An image forming apparatus of the present invention will be described first based on
The terms and words used in this specification for description of the present embodiment of the invention do not limit the technical scope.
In
Each of four groups of an image forming device 1 includes the photosensitive drum 10, scorotron charger 11, developing unit 13, cleaning device 14, and others. The image forming device 1 has the same mechanical structures for respective colors. In
A developing unit 13 has a cylindrical developing sleeve 16 formed of nonmagnetic stainless steel or aluminum material, which rotates in the opposite direction as the photosensitive drum 10 while keeping a predetermined distance from the circumferential surface of a photosensitive drum 10.
The image forming unit 1 for the respective colors are disposed in the order of Y, M, C and K along the running direction of the intermediate transfer belt 20. Each photosensitive drum 10 is in contact with and pressed on the surface of the intermediate transfer belt 20 by a primary transfer roller 25, and rotates in the same direction and at the same linear speed as the intermediate transfer belt 20 at the press contact point.
The intermediate transfer belt 20 is supported with tension by a driving roller 21, a grounding roller 22, a tension roller 23, a discharging roller 27, and a driven roller 24, and an intermediate transfer belt unit 2 is constituted of these rollers and the intermediate transfer belt 20, the primary transfer rollers 25, a cleaning device 28, and others. Further, said grounding roller (backup roller) 22 is a conductive aluminum roller, having its aluminum surface exposed as it is, and is grounded.
Each photosensitive drum 10 is produced in such a manner that the outer surface of a cylindrical metallic body made of, for example, aluminum is formed with a conductive layer, an a-Si layer or a photosensitive layer such as organic photoconductor (OPC), and rotates counterclockwise, as shown in
Electrical signals corresponding to image data from the reading device 80 are converted into optical signals by an image forming laser to be projected onto a photosensitive drum 10 by the writing unit 12.
The travel of the intermediate transfer belt 20 is made by rotation of the driving roller 21 that is driven by a driving motor, not shown. The material of intermediate transfer belt 20 is an endless belt with a volume resistivity of 106 to 1012 Ω·cm. The material of this intermediate transfer belt 20 is a seamless belt with a two-layer structure with a fluorine coating of a thickness of 5 to 50 μm made on the outside of the film base, preferably as a toner filming prevention layer. The film base is semiconductive, of a thickness of 0.04 to 0.10 mm and produced by dispersing conductive material on an engineering plastic material, such as denatured polyimide, heat curing polyimide, an ethylene tetrafluoroethylene copolymer, polyvinylidene fluoride, and a nylon alloy. As the base of the belt, apart from this, it is also possible to use a semiconductive rubber belt of thickness of 0.5 to 2.0 mm with a conductive material dispersed in silicone rubber or urethane rubber.
A DC voltage with a polarity opposite to that of the toner is applied to the primary transfer roller 25, and the intermediate transfer belt 20 is pressed against the photosensitive drum 10 from the inside of the belt by a pressure contacting and pressure contact releasing mechanism not shown in the figure, and at the nipping portion S formed by the intermediate transfer belt 20 and the grounding roller 22, the toner image formed on the intermediate transfer belt 20 is again transferred (secondary transfer) onto the transfer material P.
Here the numeric symbol 26 refers to a secondary transfer roller which is a secondary transfer device, and presses against the grounding roller 22 via the transfer material P by a pressure contacting and pressure contact releasing mechanism not shown in the figure, and has a function of carrying out secondary transfer of the toner image formed on the intermediate transfer belt onto the transfer material P. Further, the secondary transfer roller 26, is made of a conductive solid rubber whose surface is covered with a coated layer, and a bias voltage with a polarity opposite to that of the toner is applied to it during transfer (or else, a voltage with the same polarity as that of the toner can be applied to the grounding roller 22 and the secondary transfer roller 26 can be grounded,)
An AC voltage superimposed on a DC voltage with the same polarity as or with the opposite polarity to that of the toner is applied to the discharging roller 27, and hence, after the toner image is transferred onto the transfer material P, the electric charge on the toner remaining on the intermediate transfer belt 20 is weakened.
The numeric symbol 4 refers to a fixing unit which has a heating roller 41 and a pressure contacting roller 42.
Said heating roller 41 has a cylindrical shape, is formed out of thin aluminum plate, and has a halogen heater 47 that heats it up to a prescribed temperature from the inside. The temperature is detected and controlled by a contacting type temperature sensor that is placed in said heating roller 41 and that is not shown in the figure.
Further, the numeral 70 indicates a sheet feeding roller, 71 is a registration roller as a registration device, 72 is a sheet cassette, 73 is a conveyance roller, 74a and 74b are loop forming rollers as a loop forming device related to the present invention. The details of loop formation in the loop forming space U are described later. Also, the numeral 81 indicates a sheet discharge roller that discharges the transfer material, on which a toner has been fixed, to the sheet discharge tray 82.
The control section B1 as the control device carries out image forming process control, fixing temperature control, transfer material conveyance control, and toner density control.
Next, the image forming process is explained based on
Simultaneously with the starting of image recording, the photosensitive drum 10 for the color signal Y is started to rotate in the counterclockwise direction shown by the arrow due to the starting of rotation by a photosensitive drum drive motor not shown in the figure, and at the same time, due to the charging action of the scorotron charger 11 the application of voltage to the photosensitive drum 10 is started.
After a voltage is applied to the photosensitive drum 10, the writing of the image corresponding to the image data of Y is started by the writing unit 12, and an electrostatic latent image corresponding to the color Y image of the original document image is formed on the surface of the photosensitive drum 10.
Said electrostatic latent image is conducted reversal development in a non-contacting manner by the developing unit 13 of color Y, and a toner image is formed on the photosensitive drum 10 in accordance with the rotation of the photosensitive drum 10.
The color Y toner image formed on said photosensitive drum 10 is primary transferred onto the intermediate transfer belt 20 due to the action of the primary transfer roller 25 for Y.
Thereafter, any residual toner on said photosensitive drum 10 is removed by the blade 15 of the cleaning device 14.
In a similar manner, the image corresponding to the image data of the color signal of M (magenta), that is image data of M, is written by the writing unit 12, and an electrostatic latent image of M corresponding to the color M image of the original document image is formed on the surface of the photosensitive drum 10. Said electrostatic latent image is converted into a toner image of color M on the surface of the photosensitive drum 10 by the developing unit 13 of color M, and synchronization is achieved with said Y toner image on the intermediate transfer belt 20 and the color M toner image is superimposed over said Y toner image by the primary transfer roller 25 of the color M. After transfer, any residual M toner on the photosensitive drum 10 is removed by the blade 15 of the cleaning device 14.
By a similar process, synchronization is achieved with said Y and M superimposed toner images on the intermediate transfer belt 10 and the color C (cyan) toner image is superimposed over said Y and M superimposed toner images by the primary transfer roller 25 of the color C. Next, synchronization is achieved with the superimposed Y, M, and C toner images and the color K (black) toner image is superimposed over said superimposed Y, M, and C toner images by the primary transfer roller 25 of the color K to form superimposed Y, M, C and K toner images. After transfer, any residual K toner on the photosensitive drum 10 is removed by the blade 15 of the cleaning device 14.
The intermediate transfer belt 20 carrying the superimposed toner images is conveyed in the clockwise direction as shown by the arrow, the transfer material P is fed from the sheet cassette 72 by the sheet feeding roller 70, passed through the conveyance roller 73 and the loop forming roller 74a (74b), sent to the registration roller 71 and stopped temporarily. A loop is formed in the loop forming space U, a skew in the sheet is corrected, and also synchronization is achieved with the superimposed image on the intermediate transfer belt 20. Thereafter, due to restarting of the drive of said registration roller 71 the transfer material P is fed to the nipping portion S of the transfer area, and the superimposed toner images on the intermediate transfer belt 20 are secondary transferred all together onto the transfer material P by the secondary transfer roller 26 (which is in a state of pressure contact with the intermediate transfer belt 20) to which a DC voltage with a polarity opposite to that of the toner has been applied.
After that, the intermediate transfer belt 20 travels further, the electric charge on the residual toner is weakened by the discharging roller 27, the residual toner on the belt is cleaned in the cleaning device 28 by the blade 29 of the cleaning device 28, and the next image formation cycle is started.
The scraped off toner is accumulated in the cleaning device 28, conveyed in the axial direction (in the direction from the front surface towards the back surface of the sheet in
The transfer material P onto which said superimposed toner image has been transferred is sent to the fixing unit 4, gripped by the nipping portion T of the heating roller 41 and the pressure roller 42, and is fixed by applying pressure. The transfer material P on which the toner image has been fixed is conveyed to the sheet discharge tray 82 by the sheet discharge roller 81.
Next, the features of loop formation which is related to the present invention are described based on
As has been explained above, the sheet that is fed in a skewed state to the registration roller is stopped temporarily when its leading edge strikes against the registration roller. Therefore, the leading edge side of the sheet from the loop forming roller up to the registration roller gets its orientation changed thereby correcting the skew of the sheet. However, since the part of the sheet that is being gripped and conveyed by the loop forming rollers 74a and 74b is still skewed, the amount of sheet which has been conveyed from the loop forming rollers towards the registration roller is not uniform along the width direction of the sheet. Therefore, uniformity in the amount of loop is not maintained over the entire width along the main scanning direction of the sheet (a direction perpendicular to the conveying direction). Because of this, even it is detected that the amount of loop of the sheet is appropriate at a certain point along the main scanning direction, it is possible that the loop may disappear at one of the edges of the sheet during re-conveying after the temporary stop. If the amount of feed is made uniformly larger than the above state along the entire width considering the above problem so that the amount of loop is made larger, there may be a problem that buckling or folding of the sheet occurs at the edge where there is a larger loop amount than the other edge because of excessive feeding of the sheet. If the loop disappears in a part of the sheet during re-conveying after the temporary stop, only the side of the sheet where the loop has disappeared may slip under the registration roller, and the sheet may become skewed again. In addition, there may be fluctuations in the load on the sheet, thereby causing disorder in the transferred image.
In
The transfer material P conveyed in the skewed state reaches the registration roller 71, and then said loop forming rollers 74a and 74b continue to rotate for prescribed period of time. Owing to this, not only the leading edge of the transfer sheet P is corrected to become parallel to the nipping portion S but also the formation of a loop is started in the loop forming space U, and further the amount of loop is measured by the loop amount detecting sensors S1 and S2 as a loop amount detecting device. Further, these loop amount detecting sensors S1 and S2 are of the light transmission type and become ON or OFF according to a prescribed loop amount by an actuator 75 that rotates with the supporting shaft 76 as a pivot, and their signals are transmitted to the control section B1 which is a control device.
In
In order to control the initial loop amount, it is also possible not to use the sheet detecting sensor S3, but to use the loop amount detecting sensors S1 and S2. In other words, if the respective loop rollers are stopped when S1 or S2 detects the prescribed loop amount, it is possible to obtain an appropriate loop amount from the initial condition over the entire width of the transfer material P. However, if the transfer material is curled, or if a stiff sheet such as a thick sheet is used, the sensors S1 or S2 may be activated before the leading edge of the transfer sheet P reaches the nipping portion of the registration roller and stops the loop motors. In other words, there is a possibility of wrong operation due to wrong detection. Because of this, the sheet detecting sensor S3 is provided apart from the sensors S1 and s2.
After the loop amount detection is completed, the registration roller starts rotating again in synchronization with the toner image, and the control section B1 controls the loop motors M1 and M2 so that the loop forming rollers 74a and 74b are rotated at conveyance speeds according to the result of detection of the loop amount detecting sensors S1 and S2. In other words, while the transfer material is being conveyed by the registration roller 71, control is carried out by providing a speed difference between the loop forming rollers 74a and 74b so that the loop amount is made uniform. Each of the loop forming rollers is controlled individually so that, at least, the loop is formed over the entire width of the transfer sheet along a direction perpendicular to the conveyance direction, that is, so that there is no part where there is no loop formation. The control is made so as to prevent the case where the transfer material whose loop has disappeared is pulled by the registration roller 71.
In other words, if the linear speed of the registration roller is taken as V1, and the speeds of the loop forming rollers 74a and 74b are taken as V2 or V3, the relationship between the outputs of the loop amount detecting sensors S1 and S2 when they are ON or OFF and the roller linear speeds V2 and V3 generated by the loop motors M1 and M2 is as shown in Table 1. The relationships among the drive speeds satisfy the condition V2<V1<V3.
In the following, a preferred embodiment of the present invention is explained based on Table 1 and a time chart.
In
Here, in the present preferred embodiment, by controlling the loop forming rollers 74a and 74b at a linear speed V2 lower than the linear speed V1 of the registration roller or at a linear speed V3 higher than the linear speed V1 of the registration roller, a very high accuracy is being obtained. However, as a method of simplifying the control while reducing the accuracy slightly, for example, there is also a method of controlling the speed of the loop forming roller to a speed faster than the linear speed of the registration roller 71, on the side at which the loop is not detected, that is, on the side in which the sheet feed has been delayed, and of controlling the speed of the loop forming roller on the other side to be the same as the linear speed of the registration roller 71.
By the control device carrying out, based on each of the results of detection by a plurality of loop amount detecting devices, control of the respective sheet conveyance speeds of the corresponding plurality of loop forming devices, it is possible to form loops in the sheet with an appropriate loop amount over the entire width of the sheet along a direction perpendicular to the sheet conveyance direction, and since the loop does not become smaller than the amount necessary for correcting the sheet skew, it is possible to carry out stable correction of sheet skew even if the sheet has a ;ong length in the direction of conveying the sheet.
Number | Date | Country | Kind |
---|---|---|---|
JP2006-149481 | May 2006 | JP | national |