sheets are stapled, fast bin


311


is elevated to position X


1


and second bin


312


is elevated to position X


2


. The stapled sheets on first bin


311


are removed by the user with first bin


311


at position X


1


.




Bin assembly


30


is provided with a sensor (not shown) to detect that each of bins


311


-


315


is set at the home position, and a sensor (not shown) to detect that each of bins


311


-


315


is elevated by one pitch at one turn of the drive shaft. Sensors SE


341


-


345


are attached to each of bins


311


-


315


to detect the presence of a sheet.




At staple sorter


10


of the present embodiment, the position of distributing sheets to each of bins


311


-


315


and the position of removing a bundle of sheets are both the same position X


1


. The structure of the sorter unit is simplified by carrying out the storage and removal of a sheet at the same position.




Staple unit


70


is formed of the well known motor-operated structure. Staple unit


70


includes a head unit


71


with a detachable cartridge in which staples are set, and an anvil unit


72


to receive and bend a staple output from head unit


71


. Staple unit


70


is moved towards bins


311


-


315


set at position X


2


to drive in a staple at one corner or two staples at the end portion of a bundle of sheets.




Staple unit


70


can move towards the rear side with the front side of staple sorter


10


(the front side of the drawing) as the home position. Staple unit


70


temporarily stops at a predetermined position and then moves towards bins


311


-


315


to drive in a staple. Staple unit


70


returns to the home position following-the drive-in of a staple. A notch is formed at the lower end portion of each of bins


311


-


315


where a staple is to be driven in, whereby the leading end of staple unit


70


can enter the bin side.




Sheet bundle transport gate


100


includes a pair of gate rollers


102


and


103


in a box


101


, and sheet guide plates


104


and


105


. Rollers


102


and


103


are rotated clockwise/counterclockwise by a motor M


21


. Sheet bundle transport gate


100


is guided by a guide member not shown to be elevated/lowered. A motor M


20


is provided as a driving source thereof.




Sheet bundle transport gate


100


takes the home position shown in FIG.


4


. At the home position, sheet bundle transport gate


100


delivers leftward in

FIG. 4

a sheet guided on the top plane of switching claw


82


from roller pair


81


by means of rotation of rollers


102


and


103


towards nonsort tray


20


.




Sheet bundle transport gate


100


can be shifted within staple sorter


10


as shown in

FIGS. 5-10

.

FIGS. 5-10

are diagrams to describe the movement of sheet bundle transport gate


100


within staple sorter


10


.




Sheet bundle transport gate


100


is lowered down to the position facing bin


312


set at position X


2


(refer to

FIG. 5

) to receive a bundle of sheets that are stapled/not stapled on bin


312


. At this remove position, sheet bundle transport gate


100


sandwiches a bundle of sheets S by means of rollers


102


and


103


(refer to

FIG. 6

) output from bin


312


by the shift of remove rollers


42


and


43


of FIG.


4


. Sheet bundle S is received by sheet bundle transport gate


100


by the positive rotation of rollers


102


and


103


(refer to FIG.


7


).




Upon complete input of sheet bundle S in sheet bundle transport gate


100


, the positive rotation of rollers


102


and


103


stops. At the same time, sheet bundle transport gate


100


is elevated (refer to FIG.


8


). When sheet bundle transport gate


100


rises to a predetermined height, rollers


102


and


103


contrarotate to discharge the sandwiched sheet bundle S on nonsort tray


20


(refer to FIG.


9


). Then, sheet bundle transport gate


100


is raised one pitch and lowered down to the remove position facing bin


313


set at position X


1


(refer to FIG.


10


). A stacking operation to nonsort tray


20


can be repeated as described above.




To enable the stacking operation, a sensor SE


33


to detect presence of a sheet on nonsort tray


20


and a sensor SE


23


to detect the top most surface of the sheets on nonsort tray


20


(the upper surface of nonsort tray


20


when there is no sheet) above nonsort tray


20


as shown in FIG.


4


. Also are provided a sensor SE


20


to detect that sheet bundle transport gate


100


is at the home position and a sensor SE


22


to detect presence of a bundle of sheet within sheet bundle transport gate


100


.




The stacking operation can be carried out concurrently with the staple process on the bundle of sheets on the bin set at position X


2


in staple sorter


10


.




Digital copy machine


200


and staple sorter


10


of the above structure are under control of the control unit shown in FIG.


11


.





FIG. 11

is a block diagram showing a structure of the control unit providing control of digital copy machine


200


and staple sorter


10


connected to digital copy machine


200


.




The control unit includes a ROM


171


storing a program to operate staple sorter


10


, a CPU


170


executing a program, a RAM


172


storing information required for program execution, and a CPU


173


controlling digital copy machine


200


.




Various detection signals from sensor SE


20


detecting that sheet bundle transport gate


100


is at the home position, sensor SE


21


detecting presence of a bundle of sheets at second transport unit


90


, sensor SE


22


detecting presence of a bundle of sheets within sheet bundle transport gate


100


, sensor SE


23


detecting the top most face of the sheets on nonsort tray


20


, sensor SE


33


detecting presence of sheet on nonsort tray


20


, and sensors SE


341


-SE


345


detecting presence of a sheet on each of bins


311


-


315


, respectively, shown in

FIG. 4

, are applied to CPU


170


.




CPU


170


outputs respective drive signals to motor M


20


moving sheet bundle transport gate


100


in the vertical direction, motor M


21


to rotate rollers


102


and


103


in sheet bundle transport gate


100


, motor M


50


to drive various rollers in staple sorter


10


, motor M


60


to drive a shaft that moves each of bins


311


-


315


in the vertical direction, motor M


70


to drive remove unit


40


, and solenoid SL


50


to drive switching claw


82


that switches the sheet transport direction.




A CPU


173


providing the control of various components (refer to

FIG. 2

) of reader IR of digital copy machine


200


, memory unit


230


, printer device PRT and operation panel


150


is connected to CPU


170


. A signal requesting initiation of a print process is sent from CPU


170


to CPU


173


. A signal indicating the end of a printing process is sent from CPU


173


to CPU


170


. Signals are transferred between CPU


173


and CPU


170


to carry out a process at staple sorter


10


while adjusting the printing timing of an image onto a sheet at digital copy machine


200


.




CPU


170


includes an internal counter to count the period of time of a sheet left on each bin.




According to staple sorter


10


of the above structure, a bin information management table as shown in

FIG. 12

is generated by CPU


170


to be stored in RAM


172


. Control according to the flow chart shown in

FIG. 13

is provided using the bin information management table stored in RAM


172


.




Referring to the bin information management table of

FIG. 12

, “bins


1


-


5


” correspond to bins


311


-


315


(refer to FIG.


4


), respectively. Detection is made whether a sheet is discharged at each of bins


1


-


5


by sensors SE


341


-SE


345


. The detected result is “present” and “none” of a discharged sheet. The “left time” indicates the period of time of each sheet left at bins


1


-


5


. “User” indicates the user using respective bins


1


-


5


. The user of bins


1


-


5


is identified by an ID card and the like that is inserted into a predetermined slot in which magnetic information is stored.




For example, it is appreciated that the sheet for the user of user ID


3


is discharged and left for 3600 seconds on bin


3


, according to the bin information management table.





FIG. 13

shows a flow chart of the control procedure of CPU


170


(refer to

FIG. 11

) at staple sorter


10


(refer to FIG.


4


).




When the power is turned on to start the program, the bin information is first checked by staple sorter


10


at step


1


(“step” abbreviated as S hereinafter) to generate a bin information management table as shown in FIG.


12


. At S


2


, determination is made whether a print process request is detected from CPU


173


controlling digital copy machine


200


.




When a print process request is detected (YES at S


2


), control proceeds to S


3


to detect whether there is an empty bin (an unused bin) according to the bin information management table.




When there is no empty bin (NO at S


3


), control proceeds to S


4


to identify the bin corresponding to the greatest timer value indicating the left time according to the bin information control table. The sheet discharged on the identified bin is delivered onto nonsort tray


20


, as shown in

FIGS. 5-10

(stack operation). At S


5


, determination is made the stacking operation has ended or not. When the stacking operation has not yet ended (NO at S


5


), control remains at S


5


. When the stacking operation has ended (YES at S


5


), control proceeds to S


6


to select the available bin emptied by the stack operation. A print process initiate request signal is sent to CPU


173


that controls digital copy machine


200


. Accordingly, the sheet subjected to a printing process is discharged onto the available bin emptied by the stack operation of staple sorter


10


.




At S


7


, determination is made whether the print operation has ended or not. If the print process has not yet ended (NO at S


7


), the control remains at S


7


. When the print process has ended (YES at S


7


), control proceeds to S


8


to initiate the timer counting of the bin corresponding to the ended print process. When the processes are completed, control returns to S


1


.




When there is an empty bin (YES at S


3


), control proceeds directly to S


6


, skipping the processes of S


4


and S


5


. The bin determined to be empty at S


3


is selected, and a print process initiated.




When a print process request is not detected (NO at S


2


), control proceeds to S


9


to determine whether there is a bin having a timer value exceeding a predetermined time indicating the left time according to the bin information management table. When there is no bin corresponding to a timer value exceeding the predetermined time (NO at S


9


), control returns to S


1


. When there is a bin having a timer value exceeding the predetermined time (YES at S


9


), control proceeds to S


10


to initiate a stack operation for the sheet on that bin. At S


11


, determination is made whether the stack operation has ended or not. When the stack operation has not yet ended (NO at S


11


), control remains at S


11


. When the stack operation has ended (YES at S


11


), control returns to S


1


.




Thus, sensors SE


341


-SE


345


detecting the presence of a sheet at each of bins


311


-


315


are provided, and the period of time of the sheet left on each of bins


311


-


315


is counted. According to the counted time, the sheet on one of bins


311


-


315


with the longest left time is conveyed to nonsort tray


20


when all bins


311


-


315


are used in the event of a print operation. The left time of a sheet is monitored even when printing is not carried out. When the left time exceeds a predetermined time, the sheet on the bin corresponding to the value with the exceeded predetermined time is transferred to nonsort tray


20


.




Thus, a bin on which a sheet is not placed is prearranged. A sheet corresponding to a new job is discharged on the prearranged bin. Therefore, the sheet output corresponding to the new job will not be mixed up in that the discharge unit. Thus, the user operability is improved.




SECOND EMBODIMENT




An image forming system according to a second embodiment of the present invention will be described hereinafter. The image forming system of the second embodiment differs from the image forming system of the first embodiment in the control procedure of the staple sorter described with reference to

FIGS. 12 and 13

. The remaining elements are similar to those of the image forming system of the first embodiment.




According to the staple sorter of the image forming system of the second embodiment, a user information management table and a bin information management table shown in

FIGS. 14 and 15

are generated by the CPU that controls the staple sorter. The tables are stored in the RAM connected to this CPU. Control according to the flow chart of the main routine of FIG.


16


and the flow chart of the subroutine shown in any of

FIGS. 17-26

are executed using the user information management table and bin information management table.





FIG. 14

shows a user information control table formed by the CPU providing control of the staple sorter of the image forming system of the second embodiment and stored in a RAM.

FIG. 15

shows a bin information management table generated by the CPU providing the control of the staple sorter and stored in a RAM.




Referring to the user information management table of

FIG. 14

, “priority” is assigned to a “user ID”. A user ID is identified by an ID card and the like that is recorded with magnetic information and that is inserted into a predetermined insert slot, likewise the image forming system of the first embodiment. According to the user information management table, user ID


3


has a priority of 2, which is higher in level than the priority of 1 for user ID


5


. The user priority of user ID


3


is set lower than the user priority of user ID


5


.




The bin information management table of

FIG. 15

is created according to the detected values of respective sensors and the input copy condition with respect to a job from the operation panel. “Bins


1


-


5


” identify a plurality of bins provided at the staple sorter, such as the above bins


311


-


315


. “Present” and “none” of the “presence of sheet” indicates whether a sheet is discharged in each of bins


1


-


5


. “Sheet size” indicates the size of a sheet discharged at each of bins


1


-


5


. “Output number” indicates the number of sheets discharged at each of bins


1


-


5


. “Job ID” indicates which job relates to the sheets discharged at each of bins


1


-


5


. “User ID” indicates the user corresponding to the sheet discharged at each of bins


1


-


5


.




For example, twenty sheets of A4Y in size (T indicates that the longer side of a rectangular sheet is placed parallel to the sheet transport direction; Y indicates that the longer side of a rectangular sheet is placed perpendicular to the sheet transport direction), not stapled, are discharged on bin


2


by the bin information management table. The user ID corresponding to this sheet is 1, likewise to the sheet discharged on bin


1


. Also, the user ID corresponding to this sheet is


1


, likewise the sheets discharged on bins


1


and


4


.





FIG. 16

is a flow chart showing the control procedure by the CPU providing control of the staple sorter.




When the power is turned on to start the program, the user information or the bin information is checked at S


101


by the staple sorter. The user information management table and bin information management table as shown in

FIGS. 14 and 15

are produced. At


102


, determination is made whether a print process request is detected from the CPU providing control of the digital copy machine to which the staple sorter is connected.




When a print process request is not detected (NO at S


102


), control proceeds to S


101


when a print process request is detected (YES at S


102


), control proceeds to S


103


to determine whether there is an empty bin according to the bin information management table.




When there is no empty bin (NO at S


103


), control proceeds to S


104


. A stack object bin select process to select a bin that is subject to a stack operation is carried out by the subroutine shown in

FIGS. 17-26

. At S


105


, determination is made whether there is a bin relevant to the bin of interest selected at S


104


.




When there is no relevant bin (NO at S


105


), control proceeds to S


101


when there is a relevant bin (YES at S


105


), control proceeds to S


106


to select the relevant bin. Then, a stack operation is initiated. At S


107


, determination is made whether the stack operation has ended or not. When the stack operation has not yet ended (NO at S


107


), control remains at S


107


. When the stack operation has ended (YES at S


107


), control proceeds to S


108


to select the available bin emptied by the stack operation. A signal requesting the start of a print process is sent to the CPU providing control of the copy machine. Accordingly, a sheet subjected to a print process is discharged on the available bin emptied by the stack operation by the staple sorter. Then, control returns to S


101


.




When there is an empty bin (YES at S


103


), control proceeds directly to S


108


, skipping the processes of S


104


-S


107


. The bin determined to be empty at S


103


is selected, and a print operation is initiated.




The stack object bin select process of S


104


of

FIG. 16

will be described with reference to

FIGS. 17-26

. Although description is provided of a control using any one of the processes of

FIGS. 17-26

, a plurality of the processes of

FIGS. 17-26

can be combined. Respective stack object bin select processes of

FIGS. 17-26

are denoted as processes A, B, . . . to identify each stack object bin select process.





FIG. 17

is a flow chart of a stack object bin select process A The bin on which a sheet is discharged corresponding to the job of the user with the highest priority is selected as the bin of the subject of the stack operation.




At S


1041




a


, the job of the user with the highest priority is determined according to the user information management table (refer to FIG.


14


). At S


1042




a


, the bin corresponding to the job determined at S


1041




a


is selected as the relevant bin. Then, the present routine ends.




When there is a bin selected as the relevant bin in stack object bin select process A, the sheet on that relevant bin is taken as the subject of the stack operation (S


106


of FIG.


16


). By setting the priority of the user ID for the supervisor at a low level, the job of the supervisor will not be taken as the object of the stack operation. The sheet discharged on the bin by the job of the supervisor will not be transported to the nonsort tray (refer to FIGS.


5


-


10


). There is no need to sort the sheets discharged in bundles from a plurality of bins.





FIG. 18

is a flow chart of a stack object bin select process B. The bin on which a sheet is discharged by a job using the greatest number of bins is selected as the bin to be subjected to the stack operation.




At S


1041




b


, the job using the greatest number of bins is determined according to “job ID” (refer to

FIG. 15

) in the bin information management table. At S


1042




b


, the bin used by the job determined at S


1041




b


is selected as the relevant bin. Following these processes, the present routine ends.




When there is a bin selected as the relevant bin in stack object bin select process B, the sheet on that relevant bin is taken to be the object of the stack operation (S


106


of FIG.


16


). By the stack operation with respect to one job, more bins can be made available.





FIG. 19

is a flow chart of a stack object bin select process C. Here, the bin on which a sheet is discharged by the user using the greatest number of bins is selected as the bin to be subjected to a stack operation.




At S


1041




c


, the user using the greatest number of bins is determined according to “user ID” (refer to

FIG. 15

) in the bin information management table. Then, the bin used by the user determined at S


1041




c


is selected as the relevant bin. Following these processes, the present routine ends.




When there is a bin selected as the relevant bin in stack object bin select process B, the sheet on the relevant bin is taken as the object of a stack operation (S


106


of FIG.


16


). By the stack operation corresponding to one user, more bins can be made available.





FIG. 20

is a flow chart of a stack object bin select process D. The bin located closest to the nonsort tray is selected as the bin to be subjected to a stack operation.




At S


1041




d


, the bin closest to the nonsort tray is selected as the relevant bin. Then, the present routine ends. Here, the nonsort tray is located above or below the bin assembly. The closest bin differs according to the position of the nonsort tray.




When there is a bin selected as the relevant bin in stack object bin select process D, the sheet on the relevant bin is taken as the object of a stack operation (S


106


of FIG.


16


). The time required for a stack operation carried out by interrupting a print operation can be reduced.





FIG. 21

is a flow chart of a stack object bin select process E. Here, the bin storing the greatest number of sheets is selected as the bin subjected to a stack operation.




At S


1041




e


, the bin storing the maximum number of sheets is determined according to “output number” (refer to

FIG. 15

) in the bin information management table. At S


1042




e


, the bin determined at S


1041




e


is selected as the relevant bin. Following these processes, the present routine ends.




If there is a bin selected as the relevant bin in stack object bin select process E, the sheet on the relevant bin is taken as the object of a stack operation (S


106


of FIG.


16


). The image forming system using this stack object bin select process B can be improved in convenience by setting beforehand the jobs of the same user to be output on the same bin.





FIG. 22

is a flow chart of a stack object bin select process F. The bin storing the least number of sheets is selected as the bin of a stack operation.




At S


1041




f


, the bin storing the least number of sheets is determined according to “output number” (refer to

FIG. 15

) in the bin information management table. At S


1042




f


the bin determined at S


1041




f


is selected as the relevant bin. Following these processes, the present routine ends.




If there is a bin selected as the relevant bin in stack object bin select process F, the sheet on the relevant bin is taken as the object of the stack operation (S


106


of FIG.


16


). An image forming system using stack object bin select process F is advantageous in the case where the remaining capacity of the nonsort tray is small when an empty bin is selected for output irrelevant to the user.





FIG. 23

is a flow chart showing a stack object bin select process G. As the bin to be subjected to a stack operation, the bin is selected on which a sheet of the largest size is discharged when no sheet is discharged on the nonsort tray, and the bin on which a sheet is discharged of a size smaller than the size of the sheet discharged on the nonsort tray, if any.




At S


1041




g


, determination is made whether there is no sheet on the nonsort tray. When there is no sheet on the nonsort tray (YES at S


1041




g


), the bin storing the largest sheet that can be discharged to the nonsort tray is determined according to “sheet size” (refer to

FIG. 15

) in the bin information management table. When there is a sheet on the nonsort (NO at S


1041




g


), the bin storing a sheet of a size smaller than the size of the sheet already discharged on the nonsort tray is determined according to “sheet size” (refer to

FIG. 15

) in the bin information management table. Then, the bin determined at S


1043




g


is selected as the relevant bin. Following these processes, the present routine ends.




When there is a bin selected as the relevant bin in stack object bin select process G, the sheet on the relevant bin is taken as an object of the stack operation (S


106


of FIG.


16


). Here, the sheets transported onto the nonsort tray are overlaid from a larger to smaller size upwards.




This facilitates the sorting of each bundle of sheets without any complex structure such as shifting the sheets on the nonsort tray.





FIG. 24

is a flow chart of a stack object bin select process H. Here, the bin storing stapled sheets is selected as the bin to be subjected to a stack operation.




At S


1041




h


, determination is made whether any of the plurality of bins store stapled bundle of sheets according to “Staple State” (refer to

FIG. 15

) in the bin information management table. When there is no bin storing stapled sheets (NO at S


1041




h


), control proceeds to S


1043




h


where a predetermined bin (for example, the top most bin) is selected as the relevant bin. Then, the present routine ends. When there is a bin storing stapled sheets (YES at S


1041




h


), the bin determined at S


1042




h


is selected as the relevant bin. Then, the present routine ends.




By selecting a bin that stores stapled sheets as the relevant bin to be subjected to a stack operation (S


106


of

FIG. 16

) in stack object bin select process H, the bundle of sheets on the nonsort tray can be sorted easily distinguishing between the bundle of sheets without a complicated structure such as shifting stapled sheets on the nonsort tray.





FIG. 25

is a flow chart showing a stack bin select process I. Here, the bin of a job using a number of bins identical in number to the bin that will be used by the job predetermined for the next printing is selected as the bin to be subjected to a stack operation.




At S


1041




i


, the number of bins to be used by the job in the next print operation is determined according to “job ID” (refer to

FIG. 15

) in the bin information management table. At S


1042




i


, determination is made whether there is a job that uses a number of bins identical in number to the number of bins determined at S


1041




i


. When there is no job using the same number of bins (NO at S


1042




i


), a predetermined bin (for example, the top most bin) determined at S


1044




i


is selected as the relevant pin. Then, the present routine ends. When there is a job using the same number of bins (YES at S


1042




i


), the bin of the job using the same number of bins is selected as the relevant bin at S


1043




i


. Then, the present routine ends.




By selecting the bin corresponding to the job using a number of bins identical in number to that to be used by the job of the next print operation for a stack operation (S


106


of

FIG. 16

) in stack object bin select process I, the sheets on the bin least used by the jobs will be transported onto the nonsort tray. The time required for a stack operation by interrupting a print operation can be reduced.




By employing stack object bin select processes A-I of

FIGS. 17-25

for S


104


of

FIG. 16

, the above-described advantages can be achieved. Also, a bin on which a sheet is not placed is prearranged, so that a sheet corresponding to a new job can be discharged on the prearranged bin. The problem of an output sheet corresponding to a new job being mixed up at the discharge unit is eliminated. The user operability can be improved.




THIRD EMBODIMENT




An image forming system according to a third embodiment of the present invention will be described. The image forming system of the third embodiment differs from the image forming system of the first embodiment in the control procedure of the staple sorter described with reference to

FIGS. 12 and 13

, likewise the image forming system of the second embodiment. The remaining elements of the third embodiment is similar to that of the image forming system of the first embodiment.




According to the staple sorter of the image forming system of the third embodiment, a user information management table shown in

FIG. 26

is produced by the CPU controlling the staple sorter. This table is stored in a RAM connected to this CPU. Control according to the flow chart of

FIG. 27

is carried out using the table.




Referring to the user information management table of

FIG. 26

, “discharge set bin” is specified corresponding to “user ED”. “Discharge set bin” specifies a plurality of bins provided at the staple sorters such as the above bins


311


-


315


, and is fixedly assigned to a user. According to the user information management table, discharge set bin


3


is set so as to be shared by the users of user ID


2


and user ID


3


.




In the present staple sorter, control is executed as set forth in the following using the user information management table and the user ID corresponding to a bin in the bin information management table shown in FIG.


15


.





FIG. 27

is a flow chart showing the control procedure of the CPU controlling the present staple sorter.




When the power is turned on and the program initiated, the user information is checked at S


201


by the present staple sorter. A user information management table as shown in

FIG. 26

is generated. At S


202


, determination is made whether a print process request has been detected or not from the CPU providing control of the digital copy machine to which the present staple sorter is connected.




When a pint process request is not detected (NO at S


202


), control proceeds to S


201


. When a pint process request is detected (YES at S


202


), control proceeds to S


203


to select the bin in which a sheet is discharged by the user ID according to the user information management table (refer to FIG.


26


).




At S


204


, determination is made whether there is a sheet on the bin selected at S


203


. When there is a sheet on the selected bin (NO at S


204


), control proceeds to S


205


to detect whether the user ID of the user corresponding to the selected bin (allocated bin) is identical to the user ID of the user requesting a print operation.




When the user ID of the user corresponding to the selected bin is not identical to the user ID of the user requesting a print operation (NO at S


205


), control proceeds to S


206


to initiate a stack operation for the sheet placed on the selected bin. At S


207


, determination is made whether the stack operation has ended or not. When the stack operation has not yet ended (NO at S


207


), control remains at S


207


. When the stack operation ends (YES at S


207


), control proceeds to the process of S


208


.




At S


208


, a signal requesting initiation of a print process is sent to the CPU providing control of the digital copy machine. At S


209


, determination is made whether the print process has ended or not. When the print process has not yet ended (NO at S


209


), control remains at S


209


. When the print process ends (YES at S


209


), control proceeds to S


210


to store the user ID of the user using the bin into the bin information control table. Then, control returns to S


201


to initiate the process from the beginning.




When the user ID of the user using the selected bin is identical to the user ID of the user requesting the print operation (YES at S


205


), control proceeds to S


211


to determine whether a staple process is specified for the sheet corresponding to the print request. When setting is not made of a staple process (NO at S


211


), control proceeds to the print process of S


208


. When a staple process is set (YES at S


211


), control proceeds to the select bin stack request of S


206


.




When there is no sheet on the selected bin (YES at S


204


), control proceeds to the print process of S


208


.




Accordingly, when there is no sheet discharged at the bin assigned for each user (specified bin) in carrying out a new print operation, the sheet is discharged to the specified bin. When there is a sheet already in the specified bin, the sheet is discharged in an overlying manner at the specified bin when the sheet already discharged is of the same user, provided that the sheets are not stapled. When the sheet already discharged is of a different user or when the sheets are stapled, the sheets on the specified bin are transferred to the nonsort tray in a bundle.




Thus, a bin in which a sheet is not placed is prearranged, and a sheet corresponding to a new job is discharged onto the prearranged bin. A sheet discharged corresponding to a new job will not be mixed up at the discharge unit. Therefore, the operability of the user is improved.




FOURTH EMBODIMENT




According to a fourth embodiment of the present invention, a bin information management table as shown in

FIG. 28

is generated by CPU


170


and stored in RAM


172


. By using this bin information management table, the ID number of a job corresponding to the sheet output to the bin and capacity overflow of the bin can be controlled.




Referring to the bin information management table of

FIG. 28

, “bins


1


-


5


” correspond to aforementioned bins


311


-


315


(refer to FIG.


4


), respectively. “Nonsort tray” corresponds to nonsort tray


20


.




“Number of sheets” records the total number of sheets placed on nonsort tray


20


and each of bins


311


-


315


.




“Job ID” stores the ID indicating which job corresponds to the sheet discharged at each of nonsort tray


20


and bins


311


-


315


. For example in

FIG. 28

, the job ID for all of bins


3


-


5


is “3”. This means that the sheets resulting from the execution of a copy operation with a sort operation (one job) are output to bins


3


-


5


. Bins


1


and


2


have the job ID of “1” and “2”, respectively. This indicates that sheets discharged by different jobs are placed therein.





FIGS. 29A and 29B

are flow charts showing the control process of staple sorter


10


by CPU


170


according to the fourth embodiment.




Referring to

FIGS. 29A and 29B

, a display process corresponding to touch panel


151


(refer to

FIG. 3

) is carried out at S


301


. The process is carried out of displaying which tray contains the output of the sheet corresponding to a job carried out by a user, and displaying a message indicating the divided output of the sheets of one job to nonsort tray


20


and bins


311


-


315


.




At S


303


, the check and update of the information in the bin information management table of

FIG. 28

are carried out. At S


305


, determination is made whether a print operation is currently carried out by digital copy machine


200


. When NO at S


305


, control proceeds to S


307


to determine whether the print end edge is output from CPU


173


. Here, the print end edge is a signal output immediately after completion of a print operation by digital copy machine


200


.




When YES at S


307


, control proceeds to S


309


to determine whether the sort mode is selected by the user or not. Here, a sort mode is the mode to sort the output by one job into bins


311


-


315


. For example, when the user sets a sort mode for one group of documents and “3” as the required number of copies, three set of copied sheets are distributed into different bins.




When YES at S


309


, control proceeds to S


311


to determine whether a stack operation for the nonsort tray is possible or not by checking the column of the nonsort tray in the bin information management table. For example, S


111


provides the determination of NO when the number of sheets placed on the nonsort tray exceeds the permitted number of sheets of the nonsort tray.




When YES at S


311


, control proceeds to S


313


to carry out the process of transferring and stacking the group of sheets output from bins


311


-


315


to nonsort tray


20


. Following the process of S


313


, control returns to S


301


.




When NO at S


309


or S


311


, control returns to S


301


.




When NO at S


307


, control proceeds to S


315


to determine whether there is a print request from CPU


173


. When YES at S


315


, the bin information management table is referred to at S


317


to determine whether there is an empty bin (a bin having the number of sheets of 0). When YES at S


317


, control proceeds to S


319


to select that empty bin. A print process of discharging a sheet to the empty bin is carried out. Following the process of S


319


, control returns to S


101


.




When NO at S


315


or S


317


, control directly returns to S


301


.




When YES at S


305


, control proceeds to S


321


to determine whether the bin with the sheet output exceeds the capacity or not. Determination is made by referring to the bin information management table to check whether the number of sheets corresponding to that bin has exceeded a standard value or not.




When YES at S


321


, control proceeds to S


323


to determine whether a stack process for nonsort tray


20


is allowed or not.




When YES at S


323


, control proceeds to S


325


to carry out the process of transferring and stacking the bundle of sheets in the bin determined to have exceeding capacity to nonsort tray


20


.




Following the process of S


325


, control proceeds to S


327


to determine whether the sort mode is selected or not. When NO at S


327


, nonsort tray


20


is selected as the output destination of the sheet. A printing operation and an output process are resumed. Then, control returns to S


101


.




When YES at S


327


, control proceeds to S


319


to select an empty bin. Then, a print operation is resumed.




When NO at S


323


, control returns to S


301


.




When NO at S


321


, control proceeds to S


331


to determine whether a sheet that cannot be output to the bin (a sheet outside the output range) has been transported or not. When YES at S


331


, control proceeds to S


333


to determine whether a stack process is allowed for nonsort tray


20


.




When YES at S


333


, control proceeds to S


335


to carry out the process of transferring and stacking the sheets on the bin to nonsort tray


20


. At S


337


, nonsort tray


20


is selected as the output destination of the sheet. In the subsequent print process, the sheets are output to nonsort tray


20


. Then, control returns to S


301


.




When NO at S


331


or S


333


, control returns to S


301


.





FIG. 30

shows the flow chart of the procedure carried out by the stack process (S


313


, S


325


, S


335


).




Referring to

FIG. 30

, one bin that is to be subjected to a stack operation is selected at S


401


. More specifically, this is the bin to which the printed sheet is output at step S


313


, the bin with the exceeded capacity in the stack process of S


325


, or the bin to which an out-of-range sheet is output in the stack process of S


135


.




At S


403


, transportation and stacking of a bundle of sheets from the selected bin to nonsort tray


20


is carried out. At S


405


, determination is made whether the sort mode is selected or not. When YES at S


405


, an operation of shifting the sheet output position is carried out by a nonsort tray shift unit


20


A shown in

FIGS. 31 and 32

. Then, determination is made whether there is another bin to be subjected to a stack operation at S


209


. When YES at S


209


, the process from S


201


is repeated.




When NO at S


405


or S


409


, control returns to the main routine.





FIG. 31

is a plan view to describe the shifting mechanism of shifting the sheet discharge position of nonsort tray


20


. The sheet is discharged from a sheet discharge outlet


20


B in the direction of “A” on nonsort tray


20


. Nonsort tray shift unit


20


A moves nonsort tray


20


in the direction of “B”. After one bundle of sheets (or a bundle of sheets for one job) are discharged from sheet discharge outlet


20


B, nonsort tray shift unit


20


A moves nonsort tray


20


upwards in the drawing by a predetermined pitch. Then, a new bundle of sheets are discharged from sheet discharge outlet


20


B.




By repeating the above operation, bundle of sheets P


1


-P


3


are placed on nonsort tray


20


in respective offset positions. Therefore, the user can easily identify one bundle of sheets from another bundle of sheets.




By the above processes, an operation set forth in the following is realized.




When Nonsort Mode is Selected




(1) In a paint operation, generally one bin is selected and a sheet is output to that bin. A stack operation to the nonsort tray is not carried out following the completion of the print operation (NO at S


309


).




(2) When the capacity of the bin is exceeded during a print operation, the sheet is transferred from that bin to the nonsort tray when a stack operation is allowed (S


325


). Then, the output of a sheet towards the nonsort tray is resumed (S


329


). Accordingly, the sheets will not be output in a diversed manner among the nonsort tray and the bin.




When Sort Mode is Selected




(1) A plurality of bins are selected in the print operation. Sheets are classified and output to these bins.




(2) When the print operation ends and a stack process is allowed, the sheet output to the bin is transferred to the nonsort tray to be stacked (S


313


). Here, the nonsort tray is shifted for each bin (S


407


). Therefore, the user can easily identify a bundle of sheets from another bundle of sheets.




(3) When the bin capacity is exceeded during a print operation and a stack process is allowed, the output to that bin is transferred and stacked to the nonsort tray (S


325


). Here, the nonsort tray is shifted for each bin (S


407


). Therefore, the user can easily identify a bundle of sheets from another bundle of sheets.




Then, an empty bin is selected and output of a sheet towards that bin is resumed (S


319


). When the output ends, the sheets are stacked (S


313


).




When a stack process cannot be carried out, a message can be displayed on touch panel


151


informing that the sheet output to the bin by the resumed output is left in the bin, and the sorted sheets are stored in nonsort tray


20


and a particular bin in bin assembly


30


.




When Nonsort Mode or Sort Mode is Selected




When a stack process is allowed in the event of a sheet that cannot be output to the bin (for example, a sheet that is too great in size) is delivered, the sheet output to that bin is stacked at the nonsort tray (S


335


). Then, the subsequent output to that bin is carried out towards the nonsort tray (S


337


). Accordingly, the process will not be interrupted even when a sheet that cannot be output to the bin is delivered. Also, the divided output of a sheet to a bin and to the nonsort tray can be prevented.




Although the present invention has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of the present invention being limited only by the terms of the appended claims.



Claims
  • 1. A sheet processing device which processes sheets discharged from said image forming apparatus executing a print job, comprising:a first discharge tray, a plurality of second discharge trays, a plurality of sensors which detect whether there is a sheet on each of said plurality of second discharge trays, a transport unit which transports a bundle of sheets from said second discharge trays to said first discharge tray, and a controller which controls said transport unit so that at least one of said second discharge trays is selected according to a predetermined condition and a bundle of sheets are transported from said selected second discharge tray when detection is made by said sensors of a sheet on all of said second discharge trays at a time of discharging a sheeting new job.
  • 2. The sheet processing device according to claim 1, wherein said predetermined condition includes priority of a user requesting a job.
  • 3. The sheet processing device according to claim 1, wherein said predetermined condition includes the number of second discharge trays occupied by a same job.
  • 4. The sheet processing device according to claim 1, wherein said predetermined condition includes the number of said second discharge trays occupied by jobs requested by the same user.
  • 5. The sheet processing device according to claim 1, wherein said controller selects said second discharge tray located closest to said first discharge tray.
  • 6. The sheet processing device according to claim 1, wherein said predetermined condition includes the number of sheets discharged to each said second discharge tray.
  • 7. The sheet processing device according to claim 1, wherein said predetermined condition includes a size of a sheet discharged to each said second discharge tray.
  • 8. The sheet processing device according to claim 7, wherein said controller selects a second discharge tray storing a sheet of the largest size.
  • 9. The sheet processing device according to claim 7, wherein said controller selects a second discharge tray upon comparison between the size of a sheet discharged to said first tray and the size of a sheet discharged to each said second discharge tray 10.
  • 10. The sheet processing device according to claim 1, wherein said predetermined condition includes whether a bundle of sheets discharged to each said second discharge tray is stapled.
  • 11. The sheet processing device according to claim 1, wherein said controller selects, when there is a job that uses a number of second discharge trays identical in number to said second discharge trays that are to be used in a new job, said second discharge tray used in said job.
  • 12. An image forming system including a sheet processing device and an image forming apparatus, said sheet processing device comprising:a first discharge tray, a plurality of second discharge trays, a plurality of sensors which detect whether there is a sheet on each of said plurality of second discharge trays, a transport unit which transports a bundle of sheets from said second discharge trays to said first discharge tray, and a controller which controls said transport unit so that at least one of said second discharge trays is selected according to a predetermined condition and a bundle of sheets are transported from said selected second discharge tray when detection is made by said sensors of a sheet on all of said second discharge trays.
  • 13. The sheet processing device according to claim 1, wherein said first discharge tray is provided above said second discharge trays.
  • 14. A sheet processing device comprising:a first discharge tray, a plurality of second discharge trays, a plurality of sensors which detects whether there is a sheet on each of said plurality of second discharge trays, a transport unit which transports a bundle of sheets from said second discharge trays to said first discharge tray, and a controller which controls a transport operation of said transport unit according to a detection result of said sensors.
  • 15. The sheet processing device according to claim 1, wherein said controller provides control so as to transport by said transport unit from at least one second discharge tray selected according to a predetermined condition when detection is made by said sensors of a sheet on all of said second discharge trays.
  • 16. A sheet discharge method in a sheet processing device including a transport unit transporting a bundle of sheets from a plurality of second discharge trays to a first tray, said method comprising the steps of:discharging sheets to a plurality of said second discharge trays, detaining whether there are a bundle of sheets on each tray of said plurality of second discharge trays, selecting at least one of said second discharge trays according to a predetermined condition when a bundle of sheets are detected at all of said second discharge trays, transporting a bundle of sheets from said selected second discharge tray to said first tray, and discharging a new bundle of sheets to said selected second discharge tray after said transportation step ends.
Priority Claims (2)
Number Date Country Kind
10-107789 Apr 1998 JP
10-170068 Jun 1998 JP
US Referenced Citations (6)
Number Name Date Kind
5328169 Mandel Jul 1994
5346203 Stemmle Sep 1994
5358238 Mandel et al. Oct 1994
5678818 Hayashi et al. Oct 1997
5823529 Mandel et al. Oct 1998
5971383 Horikawa et al. Oct 1999
Foreign Referenced Citations (4)
Number Date Country
6-092538 Apr 1994 JP
8-009169 Jan 1996 JP
8-020457 Jan 1996 JP
9-301605 Nov 1997 JP