This application is based on Japanese Patent Application No. 2005-339179 filed on Nov. 24, 2005 in Japanese Patent Office, the entire content of which is hereby incorporated by reference.
The present invention relates to a single functional apparatus, such as a printer, a copier and a facsimile, and a compound image forming apparatus having the abovementioned functions, and specifically relates to a technology for stably supplying an electric power to the image forming apparatus, which consumes a large amount of electric power, corresponding to variations of loading needs (electric power consumption).
Generally speaking, as shown in
Generally speaking, the allowable value of electric power to be fed through a single AC electric power cord is set at 100V-15 A in Japan. However, the recent image forming apparatus tends to inevitably consume electric power larger than the above. Accordingly, there have been proposed various kinds of countermeasures to cope with the problem mentioned in the above, so far.
For instance, Patent documents 1 and 2 (Tokkai 2003-244359 and Tokkai 2003-295702, Japanese Non-Examined Patent Publications) set forth a method for allotting a plurality of AC electric power cords to a plurality of divided loads, respectively. According to the abovementioned method, an AC electric cord is allotted to the fixing section 8a, while another AC electric cord is allotted to the control/processing section 8b. Further, to solve the safety problem of the apparatus when the AC electric cord is coupled to the electric power source, while the other AC electric cord is not coupled to the electric power source, a relay provided for turning ON/OFF the connection between the AC electric cord and the electric power source is controlled so as to secure the safety of the apparatus.
Further, Patent Document 3 (Tokkai 2003-323085, Japanese Non-Examined Patent Publication) sets forth a method in which a plurality of AC electric power cords are provided as described in the Patent Document 1, and the load is divided into a plurality of blocks which are coupled to the plurality of AC electric power cords through the switches, so that the electric power is supplied to each of the plurality of blocks from any one of the plurality of AC electric power cords. Then, by changing over the switches corresponding to each of the operating modes, electric power consumptions of which are different from each other, such as a start-up mode and a deactivating mode of the fixing apparatus, etc., the load to be coupled to the AC electric power cord is changed over corresponding to the electric power consumption.
Further, in the technology set forth in Patent Document 4 (Tokkai 2005-121681, Japanese Non-Examined Patent Publication), as described in Patent Document 1, an individual AC electric power cord is allotted to each of a plurality of loads. Further, the image forming apparatus is provided with a defect detecting mechanism for detecting an abnormality of the electric power controlling element for controlling the electric power supply, and/or a mechanism for detecting an abnormality of the electric power controlling element of the heater of the fixing device, in order to secure the safety of the apparatus.
According to the abovementioned conventional technologies in which each of the AC electric power cords are adaptively coupled, corresponding to each of the loads equipped in the image forming apparatus serving as an electro-mechanical apparatus whose electric power consumption widely varies with its operating mode, it is impossible to conduct such the electric power adjustment, corresponding to the electric power variations, that the electric power is supplied from a first AC electric power cord instead of a second electric power cord, even if the electric power consumption of the load coupled to the second electric power cord is large, while the electric power consumption of the load coupled to the first electric power cord is small. To solve the above problem, in the technology set forth in the Patent Document 3, the electric power adjustment is conducted by changing over the relationships between the plurality of AC electric power cords and the plurality of loading blocks corresponding to each of the operating modes.
In the technology set forth in the Patent Document 3, however, only the electric power adjustment corresponding to the operating modes established in advance can be conducted as mentioned in the above. In addition, in this case, it is necessary to investigate even instantaneous electric power consumption at the start-up time of the operation, by probing the operating modes and the loading blocks in advance, and the change-over operation of the AC electric power cord conducted during the activated state of the image forming apparatus has been liable to induce various problems.
To overcome the abovementioned drawbacks in conventional image forming apparatus, it is an object of the present invention to provide an image forming apparatus, in which a plurality of AC power cords are combined with each other, so as to stably supply the electric power to the loading sections from the combined points, regardless of the fluctuation of the electric power consumption in the loading sections coupled to the combined points.
Accordingly, to overcome the cited shortcomings, the abovementioned object of the present invention can be attained by image forming apparatus described as follow.
(1) An image forming apparatus, comprising: a plurality of AC power cords that are respectively coupled to a plurality of AC power supplying sources, which are substantially equivalent to relative to each other in phase and amplitude of AC voltages of the plurality of AC power supplying sources; and a combining section to combine AC electric power units supplied through the plurality of AC power cords into a combined electric power, so as to supply the combined electric power to a load.
(2) An image forming apparatus, comprising: a plurality of AC power cords that are respectively coupled to a plurality of AC power supplying sources; a phase difference detecting section to detect a phase difference between AC voltages on any two of the plurality of AC power cords; a phase converting section to change over a phase of any one of the AC voltages so as to make phases of the AC voltages substantially equal to each other, based on the phase difference detected by the phase difference detecting section; and a combining section to combine AC electric power units, which are supplied through the plurality of AC power cords and phases of which are made to be substantially equal to each other by employing the phase difference detecting section and the phase converting section, into a combined electric power, so as to supply the combined electric power to a load.
(3) An image forming apparatus, comprising: a plurality of AC power cords that are respectively coupled to a plurality of AC power supplying sources; a phase difference detecting section to detect a phase difference between AC voltages on any two of the plurality of AC power cords; a plurality of current detecting sections to detect electric currents flowing through the plurality of AC power cords, respectively; a phase converting section to change over a phase of any one of the AC voltages so as to make phases of the AC voltages substantially equal to each other, based on the phase difference detected by the phase difference detecting section; a combining section to combine AC electric power units, which are supplied through the plurality of AC power cords and phases of which are made to be substantially equal to each other by employing the phase difference detecting section and the phase converting section, into a combined electric power; and a current limiting section to limit an electric current flowing through a specific one of the plurality of AC power cords to a value equal to or lower than a predetermined current value, when the electric current, flowing through the specific one of the plurality of AC power cords and detected by any one of the plurality of current detecting sections, exceeds the predetermined current value; wherein the combined electric power is supplied to a load through the combining section.
Embodiments will now be described, by way of example only, with reference to the accompanying drawings which are meant to be exemplary, not limiting, and wherein like elements are numbered alike in several Figures, in which:
Referring to
The first embodiment indicates an example in which a phase and a voltage of the AC electric power fed from an AC electric power source 1 respectively coincide with those fed from an AC electric power source 2. The second embodiment indicates an example in which, even when the phases of AC voltages of the AC electric powers fed from a plurality of electric power sources are different from each other (although the AC electric current can be handled in the same manner as far as a phase is concerned as an object of consideration, hereinafter, the phase of AC voltage will be employed in the following explanations), those are made to be a same phase. The third embodiment indicates an example in which amplitude of the AC voltage is further confirmed in addition to the second embodiment. The third embodiment indicates an example in which the AC electric current is limited when an overload occurs. The abovementioned embodiments will be detailed in order of the above in the following.
Referring to
As mentioned in the above, since the phase and the amplitude of the AC voltage fed from the AC electric power source 1 through an AC cord 3 coincide with those of the AC voltage fed from the AC electric power source 2 through an AC cord 4, it is possible to combine them either indirectly or directly in the combining section 5. An example of the former is indicated in
The functions and operations of the circuit breaker 51 and the circuit breaker 52 are the same, and each of them is provided with a thermal fuse, etc. for securing the safety from excessive current flow caused by a short, etc. Since these are elements for general use, the explanations for them are omitted.
The fixing section 8a is provided with a heater. Sometimes, an induction heating heater is employed for this purpose. The heater driving section 6 drives and controls the heater of the fixing section 8a. For instance, the triac to be employed for the pulse width controlling operation can be cited as the semiconductor element for controlling the temperature of the heater. Further, sometimes, the high-frequency DC power source used for driving the induction heating heater is provided.
According to the abovementioned configuration, it becomes possible to supply the AC electric power within a capacity of two AC electric power cords, even if the AC supply current fluctuates due to the fluctuations of the loads.
Referring to
A connection change over section 10, shown in
An auxiliary electric power source 14 is used for supplying the electric power to the decision controlling section 93, and provided with a simple AC-DC converter. Hereinafter, the configurations shown in
Although the effect of the second embodiment is the same as that of the first embodiment, the second embodiment is characterized in that it is possible to cope with such the case that the phases of the AC electric power source 1 and the AC electric power source 2 are different from each other. The detailed operations in the second embodiment will be also detailed in the following explanations of the third embodiment.
Referring to
A pair of a voltage step-down section 91a and a diode 91b, and another pair of a voltage step-down section 92a and a diode 92b, shown in
In
In
A phase difference determining section 93c compares the rectangular waveforms, outputted from the waveform shaping section 93a and the waveform shaping section 93b, with each other to detect the phase difference T2.
At this time, to describe a switch controlling section 93g, it is assumed in the following that a level determining section 93f does not exist (the case in which the level determining section 93f exists will be detailed later). When the phase difference determining section 93c determines that the phase difference T2 is zero, the switch controlling section 93g sends an instruction for maintaining the current state as it is to the connection change over section 10, while, when the phase difference determining section 93c determines that the phase difference T2 is substantially 180 degree (½ of the period T1), the switch controlling section 93g sends an instruction for changing the hot line and the neutral line relative to each other and maintaining the change over state as it is to the connection change over section 10. Specifically, the term of “substantially” in the above description of “substantially 180 degree” means that, although a phase difference component, for instance, caused by the difference between the lengths of AC cords would be included in the phase difference T2 if the phase difference were detected in a highly precision manner, such the subtle difference could be ignored for this purpose and it is sufficient to detect whether or not the phases are shifted from each other at about 180 degree. In other words, the phase difference determining section 93c detects whether or not the phases of the waveform A outputted from the AC electric power source 1 and the waveform E outputted from the AC electric power source 2 are reversed relative to each other, and when determining that the phases are reversed relative to each other, the switch controlling section 93g sends the change over instruction to the connection change over section 10.
The explanation described so far in regard to the configuration shown in
The configurations of a peak voltage detecting section 93d and a peak voltage detecting section 93e are the same as each other, and each of them detects a half-wave peak voltage V1 and a half-wave peak voltage V2 (refer to dotted lines D and H shown in
Incidentally, it is also applicable that the configurations of the peak voltage detecting section 93d and the peak voltage detecting section 93e are the same as each other, and each of them includes, for instance, a low pass filter constituted by a capacitor C and a resister R so that the capacitor C can hold the peak voltage, or otherwise, so that the capacitor C can sample and hold the half-wave peak voltage.
The level determining section 93f finds a differential voltage Δv between the half-wave peak voltage V1 and the half-wave peak voltage V2. When the differential voltage is in a predetermined range of, for instance, ±5% of 100V, the level determining section 93f determines as a normal state, while, when the differential voltage is out of the predetermined range, the level determining section 93f determines as an abnormal state.
Based on both the detected result determined by the phase difference determining section 93c and the detected result determined by the level determining section 93f, the switch controlling section 93g determines the contents of the instruction to be sent to the connection change over section 10. Concretely speaking, when the level determining section 93f determines that the differential voltage is in the normal state and the phase difference determining section 93c determines that the phase difference T2 is substantially zero, the switch controlling section 93g sends the instruction for keeping the phase as it is, while, when the level determining section 93f determines that the differential voltage is in the normal state and the phase difference determining section 93c determines that the phase difference T2 is substantially 180 degree (½ of the period T1), the switch controlling section 93g sends the change over instruction for changing the hot line and the neutral line relative to each other, and then, maintaining the same phase state of them. Further, when the level determining section 93f determines that the differential voltage is in the abnormal state, an alarm signal is given to the operator (not shown in the drawings: such as a warning lump, a warning buzzer, etc.). The priority between the determined result of the phase difference determining section 93c and that of the level determining section 93f is not limited to above.
As described in the foregoing, according to the third embodiment shown in
Referring to
The configurations of a current sensor 111 and a current sensor 112 in the current detecting section 11 are the same as each other, and each of them includes a pickup coil for detecting an induction current induced by the electric current flowing into each of the AC cord 3 and the AC cord 4. A load resister is directly coupled to the pickup coil so as to convert the induction current induced in the pickup coil to a terminal voltage between the both ends of the load resister. Further, it is also applicable that the sensor 91 and the sensor 92 equipped in the detecting section 9 are also employed for detecting the electric current flowing into each of the AC cord 3 and the AC cord 4 when the AC voltage is divided, without employing the current sensor 111 and the current sensor 112. In this case, the divided voltage could be employed for this purpose as it is.
A current controlling section 113 detects an amount of current flowing into the AC cord 3 (namely, a supply current to be supplied to the load 8), an amount of current flowing into the AC cord 4 (namely, a supply current to be supplied to the load 8) and a total amount of them, based on the voltage difference between the terminal voltages detected by the current sensor 111 and the current sensor 112. For instance, when the amount of current flowing into the AC cord 3 is about to exceed 15 A, while the amount of current flowing into the AC cord 4 is relatively small, the current controlling section 113 controls a current limiting section 121 so that the amount of current of the AC cord 3 is limited to a value equal to or lower than 15 A, while increase the amount of current of the AC cord 4 by the amount reduced for the AC cord 3. Further, when the total amount of current flowing into both the AC cord 3 and the AC cord 4 is about to exceed 30 A, the current controlling section 113 controls the current limiting section 121 and/or the current limiting section 122 so that the total amount is limited to a value equal to or lower than 30 A. In this case, it is applicable to give an alarm to the operation. Further, it is also applicable that the current controlling section 113 controls the current limiting section 121 and/or the current limiting section 122 so that the amount of current flowing into the AC cord 3 becomes substantially the same as that flowing into the AC cord 4, namely, the balance of them is maintained.
The configurations of the current limiting section 121 and the current limiting section 122 can be the same as each other, and each of them is constituted by power semiconductor elements. For instance, it is possible to control the AC current flowing through a channel between source and drain electrodes by controlling its gate. It is also possible to employ a switching element, called a triac or a thyristor, which performs ON/OFF controlling actions in response to the phase control or the time so as to control the average amount of current.
The order of the current detecting section 11, the limiter section 12, the detecting section 9 and the connection change over section 10 is not limited to that of the embodiment shown in
Desirably, it is recommended that the detecting section 9 for detecting the phase and the amplitude of the AC voltage is disposed at a position in the vicinity of the combining section 5 as near as possible. This is because, the detecting section 9 determines the condition for combining the AC voltage of the AC cord 3 with that of AC cord 4.
Incidentally, in the second embodiment, the third embodiment and the forth embodiment, in order to combine the AC cord 3 with the AC cord 4 in a safer way, it is applicable that a power supply switch (not shown in the drawings) is provided just before combining the AC cord 3 with the AC cord 4 in the combining section 5. Concretely speaking, initially, the power supply switch is turned OFF, and the AC cord 3 and the AC cord 4 are coupled to the plug sockets of the AC electric power source 1 and the AC electric power source 2, respectively. Then, after the decision controlling section 93 controls the apparatus so that the phases and the amplitudes of the AC voltages on the AC cord 3 and the AC cord 4 coincide with each other or confirms that those are the same, the power supply switch is turned ON, so as to commence the electric power supplying operation.
The phase difference determining section 93c, the level determining section 93f and the switch controlling section 93g constituting the decision controlling section 93 described in the foregoing can be configured by either the logic electronic circuits or the computer program including the functional steps of them and the CPU for executing the program after converting the inputted signal to the digital data by means of the analogue-to-digital converter.
Incidentally, in the embodiment described in the foregoing, although the image forming apparatus, which employs the fixing section 8a including the heating device, is exemplified, the scope of the image forming apparatus is not limited to the above. For instance, the present invention can be also applied to a medium-sized image forming apparatus (or a medium-sized printing apparatus), which is operated in a normal office environment for producing a relatively small amount of print products. In such the case, by implementing the present invention for the image forming apparatus, namely by supplying the necessary electric power to the image forming apparatus form a plurality of wall outlets equipped in the office, it becomes possible to effectively solve the problem for satisfying the electric power capacity of the image forming apparatus in the office. Further, it is also applicable that the abovementioned image forming apparatus is a color or monochrome printing apparatus or a copier, which employs the electro-photographic method (and/or employs the tandem method or the other method).
In the case that a plurality of optional devices, such as paper feeder, etc., serving as a pre-processing apparatus, a stapler, a puncher, a folder, etc., serving as a post-processing apparatus, are coupled to (or included in) the image forming apparatus to form an integrated image forming system (in this invention, such image forming system may be called as an image forming apparatus), it is possible to combine a plurality of AC electric powers fed from a plurality of commercial power sources, which are respectively coupled to the plurality of optional devices, into a single electric power so as to supply the single electric power to the electric power loading sections of the image forming apparatus concerned. It is needless to say that the abovementioned image forming system is also included in the scope of the present invention.
According to the present invention, the following effects can be attained.
(1) Since the plurality of AC power cords coupled to the plurality of AC power supplying sources, which are the same in the phases and the amplitudes of their voltages, can be directly combined with each other or indirectly combined with each other by employing the isolation transformer, etc., it becomes possible to supply the total amount of electric power to be supplied from the plurality of AC power supplying sources to the load coupled to the connecting points.
(2) In the most cases, the plurality of AC power cords are coupled to the plurality of AC power supplying sources through the plug sockets. Accordingly, for instance, depending on the connecting manner between the hot line and the neutral line of the AC power cord, sometimes, the difference between the phases of the voltages of the any two of the plurality of AC power cords could be 180 degree. To cope with this problem, since the phase difference between AC voltages on any two of the plurality of AC power cords is detected so that the phase of any one of the AC voltages is changed over so as to make the phases of the AC voltages substantially equal to each other when the phase difference is detected as substantially 180 degree, it becomes possible to attain the same effect as mentioned in the above.
(3) Since the electric currents flowing through the plurality of AC power cords are detected so that an electric current flowing through a specific one of the plurality of AC power cords is limited to a value equal to or lower than a predetermined current value, when the electric current, flowing through the specific one of the plurality of AC power cords, exceeds the rated current value per one AC power cord, it becomes possible to prevent the apparatus from entering into the overloading state.
While the preferred embodiments of the present invention have been described using specific term, such description is for illustrative purpose only, and it is to be understood that changes and variations may be made without departing from the spirit and scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2005-339179 | Nov 2005 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5589718 | Lee | Dec 1996 | A |
6486407 | Hawker et al. | Nov 2002 | B1 |
20040177283 | Madany et al. | Sep 2004 | A1 |
Number | Date | Country |
---|---|---|
62153771 | Jul 1987 | JP |
2003-244359 | Aug 2003 | JP |
2003-295702 | Oct 2003 | JP |
2003-323085 | Nov 2003 | JP |
2005-121681 | May 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20070116487 A1 | May 2007 | US |