Image Forming Apparatus

Abstract
An image forming apparatus is provided. The image forming apparatus includes a housing which comprises a housing side opening through which waste toner passes; a plurality of developing units; a plurality of toner cartridges which correspond to the plurality of developing units comprising a first containing unit for containing the toner to be supplied to the toner carrier; wherein at least one of the toner cartridges comprises a second containing unit for containing the waste toner, the second containing unit comprises a cartridge side opening for receiving the waste toner having passed through the housing side opening, and wherein the housing side opening and the cartridge side opening are disposed to be opposite to each other along the substantially horizontal direction.
Description
TECHNICAL FIELD

Apparatuses and devices consistent with the present invention relate to image forming apparatuses and, more particularly, to image forming apparatuses such as a color laser printer.


BACKGROUND

Japanese unexamined patent application No. JP-A-2005-18039 describes a related art image forming apparatus such as a color printer. For example, the related art image forming apparatus includes a photosensitive drum on which an electrostatic latent image is formed, a developing roller for developing the electrostatic latent image, and a toner cartridge for containing toner to be supplied to the developing roller.


Besides, the toner cartridge of the related art image forming apparatus includes a waste toner container for collecting toner (waste toner) remaining on the photosensitive drum. The waste toner container is provided above the photosensitive drum, and the waste toner remaining on the photosensitive drum is removed by a cleaning blade, and then is conveyed to the waste toner container by a toner conveying belt.


SUMMARY

In the related art image forming apparatus, since the waste toner remaining on the photosensitive drum is conveyed to the upper waste toner container against gravitational force, a complicated mechanism such as the toner conveying belt is required. The related art configuration creates some advantages. For example, in the case where a toner having excellent fluidity is used, since the toner being conveyed may drop from the toner conveying belt, it is difficult to smoothly convey the toner to the waste toner container.


Accordingly, it is an object of the present invention to provide an image forming apparatus in which waste toner can be smoothly collected by a simple structure.


According to an illustrative aspect of the present invention, there is provided An image forming apparatus comprising a housing which comprises a housing side opening through which waste toner passes; a plurality of developing units which are disposed in parallel with each other in the housing, each of the developing units comprising an image carrier on which an electrostatic latent image is formed, a toner carrier which carries a toner for supplying the toner to the image carrier and visualizing the electrostatic latent image to form toner image, and a developing unit side reception opening for receiving the toner; and a plurality of toner cartridges which correspond to the plurality of developing units, the toner cartridges being disposed in parallel with each other in the housing, each of the toner cartridges comprising a first containing unit for containing the toner to be supplied to the toner carrier, and a cartridge side supply opening through which the toner passes to the respective toner carrier; wherein at least one of the toner cartridges comprises a second containing unit for containing the waste toner, the second containing unit comprises a cartridge side opening for receiving the waste toner having passed through the housing side opening, wherein the developing units and the toner cartridges can be independently attached to and detached from the housing, each of the toner cartridges is disposed to be opposite to an end of a respective one of the developing units along a substantially horizontal direction in a longitudinal direction of the toner carrier, and wherein the cartridge side supply opening and the developing unit side reception opening are disposed to be opposite to each other along the substantially horizontal direction, the housing side opening and the cartridge side opening are disposed to be opposite to each other along the substantially horizontal direction.


According to another illustrative aspect of the present invention, there is provided an image forming apparatus comprising: a housing which comprises a housing side opening through which waste toner passes; a plurality of developing units; and a plurality of toner cartridges which correspond to the plurality of developing units, each of the toner cartridges comprising a first containing unit for containing the toner to be supplied to the toner carrier; wherein at least one of the toner cartridges comprises a second containing unit for containing the waste toner, the second containing unit comprises a cartridge side opening for receiving the waste toner having passed through the housing side opening, and wherein the housing side opening and the cartridge side opening are disposed to be opposite to each other along the substantially horizontal direction.





BRIEF DESCRIPTION OF THE DRAWINGS

Illustrative aspects of the invention will be described in detail with reference to the following figures wherein:



FIG. 1 is a right side sectional view showing a printer according to an exemplary embodiment of the present invention;



FIG. 2 is a view in which a toner cartridge is added to the printer in FIG. 1;



FIG. 3 is a view showing a state of the printer of FIG. 1 in which a drum section is attached to and detached from a main body casing of the printer;



FIG. 4 is a right front side perspective view of the printer shown in FIG. 1;



FIG. 5 is a view showing a state of the printer of FIG. 4 in which a cartridge door is opened;



FIG. 6 is a view showing a state of the printer of FIG. 5 in which toner cartridges are attached to and detached from the main body casing of the printer;



FIG. 7 is a right front side perspective view of the drum section of the printer of FIG. 1;



FIGS. 8A and 8B are right front side perspective views of the toner cartridge of the printer of FIG. 1 in which FIG. 8A shows a state of the toner cartridge in which an inner cylinder is at a closed position, and FIG. 8B shows a state of the toner cartridge in which the inner cylinder is at an open position;



FIGS. 9A and 9B are left rear side perspective views of the toner cartridge of FIGS. 8A and 8B, respectively, in which FIG. 9A shows a state of the toner cartridge in which the inner cylinder is at the closed position, and FIG. 9B shows a state of the toner cartridge in which the inner cylinder is at the open position;



FIGS. 10A and 10B are right side sectional views of toner cartridges of the printer of FIG. 1 in which FIG. 10A shows a black toner cartridge, and FIG. 10B shows a toner cartridge other than the black;



FIGS. 11A and 11B are front sectional views of the printer of FIG. 1 showing a state in which toner is moved between the toner cartridge and a drum unit, FIG. 11A shows a state in which the inner cylinder is at the closed position, and FIG. 11B shows a state in which the inner cylinder is at the open position; and



FIGS. 12A and 12B are right front side perspective views of a body shutter of the toner cartridge of the printer of FIG. 1, FIG. 12A shows a state of the toner cartridge in which the body shutter is at a closed position, and FIG. 12B shows a state of the toner cartridge in which the body shutter is at an open position.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS OF THE PRESENT INVENTION
1. Structure of the Printer


FIG. 1 is a right side sectional view showing a printer according to an exemplary embodiment of the present invention.


As shown in FIG. 1, the printer is embodied as a vertically-disposed-type tandem color laser printer in which a plurality of drum units 38 are disposed in parallel along a substantially vertical direction. The printer 1 includes, in a box-shaped main body casing 2 as an example of a housing, a sheet feeding unit 4 to feed a sheet 3, an image forming unit 5 for forming an image on the fed sheet 3, and a sheet discharging unit 6 for discharging the sheet 3 on which the image is formed. The printer 1 further includes a reading scanner unit 7 that is provided above the main body casing 2 and is for reading image information of an original document, and is constructed as a so-called multi-functional device.


Incidentally, in the following description, in a state in which a toner cartridge 39, and the drum units 38 are mounted to the main body casing 2, the left side on the paper of FIG. 1 is the front (forward) side, and the right side on the paper of FIG. 1 is the back (rear) side. A front side in the paper thickness direction of FIG. 1 is the right side, and the depth side in the paper thickness direction of FIG. 1 is the left side. Incidentally, the right-left direction is sometimes called the width direction. The front-rear direction and the right-left direction are included in the substantially horizontal direction and are directions orthogonal to each other, and the up-down direction is included in the substantially vertical direction.


(1) Main Body Casing

The main body casing 2 is long in the up-down direction.


An upper side wall 8 of the main body casing 2 is provided to be capable of swinging with respect to the main body casing 2. In more detail, a swing shaft 9 of the upper side wall 8 extends in the width direction at the rear side of upper end of the main body casing 2, and the upper side wall 8 swings between a closed position (see FIG. 1) in which the upper side wall 8 falls and closes the upper surface of the main body casing 2, and an open position (see FIG. 3) in which the upper side wall 8 rises and opens the upper surface of the main body casing 2 upward. Incidentally, when the upper side wall 8 is at the open position, the inside (particularly, an after-mentioned first swing wall 58) of the main body casing is exposed upward from the upper surface of the main body casing 2. The reading scanner unit 7 is provided on the upper surface of the upper side wall 8, and swings together with the upper side wall 8. The front side portion of the upper side wall 8 is inclined forward and downward, and an operation panel 10 is provided on this portion.


As shown in FIG. 4, an operation panel 10 is provided with a plurality of buttons 11 and a display screen 12. An operation of the printer 1 may be controlled by operating the buttons 11, and the operation state is displayed on the display screen 12.


A front side wall 13 of the main body casing 2 is substantially parallel to the plane including the up-down direction and the right-left direction. In this front side wall 13, a sheet discharge port 14 is formed below the operation panel 10. The sheet discharge port 14 is long in the width direction and has a rectangular shape when viewed from front, and is formed at substantially the center, in the width direction, of the front side wall 13 and at the position adjacent to the operation panel 10.


A tray attachment-detachment port 15 is formed at the lower end of the front side wall 13. The tray attachment-detachment port 15 is long in the width direction and has a rectangular shape when viewed from front. When a sheet feeding tray 19 described later is attached to or detached from the main body casing 2, the sheet feeding tray 19 passes through the tray attachment-detachment port 15.


In the front side wall 13, a plurality of cartridge attachment-detachment ports 17 are formed at a right upper part of the tray attachment-detachment port 15 and at a right lower part of the sheet discharge port 14 as shown in FIG. 5. The cartridge attachment-detachment port 17 has a circular shape when viewed from front, and four ports are formed along the up-down direction. When a toner cartridge 39, which is described in more detail later, is attached to and detached from the main body casing 2, the toner cartridge 39 passes through the corresponding cartridge attachment-detachment port 17. A cartridge door 18 is rotatably provided on the front side wall 13. In more detail, a rotation shaft (not shown) of the cartridge door 18 extends in the up-down direction at the front right end of the main body casing 2, and the cartridge door 18 is rotated between a closed position (see FIG. 4) in which the cartridge attachment-detachment ports 17 are closed and an open position (see FIG. 5) in which the cartridge attachment-detachment ports 17 are opened forward. Incidentally, as shown in FIG. 4, in the front side wall 13, recesses are formed at positions close to the upper end and the lower end of the cartridge door 18, and the recesses facilitate opening of the cartridge door 18 using, for example, a finger or tool.


In the front side wall 13, a processing door 28, which is a portion of the front side wall 13 surrounded by the sheet discharge port 14, the tray attachment-detachment port 15, and the cartridge attachment-detachment port 17 is swingable around a swing shaft 29 extending in the width direction. The processing door 28 swings between a closed position (see FIG. 4) in which the processing door 28 rises and closes the inside of the main body casing 2 and an open position (see FIG. 3) in which the processing door 28 tilts forward and opens the inside of the main body casing 2 forward. When the processing door 28 is at the open position, a jam removal process, for example, can be performed. The upper end of the processing door 28 is smoothly curved obliquely upward and rearward, and in the processing door 28, a slit 51 long in the width direction when viewed from front is formed in the lower end of the curved portion.


The slit 51 has a size in the width direction larger than a size of the sheet 3 in the width direction, and as shown in FIG. 1, the slit 51 passes through the processing door 28 in the front-rear direction. At the upper end of the processing door 28, there are provided a first pickup roller 55 and a first feed roller 56 exposed in the slit 51 from above and a first separation pad 57 exposed in the slit 51 from below.


The wall (called the first swing wall 58) slightly inclining obliquely downward and rearward is provided at the rear side of the upper end of the processing door 28. The first swing wall 58 is swingable around a swing shaft 59 extending in the width direction at the rear end thereof. In more detail, the first swing wall 58 swings between a closed position (see FIG. 1) in which the first swing wall 58 tilts and is continuous with the upper end of the processing door 28 and an open position (see FIG. 3) in which the first swing wall 58 stands and upward opens a portion (a drum receiving space 90 as an example of a first space described later) lower than the first swing wall 58 in the main body casing 2. A second conveying roller 40 and a second transfer roller 60 are rotatably provided at the lower side surface of the first swing wall 58 when the first swing wall 58 is at the closed position. Both the second conveying roller 40 and the second transfer roller 60 are long in the width direction, and are supported by the first swing wall 58 so that the lower surfaces are exposed downward from the lower side surface of the first swing wall 58. The secondary transfer roller 60 is disposed behind the second conveying roller 40. At the time of image formation, a secondary transfer bias is applied to the secondary transfer roller 60.


(2) Sheet Feeding Unit

As shown in FIG. 1, the sheet feeding unit 4 includes the sheet feeding tray 19 that is attachably and detachably mounted to and from the bottom in the main body casing 2 through the tray attachment-detachment port 15 from the front side of the main body casing 2. A second pickup roller 20, a second feed roller 21, a second separation pad 22 and a sheet dust removing roller 23 are provided above the front end of the sheet feeding tray 19 in the sheet feeding unit 4. The sheet feeding unit 4 includes a sheet feed path 25 extending slightly obliquely rearward and upward from the second feed roller 21 at the rear side of the processing door 28, and a pair of first conveying rollers 26 that are provided at the upper end of the sheet feed path 25 and are disposed to be opposite to each other. One first conveying roller 26 of the pair of first conveying rollers 26 is supported by the processing door 28 in the vicinity of the first feed roller 56, and the other first conveying roller 26 is supported by the scanner unit 30.


The sheets 3 stacked on the sheet feeding tray 19 are pressed to the second pickup roller 20 by a sheet pressing plate 24 provided in the sheet feeding tray 19, are conveyed to between the second feed roller 21 and the second separation pad 22 by the rotation of the second pickup roller 20, and are separated one by one. Thereafter, the sheet 3 passes through between the second feed roller 21 and the sheet dust removing roller 23, and after the sheet dust is removed by the sheet dust removing roller 23, the sheet is raised in the sheet feed path 25, and then is conveyed to a secondary transfer position 27 (described later) of the image forming unit 5 by the first conveying roller 26.


The slit 51 joins the sheet feed path 25. Thus, when the sheet 3 is manually fed into the slit 51 from the front side, this sheet 3 is conveyed to between the first feed roller 56 and the first separation pad 57 by the rotation of the first pickup roller 55 and is separated one by one. Thereafter, the sheet 3 reaches the sheet feed path 25, and is conveyed to the secondary transfer position 27 by the first conveying roller 26.


(3) Image Forming Unit

The image forming unit 5 includes the scanner unit 30, a process unit 31, a transfer unit 32, a cleaning unit 33 as an example of a collection unit, and a fixing unit 34.


(3-1) Scanner Unit

The scanner unit 30 is disposed at a position close to the front side in the body casing 2, and in more detail, the scanner unit 30 is disposed along the up-down direction so as to be adjacent to the sheet feed path 25 from the rear side. The scanner unit 30 includes a laser emission unit (not shown), a polygon mirror 35 to be rotated and driven, and a plurality of reflecting mirrors 36. Four laser beams are emitted from the laser emission unit based on image data. Each of the laser beams is reflected by the polygon mirror 35 as indicated by an alternate long and short dash line, is reflected by the plurality of reflecting mirrors 36, and is scanned to the surface of a corresponding photosensitive drum 37 as an example of an image carrier.


(3-2) Process Unit

The process unit 31 includes four drum units 38 corresponding to respective colors of black, yellow, magenta and cyan, and four toner cartridges 39 respectively provided correspondingly to the respective drum units 38.


(3-2-1) Drum Unit

The drum unit 38 is long in the width direction and has a substantially rectangular parallelepiped shape. The plurality of drum units 38 are disposed in parallel along the substantially vertical direction in a state in which they are held by the same frame 43, and are disposed adjacently to the rear side of the scanner unit 30. In the following, the plurality of drum units 38 and the frame 43 are sometimes referred to as a drum section 44. In the main body casing 2, a space that receives the drum section 44 is called a drum receiving space 90. The drum receiving space 90 is the space between the scanner unit 30 and the transfer unit 32, and has a rectangular parallelepiped shape long in the up-down direction. The upper end of the drum receiving space 90 is closed from above by the first swing wall 58 located at the closed position. As shown in FIG. 3, when the upper side wall 8 and the first swing wall 58 are respectively swung to the open position, and the upper surface (drum receiving space 90) of the main body casing 2 is opened upward, the drum section 44 can be attached to and detached from the main body casing 2 along the up-down direction (substantially vertical direction) from above the main body casing 2.


As shown in FIG. 1, each of the drum units 38 includes a photosensitive drum 37, a scorotron charger 41, a cleaning roller 42, a supply roller 45, a developing roller 46 as an example of a developer carrier and a toner carrier, a layer thickness regulating blade 47, a supply auger 48 as an example of a conveying member and a second conveying member, and a return auger 49.


The photosensitive drum 37 is long in the width direction, has an outermost layer made of a positive charging photosensitive layer, and has a cylindrical shape, and the rear side surface is exposed rearward from the frame 43. The photosensitive drum 37 is rotated by drive force from a motor (not shown) provided in the main body casing 2 at the time of image formation.


The scorotron charger 41 is provided obliquely in front of and above the photosensitive drum 37 and is disposed to be opposite to the photosensitive drum 37 while an interval is provided. At the time of image formation, a high voltage is applied, and the surface of the photosensitive drum 37 is uniformly positively charged.


The cleaning roller 42 is long in the width direction, is provided over the photosensitive drum 37, and is disposed to be opposite to the photosensitive drum 37 and to come in contact with the surface thereof. At the time of image formation, a cleaning bias to collect a toner is applied to the cleaning roller 42, and at the time of end of the image formation, a bias opposite to the cleaning bias is applied.


The developing roller 46 is long in the width direction, is provided obliquely in front of and below the photosensitive drum 37, and is disposed to be opposite to the photosensitive drum 37 and to come in contact with the surface thereof. The developing roller 46 includes a metal developing roller shaft that is rotatably supported by both side walls, in the width direction, of the frame 43, and a rubber roller unit that covers the developing roller shaft and is made of conductive rubber. Incidentally, the rubber roller unit comes in contact with the photosensitive drum 37. At the time of image formation, the drive force from the motor (not shown) provided in the main body casing 2 is transmitted, and the developing roller 46 is rotated. Besides, a development bias is applied to the developing roller 46.


The supply roller 45 is long in the width direction, is provided obliquely in front of and below the developing roller 46, and is disposed to be opposite to the developing roller 46 and to come in contact with the surface thereof. The supply roller 45 includes a metal supply roller shaft that is rotatably supported by both the side walls, in the width direction, of the frame 43, and a sponge roller unit that covers the supply roller shaft and is made of conductive sponge. Incidentally, the sponge roller unit comes in contact with the rubber roller unit of the developing roller 46. At the time of image formation, the drive force from the motor (not shown) provided in the main body casing 2 is transmitted, and the supply roller 45 is rotated.


The layer thickness regulating blade 47 is provided above the developing roller 46. The layer thickness regulating blade 47 includes a plate spring member that extends substantially downward to the developing roller 46, and a press contact rubber 50 that is provided at the end (lower end) of the plate spring member and comes in press contact with the developing roller 46 from an obliquely front upper part.


The supply auger 48 is disposed above the supply roller 45. The supply auger 48 includes a shaft that extends in the width direction and is rotatably supported by both the side walls, in the width direction, of the frame 43, and a helical vane that is formed on the surface of the shaft. At the time of image formation, the drive force from the motor (not shown) provided in the main body casing 2 is transmitted and the supply auger 48 is rotated.


The return auger 49 is disposed in front of the supply auger 48. The return auger 49 includes a shaft that extends in the width direction and is rotatably supported by the left side wall of the frame 43, and a helical vane formed on the surface of the shaft. At the time of image formation, the drive force from the motor (not shown) provided in the main body casing 2 is transmitted, and the return auger 49 is rotated.


The second conveying roller 40 is rotatably provided at the upper end of the frame 43. The second conveying roller 40 is long in the width direction, and is supported by the frame 43 so that the upper surface thereof is exposed upward from the upper surface of the frame 43. When the first swing wall 58 is at the closed position, the second conveying roller 40 of the first swing wall 58 and the second conveying roller 40 of the frame 43 are opposite to each other. At this time, a gap (called a relay path 61) is formed between the lower surface of the first swing wall 58 and the upper surface of the frame 43. The relay path 61 is continuous from the upper end of the sheet feed path 25, and extends to the secondary transfer position 27.


The drum unit 38 will be described later in more detail.


(3-2-2) Toner Cartridge

As shown in FIG. 2, the toner cartridge 39 has a cylindrical shape long in the front-rear direction, and is disposed at the right side of the drum unit 38 so as to be opposite to the right end of the corresponding drum unit 38 along the substantially horizontal direction (width direction). In a state of being mounted to the main body casing 2, each of the toner cartridges 39 is sandwiched between the front side wall 13 of the main body casing 2 and a rear side wall 77 (opposite to the front side wall 13 in the front-rear direction) as an example of a second side wall, and in more detail, the toner cartridges 39 extend (protrude) to the front side wall 13. The front end of each of the toner cartridges 39 is positioned at the forward side (the front side wall 13 side) of process means (the scanner unit 30, the drum section 44, the transfer unit 32, and the cleaning unit 33) operating for image formation and the sheet feed path 25.


Toners of different colors are contained in the respective toner cartridges 39 (in more detail, new toner containing units 115 as an example of a first containing unit described later). As an example of toners of the respective colors, positive-charge-type non-magnetic one-component polymerized toners are used in which respective coloring agents of yellow, magenta, cyan and black are mixed correspondingly to the respective colors. The toner is excellent in fluidity. In the drawing, the respective toner cartridges 39 are classified into a yellow toner cartridge 39Y, a magenta toner cartridge 39M, a cyan toner cartridge 39C, and a black toner cartridge 39K according to the color of the contained toner. The respective drum units 38 are also classified into a yellow drum unit 38Y, a magenta drum unit 38M, a cyan drum unit 38C, and a black drum unit 38K according to the color of the toner. The drum units 38 and the toner cartridges 39 are disposed in parallel along the substantially vertical direction in the order of black, cyan, magenta and yellow from below to above.


The toner cartridge 39 will be described later in more detail.


(3-2-3) Development Operation in Process Unit

With reference to FIG. 1, at the time of image formation, the toner contained in each of the toner cartridges 39 is supplied to the supply auger 48 of the corresponding drum unit 38. The toner supplied to the supply auger 48 is conveyed to the left by the vane of the supply auger 48, drops to the supply roller 45 below the supply auger 48, and is supplied to the supply roller 45. The toner that is not supplied to the supply roller 45 but is conveyed to the left end of the supply auger 48 is delivered to the return auger 49, is conveyed to the right side, and is returned to the toner cartridge 39. The toner returned to the toner cartridge 39 is again supplied to the supply auger 48. As described above, the toner is circulated between the toner cartridge 39 and the drum unit 38. Incidentally, the circulation of the toner will be described later in detail.


The toner supplied to the supply roller 45 is supplied to the developing roller 46 by the rotation of the supply roller 45. At this time, the toner is friction-charged to a positive polarity between the supply roller 45 and the developing roller 46 to which the development bias is applied. The positively charged toner supplied to the developing roller 46 in this way enters between the press rubber 50 of the layer thickness regulating blade 47 and the developing roller 46, and is carried as a thin layer having a constant thickness on the surface of the developing roller 46.


On the other hand, as the photosensitive drum 37 is rotated, the surface of the photosensitive drum 37 is uniformly positively charged by the scorotron charger 41. Then, the laser beam (see the alternate long and short dash line of FIG. 1) from the scanner unit 30 is irradiated to the surface of the positively charged photosensitive drum 37, so that an electrostatic latent image corresponding to an image to be formed on the sheet 3 is formed.


When the electrostatic latent image formed on the surface of the photosensitive drum 37 becomes opposite to the developing roller 46 by the rotation of the photosensitive drum 37, the positively charged toner carried on the surface of the developing roller 46 is supplied to the electrostatic latent image (that is, in the surface of the uniformly positively charged photosensitive drum 37, a light exposure portion which is exposed by the laser beam and the potential of which is lowered). By this, the electrostatic latent image is visualized and the toner image by inversion development is carried on the surface of the photosensitive drum 37.


(3-3) Transfer Unit

In the main body casing 2, the transfer unit 32 is disposed along the up-down direction so as to be adjacent to the plurality of drum units 38 (drum sections 44) from the rear side. The transfer unit 32 includes a transfer frame (not shown), a driving roller 52 supported by the transfer frame, a driven roller 53 as an example of a roller, a transfer belt 54 as an example of a belt, and four primary transfer rollers 63. As shown in FIG. 3, when the upper side wall 8 and the first swing wall 58 are swung to the open position, and the upper surface of the main body casing 2 is opened upward, the transfer unit 32 can be attached to and detached from the main body casing 2 along the up-down direction from the upper surface of the main body casing 2.


As shown in FIG. 1, the driving roller 52 and the driven roller 53 extend in the width direction, and are disposed to be opposite to each other in the up-down direction while an interval is provided therebetween. Specifically, the driving roller 52 is positioned above the photosensitive drum 37 of the yellow drum unit 38Y and is rotatably supported by the transfer frame (not shown). The driven roller 53 is positioned below the driving roller 52, particularly below the photosensitive drum 37 of the black drum unit 38K and is rotatably supported by the transfer frame (not shown).


The transfer belt 54 is made of an endless belt made of resin such as polycarbonate, and is stretched between the driving roller 52 and the driven roller 53. As shown in FIG. 1, the left side surface of the transfer belt 54 is in contact with the photosensitive drums 37 of the respective drum units 38. Here, contact positions of the respective photosensitive drums 37 and the transfer belt 54 are respectively called primary transfer positions 62. When the first swing wall 58 is at the closed position, the secondary transfer roller 60 and the driving roller 52 are opposite to each other across the transfer belt 54. At this time, the secondary transfer roller 60 and the transfer belt 54 are in contact with each other, and this contact position is the secondary transfer position 27.


The primary transfer roller 63 extends in the width direction, and is rotatably supported by the transfer frame (not shown) within the transfer belt 54 stretched between the driving roller 52 and the driven roller 53. The primary transfer rollers 63 are provided correspondingly to the respective drum units 38, and are opposite to the corresponding photosensitive drums 37 at the primary transfer positions 62 across the transfer belt 54. At the time of image formation, a primary transfer bias is applied to the primary transfer roller 63.


At the time of image formation, the drive force from a motor (not shown) provided in the main body casing 2 is transmitted to the driving roller 52, and the driving roller 52 is rotated. Then, the transfer belt 54 circulates between the driving roller 52 and the driven roller 53 so as to rotate in the opposite direction (clockwise direction in FIG. 1) to the photosensitive drum 37, and the driven roller 53 and the primary transfer rollers 63 are driven and rotated.


The transfer belt 54 sequentially passes through the respective primary transfer positions 62 from below to above. During the passage, toner images carried by the photosensitive drums 37 of the respective drum units 38 are sequentially transferred to the transfer belt 54 at the primary transfer positions 62 by the primary transfer biases applied to the respective primary transfer rollers 63. That is, the black toner image of the black drum unit 38K is transferred to the transfer belt 54, and next, the cyan toner image of the cyan drum unit 38C is transferred to superimpose on the black toner image on the transfer belt 54. Thereafter, by a similar procedure, the magenta toner image of the magenta drum unit 38M and the yellow toner image of the yellow drum unit 38Y are sequentially superimposed and transferred onto the transfer belt 54, and a color image is formed on the transfer belt 54.


While the transfer belt 54 is passing through the secondary transfer position 27, the color image formed on the transfer belt 54 is collectively transferred onto the sheet 3 conveyed to the secondary transfer position 27 from the sheet feeding unit 4 through the relay path 61 by the secondary transfer bias applied to the secondary transfer roller 60. The sheet 3 on which the color image is transferred is conveyed to the fixing unit 34.


Toner that remains on the photosensitive drum 37 after the transfer of the toner image onto the transfer belt 54 is collected by the cleaning roller 42. At the end of image formation, a bias for discharging the toner is applied to the cleaning roller 42, so that the toner is collected by the developing roller 46 after being discharged to the photosensitive drum 37.


(3-4) Cleaning Unit

The cleaning unit 33 is disposed to be adjacent to the transfer unit 32. In more detail, the cleaning unit 33 is disposed to be adjacent to the lower end of the transfer unit 32 from the rear side, and is opposite to the driven roller 53 across the transfer belt 54. The cleaning unit 33 includes a box-shaped cleaning casing 67, a primary cleaning roller 64 received in the cleaning casing 67, a secondary cleaning roller 65, a scraping blade 66, and a discharge auger 68 as an example of a first conveying member.


Both the primary cleaning roller 64 and the secondary cleaning roller 65 are long in the width direction, and are rotatably supported by both side walls, in the width direction, of the cleaning casing 67.


The primary cleaning roller 64 is disposed to be opposite to the driven roller 53 across the transfer belt 54. At this time, the primary cleaning roller 64 is in contact with the transfer belt 54, and the contact position between the primary cleaning roller 64 and the transfer belt 54 is called a cleaning transfer position 69. A primary cleaning bias is applied to the primary cleaning roller 64. The secondary cleaning roller 65 is disposed in an obliquely rear upper part of the primary cleaning roller 64, is opposite to the primary cleaning roller 64, and is disposed so as to come in contact with the surface thereof. A secondary cleaning bias is applied to the secondary cleaning roller 65.


The scraping blade 66 is provided so as to come in contact with the secondary cleaning roller 65 from behind.


The discharge auger 68 is disposed below the contact position between the scraping blade 66 and the secondary cleaning roller 65. The discharge auger 68 includes a shaft that extends in the width direction and is rotatably supported by the left side wall, in the width direction, of the cleaning casing 67, and a helical vane formed on the surface of the shaft. At the time of image formation, the drive force from the motor (not shown) provided in the main body casing 2 is transmitted, and the discharge auger 68 is rotated.


In the transfer operation of a color image, the toner remaining on the surface of the transfer belt 54 is first transferred from the surface of the transfer belt 54 to the primary cleaning roller 64 by the primary cleaning bias at the cleaning transfer position 69, and is collected by the cleaning unit 33. The toner transferred to the primary cleaning roller 64 is transferred to the secondary cleaning roller 65 by the secondary cleaning bias. Thereafter, the toner transferred to the secondary cleaning roller 65 is scraped by the scraping blade 66, and drops from the secondary cleaning roller 65 to the discharge auger 68. As described in more detail later, the toner dropped to the discharge auger 68 is conveyed as waste toner to a waste toner discharge port 128 (see FIG. 2) as an example of a housing side opening at the right side, and is contained in a waste toner containing unit 70 (see FIG. 2) as an example of a second containing unit in the toner cartridge 39.


(3-5) Fixing Unit

The fixing unit 34 is disposed behind the secondary transfer position 27. The fixing unit 34 includes a heating roller 71 and a pressing roller 72 to press the heating roller 71. In the fixing unit 34, the color image transferred on the sheet 3 is heated and pressed while the sheet 3 is passing through between the heating roller 71 and the pressing roller 72, so that the color image is heated and fixed to the sheet 3.


(4) Sheet Discharging Unit

The sheet discharging unit 6 includes a pair of conveying rollers 73, a sheet discharge path 74, discharge rollers 75 and a sheet discharging tray 76. The pair of conveying rollers 73 is provided behind the heating roller 71 and the pressing roller 72 and is disposed so as to come in contact with each other. The sheet discharge path 74 extends within a rear side wall 77 of the main body casing 2 from the contact position of the pair of conveying rollers 73 to an obliquely rear upper part while curving, and extends to be smoothly folded back forward. A sheet discharge port 78 as an outlet of the sheet discharge path 74 is formed on the front surface of the rear side wall 77. The discharge rollers 75 are three rollers disposed in the sheet discharge port 78, and one roller thereof is in contact with the other two rollers. The sheet discharging tray 76 extends forward from a part below the sheet discharge port 78 at the front side surface of the rear side wall 77. The upper side surface of the first swing wall 58 and the upper end of the processing door 28 are included in the sheet discharging tray 76.


The sheet 3 on which the color image is fixed by the fixing unit 34 is conveyed along the sheet discharge path 74 by the conveying roller 73 in the sheet discharging unit 6, and is discharged onto the sheet discharging tray 76 through the sheet discharge port 78 by the discharge roller 75. At this time, the surface (i.e., the print surface) of the sheet 3 on which the color image is fixed is turned upward.


(5) Reading Scanner Unit

The reading scanner unit 7 includes a document table 79 connected to the upper side wall 8 (in more detail, embedded in the upper side wall 8) and a press cover 80 swingably supported on the document table 79.


The document table 79 is formed into a rectangular plate shape when viewed in plane, and a glass surface 81 on which an original document is placed is provided at the upper surface thereof. A CCD sensor 82 for reading the original document is incorporated in the document table 79. The CCD sensor 82 stands by at the left end of the glass surface 81 (this position is called a standby position), and at the time of normal original document reading, the CCD sensor slides from the left to the right in a state in which it is opposite to the glass surface 81.


The press cover 80 is formed into a rectangular plate shape, when viewed in plane, similar to the document table 79. The rear end of the press cover 80 and the rear end of the document table 79 are coupled by a hinge 129, and the press cover 80 swings between a closed position (see FIG. 1) in which the press cover 80 tilts and closes the glass surface 81 from above and an open position (not shown) in which the press cover 80 stands and exposes the glass surface 81 obliquely forward and upward. As shown in FIG. 4, an Auto Document Feeder (ADF) 83 for automatically reading an original document is provided at the left end of the press cover 80. The ADF 83 includes a box-shaped ADF casing 84 and a standby tray 85 that extends from the right wall of the ADF casing 84 to the right and has a trapezoidal thin plate shape when viewed in plane. An original document conveying roller (not shown) and an original document detection sensor (not shown) are provided in the inside of the ADF casing 84. In the right side wall of the ADF casing 84, a take-in port 86 is formed above the standby tray 85, and a take-out port 87 is formed below the standby tray 85.


In the reading scanner unit 7, in the case of normal original document reading, the press cover 80 is swung to the open position, an original document is placed on the glass surface 81 (see FIG. 1), the press cover 80 is swung to the closed position, and the button 11 of the operation panel 10 is operated. By this, the CCD sensor 82 at the standby position slides from the left to the right in the state in which the CCD sensor 82 is opposite to the original document placed on the glass surface 81, and image information of the original document is read. Thereafter, the press cover 80 is again swung to the open position, and the original document is removed from the glass surface 81. The CCD sensor 82 is automatically returned to the standby position.


On the other hand, in the case of automatic reading of an original document by the ADF 83, when the original document detection sensor (not shown) detects that the original document is set on the standby tray 85, the CCD sensor 82 is fixed at a not-shown auto document reading position differently from the normal original document reading. Then, when the button 11 is operated, the original document conveying roller (not shown) of the ADF 83 is rotated, the original document is drawn by the original document conveying roller (not shown), is moved leftward, and is taken into the ADF casing 84 through the take-in port 86. When the original document that is taken in becomes opposite to the CCD sensor 82, image information of the original document is read by the CCD sensor 82. Thereafter, the original document is discharged from the take-out port 87.


The image forming unit 5 creates image data based on the image information of the original document read as described above, and forms an image on the sheet 3.


2. Structure of Respective Components
(1) Main Body Casing

As shown in FIG. 5, in the main body casing 2, the cartridge attachment-detachment ports 17 adjacent to each other in the up-down direction are coupled through a notch 88 having a rectangular shape when viewed from front. Here, the cartridge attachment-detachment ports 17 are also classified into a yellow cartridge attachment-detachment port 17Y, a magenta cartridge attachment-detachment port 17M, a cyan cartridge attachment-detachment port 17C, and a black cartridge attachment-detachment port 17K from above in sequence according to the toner color similarly to the toner cartridges 39. The notch 88 is formed also at the upper end of the yellow cartridge attachment-detachment port 17Y and at the lower end of the black cartridge attachment-detachment port 17K.


Four cartridge receiving spaces 89 for receiving the toner cartridges 39 are formed as an example of a second space at the right end of the main body casing 2. Each of the cartridge receiving spaces 89 has a cylindrical shape long in the front-rear direction, and communicates with the corresponding cartridge attachment-detachment port 17 at the front side. Here, the cartridge receiving spaces 89 are also classified into a yellow cartridge receiving space 89Y, a magenta cartridge receiving space 89M, a cyan cartridge receiving space 89C, and a black cartridge receiving space 89K from above in sequence according to the toner color similarly to the cartridge attachment-detachment ports 17. Of course, it is also possible to provide the cartridge attachment-detachment ports 17 and the cartridge receiving spaces 89 in another sequence. Similarly to the cartridge attachment-detachment ports 17, the cartridge receiving spaces 89 adjacent to each other in the up-down direction are coupled through a notch 88 in the front-rear direction. The notch 88 of the upper end of the yellow cartridge attachment-detachment port 17Y is formed in the front-rear direction at the upper end of the yellow cartridge receiving space 89Y. Similarly, the notch 88 of the lower end of the black cartridge attachment-detachment port 17K is formed in the front-rear direction at the lower end of the black cartridge receiving space 89K. Incidentally, the four cartridge receiving spaces 89 in the communication state are sometimes collectively called the cartridge receiving space 89.


As shown in FIGS. 11A and 11B, the main body casing 2 is provided with a partition wall 91 that partitions the space of the main body casing 2 into the cartridge receiving space 89 and the drum receiving space 90. In more detail, the partition wall 91 integrally includes a plane unit 92 that extends along the up-down direction and is thin in the width direction when viewed in front section, and four curved units 93 that are provided side by side in the up-down direction at the right side of the plane unit 92 and have substantially C-shapes when viewed in front section. Incidentally, an inversely C-shaped wall, when viewed in front section, that is disposed at the right side of each of the curved surface units 93 and is opposite to the curved unit 93 across the corresponding cartridge receiving space 89 and the notch 88 is a left side portion of the right side wall 94 of the main body casing 2. In the partition wall 91, a partition wall side supply port 95 as an example of a first partition opening and a partition wall side return port 96 as an example of a second partition wall opening are formed in a portion (in more detail, a connection portion between the plane unit 92 and the curved unit 93) corresponding to each of the cartridge receiving spaces 89. That is, in the partition wall 91, two ports comprising the partition wall side supply port 95 and the partition wall side return port 96 are formed for each of the four cartridge receiving spaces 89. That is, each of the four cartridge receiving spaces 89 comprises a partition wall side supply port 95 and a partition wall side return port 96. For each cartridge receiving space 89, the partition wall side supply port 95 is positioned above the partition wall side return port 96. As shown in FIGS. 12A and 12B, the partition wall side supply port 95 is positioned behind the partition wall side return port 96. Incidentally, in FIGS. 11A and 11B, for convenience of description, the partition wall side supply port 95 and the partition wall side return port 96 are shown on the same plane. Moreover, the partition wall side supply port 95 has a rectangular shape, and the partition wall side return port 96 has a circular shape with an opening area smaller than that of the partition wall side supply port 95, as shown in FIGS. 12A and 12B.


As shown in FIG. 2, the lowermost curved unit 93 of the four curved units 93 provided side by side in the up-down direction is provided with a waste toner discharge port 128 behind the partition wall side supply port 95. The waste toner discharge port 128 is a circular hole, passes through the partition wall 91 and the right side wall of the cleaning casing 67 of the cleaning unit 33, and is opposite to the discharge auger 68 from the right side. That is, the waste toner discharge port 128 is formed over both the main body casing 2 (partition wall 91) and the cleaning unit 33.


As shown in FIGS. 11A and 11B, each of the cartridge receiving spaces 89 receives a first seal 97, and a body shutter 99 as an example of a housing side shutter.


The first seal 97 is a sheet made of, for example, felt. The first seal 97 is attached to the right side surface of the curved unit 93 so as not to close the partition wall side supply port 95 and the partition wall side return port 96 and so as to surround the partition wall side supply port 95 and the partition wall side return port 96.


As shown in FIGS. 12A and 12B, the body shutter 99 is formed into a substantially


C-shaped thin plate shape, when viewed in front section, long in the front-rear direction, and the rear edge thereof is closed by a plate (called a semicircular plate 131) having a substantially semicircular shape when viewed from front. The semicircular plate 131 is integral with the body shutter 99. The size of the body shutter 99 in the front-rear direction is almost equal to the size of the toner cartridge in the front-rear direction except a handle 109 (see FIGS. 8A and 8B). A rectangular cut reception unit 132 is formed at one place on the periphery of the front end of the body shutter 99. The reception unit 132 extends along the front-rear direction to almost the rear edge of the body shutter 99. In the peripheral part of the semicircular plate 131, a rectangular through-hole 133 is formed at a position adjacent to the reception unit 132 in the front-rear direction. A circular insertion hole 134 is formed at the circle center position of the semicircular plate 131.


As show in FIGS. 11A and 11B, the body shutter 99 is rotatable along the right side surface of the curved unit 93 and the left side surface of the right side wall 94. In more detail, the body shutter 99 is rotated between a closed position (see FIG. 11A and FIG. 12A) and an open position (see FIG. 11B and FIG. 12B). As shown in FIG. 11A and FIG. 12A, the body shutter 99 at the closed position enters between the first seal 97 and a second seal 98 (described later) provided in the toner cartridge 39 and separates these seals, and closes the partition wall side supply port 95, the partition wall side return port 96 and the waste toner discharge port 128 (see FIG. 2) from the right side. When the body shutter 99 is at the closed position, the reception unit 132 (see FIG. 12A) is almost coincident with the lower notch 88 (see FIG. 5) in the corresponding cartridge receiving space 89. The open position is the position in which the body shutter 99 at the closed position is rotated counterclockwise when viewed from front. As shown in FIG. 11B and FIG. 12B, at the lower end of the first seal 97 and the second seal 98, the body shutter 99 at the open position rotates between the first seal 97 and the second seal 98, and opens the partition wall side supply port 95, the partition wall side return port 96, and the waste toner discharge port 128 (see FIG. 2) to the right side. As stated above, the body shutter 99 rotates between the open position and the closed position, and simultaneously opens and closes (see FIG. 12) the partition wall side supply port 95, the partition wall side return port 96 and the waste toner discharge port 128 (see FIG. 2).


As shown in FIG. 1, in the rear side wall 77, a portion (called a second swing wall 100) positioned behind the sheet discharge path 74 is independent of the other portion. In more detail, the second swing wall 100 is swingable around a swing shaft 101 extending in the width direction at the lower end thereof. In more detail, the second swing wall 100 swings between a closed position (see FIG. 1) in which the second swing wall 100 stands along the rear side wall 77 below the second swing wall 100, and an open position (not shown) in which the second swing wall 100 is tilted rearward to expose the sheet discharge path 74 to the rear side. When the second swing wall 100 is at the open position, a jam clearing process in the sheet discharge path 74 can be performed.


(2) Drum Section

As shown in FIG. 7, the frame 43 of the drum section 44 has a box shape long in the up-down direction. At the front side of the frame 43, four pairs each including a supply auger receiving unit 102 and a return auger receiving unit 103 are provided side by side in the up-down direction. Each pair of the supply auger receiving unit 102 and the return auger receiving unit 103 comprises a part of the corresponding drum unit 38. That is, each drum units 38 comprises a supply auger receiving unit 102 and a return auger receiving unit 103.


The supply auger receiving unit 102 and the return auger receiving unit 103 have hollow cylindrical shapes long in the width direction, and are supported by both side walls, in the width direction, of the frame 43. The supply auger 48 of the corresponding drum unit 38 is housed in the supply auger receiving unit 102. For example, the uppermost supply auger receiving unit 102 in the drawing receives the supply auger 48 of the yellow drum unit 38Y. Similarly, the return auger receiving unit 103 receives the return auger 49 of the corresponding drum unit 38. For example, the uppermost return auger receiving unit 103 in the drawing receives the return auger 49 of the yellow drum unit 38Y. Four coupling members 104 each opposite to each pair of the supply auger 102 and the return auger 103 across the right side wall of the frame 43 are provided on the right side surface of the frame 43. Each of the coupling members 104 comprises a part of the corresponding drum unit 38.


As shown in FIG. 7, the coupling member 104 has a parallelogram shape inclined obliquely rearward and upward when viewed from right side, and is thick in the width direction. The right side surface of the coupling member 104 extends along the up-down direction. A drum side supply port 105 as an example of a developing unit side reception port is formed at the rear upper end on the right surface of the coupling member 104, and a drum side return port 106 as an example of a developing unit side return port is formed at the front lower end, particularly at an obliquely front lower part of the drum side supply port 105. The opening surfaces of the drum side supply port 105 and the drum side return port 106 extend along the up-down direction. The drum side supply port 105 is rectangular and has almost the same size as the partition wall side supply port 95, and extends, as shown in FIG. 11A, leftward in the coupling member 104, and communicates with the right end of the corresponding supply auger receiving unit 102 from the upper side. As shown in FIG. 7, the drum side return port 106 is circular and has almost the same size as the partition wall side return port 96, passes through the coupling member 104 in the width direction, and communicates with the corresponding return auger receiving unit 103 from the right side. In the state in which the drum section 44 is mounted to the body casing 2, the drum side supply port 105 is opposite to the corresponding partition wall side supply port 95 in the partition wall 95 from the left and communicates therewith (see FIG. 11A). Similarly, the drum side return port 106 is opposite to the corresponding partition wall side return port 96 (see FIG. 11) in the partition wall 91 from the left, and communicates therewith. Thus, the body shutter 99 rotates between the open position and the closed position, and simultaneously opens and closes not only the partition wall side supply port 95, the partition wall side return port 96 and the waste toner discharge port 128 (see FIG. 2), but also the drum side supply port 105 and the drum side return port 106. Besides, in the drum section 44, a shaft of each of the photosensitive drums 37 exposed to the right is supported by a guide groove (not shown) provided in the partition wall 91 (see FIG. 11).


(3) Toner Cartridge

As shown in FIGS. 8A and 8B and as described above, the toner cartridge 39 has a cylindrical shape long in the front-rear direction. The toner cartridge 39 includes an outer cylinder 107 and an inner cylinder 108. As described later, the black toner cartridge 39K is longer, in the front-rear direction, than the other toner cartridge 39 and is different from the other toner cartridge 39 in that the waste toner containing unit 70 (see FIG. 10A) is provided. However, for convenience of description, a description will be made on the basis of the black toner cartridge 39K.


(3-1) Inner Cylinder

As show in FIG. 10A, the inner cylinder 108 is formed into a hollow cylindrical shape long in the front-rear direction. Both end surfaces of the inner cylinder 108 in the axial line direction (front-rear direction) are closed by side walls each having a circular shape when viewed from front. The front side wall of the inner cylinder 108 is formed to be flat along the vertical direction, and the rear side wall of the inner cylinder 108 is formed to be convex rearward. The substantially inversely U-shaped handle 109 (see FIGS. 8A and 8B) is integrally attached to the front side wall of the inner cylinder 108.


In more detail, the handle 109 passes the circle center of the front side wall of the inner cylinder 108, and is connected to the front side wall so that respective idle ends are opposite to each other across the circle center of the front side wall of the inner cylinder 108.


As shown in FIGS. 10A and 10B, the inner cylinder 108 is divided by a wall 114 positioned slightly behind the center in the front-rear direction into the new toner containing unit 115 in front of the wall 114 and the waste toner containing unit 70 behind the wall 114. That is, the new toner containing unit 115 and the waste toner containing unit 70 are disposed side by side in the front-rear direction. In the new toner cartridge 39, toner (sometimes called new toner to differentiate it from a waste toner) is contained in the new toner containing unit 115, and the waste toner containing unit 70 is empty. An agitator rotation shaft 110 that extends in the front-rear direction along the axial line of the inner cylinder 108 and is an example of a rotation shaft is provided in the inner cylinder 108. The agitator rotation shaft 110 passes through the wall 114, and is rotatably supported on both side walls, in the front-rear direction, of the inner cylinder 108. A driven projection 111 is provided at the rear end of the agitator rotation shaft 110. The driven projection 111 is formed into substantially the shape of a figure eight when viewed from the back (see FIGS. 9A and 9B), and is exposed toward the outside at a position behind the rear side wall of the inner cylinder 108. The agitator rotation shaft 110 includes an agitator support frame 112 spaced by an equal distance and extending in the front-rear direction at the outside in the radial direction. A plurality of agitators 113 are provided on the agitator support frame 112. In the new toner containing unit 115, each of the agitators 113 (for convenience of description, hereinafter called a front agitator 113A as an example of a second agitation member) is made of a flexible film or the like and is formed into a substantially rectangular shape, and the outside edge in the radial direction is formed to be inclined to the outside in the radial direction and toward a cartridge inside supply port 116 as an example of a cartridge side supply port described later and a cartridge inside return port 117 as an example of a cartridge side reception port described later. Among these front agitators 113A, the front agitator 113A opposite to a cartridge inside supply port 116 and a cartridge inside return port 117 (both described below) in the radial direction is different from the other front agitator 113A in structure. The front agitator 113A corresponding (disposed in the vicinity) to the cartridge inside supply port 116 is provided on the agitator support frame 112, and is formed into a substantially isosceles trapezoid shape tapering toward the outside in the radial direction. The front agitator 113A corresponding to the cartridge inside return port 117 is provided on the agitator rotation shaft 110, and is formed into a substantially triangular frame shape by a wire or the like. On the other hand, the agitator 113 (called a rear agitator 113B as an example of a first agitation member in order to differentiate the rear agitator 113B from the front agitator 113A) contained in the waste toner containing unit 70 is formed into a substantially triangular frame shape by a wire or the like, and in the vicinity of a waste toner inside reception port 118 as an example of a cartridge side opening described later, the outside edge in the radial direction is inclined to the outside in the radial direction and toward the direction of separating from the waste toner inside reception port 118. Both rotation shafts of the front agitator 113A and the rear agitator 113B are the agitator rotation shaft 110.


As shown in FIG. 9B, the cartridge inside supply port 116, the cartridge inside return port 117 and the waste toner inside reception port 118 are formed in the side surface (left side surface in FIG. 9B) of an inner cylinder peripheral wall 119 forming the peripheral surface of the inner cylinder 108. In more detail, the cartridge inside supply port 116 and the cartridge inside return port 117 are formed in the new toner containing unit 115, and the waste toner inside reception port 118 is formed in the waste toner containing unit 70. The waste toner inside reception port 118 is positioned at the rear end of the inner cylinder peripheral wall 119, and is a circular hole communicating with the inside of the waste toner containing unit 70. The waste toner inside reception port 118 has almost the same size as the waste toner discharge port 128 (see FIG. 2). The cartridge inside supply port 116 is positioned slightly before the center, in the front-rear direction, of the inner cylinder peripheral wall 119, and has a rectangular shape of almost the same size as the partition wall side supply port 95 (see FIGS. 11A and 11B). The cartridge inside return port 117 is adjacent to an obliquely front lower part of the cartridge inside supply port 116 on the basis of FIG. 9B, and has a circular shape of almost the same size as the partition wall side return port 96 (see FIGS. 11A and 11B). As described above, since the partition wall side supply port 95 is larger than the partition wall side return port 96, the cartridge inside supply port 116 is larger than the cartridge inside return port 117. Both the cartridge inside supply port 116 and the cartridge inside return port 117 communicate with the inside of the new toner containing unit 115.


As shown in FIG. 8B, in the inner cylinder peripheral wall 119, a radius-direction projection 130 projecting to the outside in the radial direction is provided in the vicinity of the opposite position of the cartridge inside return port 117 with respect to the circle center thereof.


As shown in FIGS. 10A and 10B, on the outer peripheral surface of the inner cylinder peripheral wall 119, an engagement groove 120 is formed at a position before the cartridge inside return port 117. The engagement groove 120 extends along the circumferential direction of the inner cylinder peripheral wall 119, and is formed into a circular shape. As shown in FIG. 9A, in the rear side wall of the inner cylinder 108, an axial direction projection 121 projecting rearward is provided substantially at the same peripheral direction position as the radius-direction projection 130.


(3-2) Outer Cylinder

The outer cylinder 107 is formed into a hollow and substantially cylindrical shape slightly larger than the inner cylinder 108, and both ends in the axial direction (front-rear direction) are opened.


As shown in FIGS. 10A and 10B, an outer cylinder peripheral wall 122, as an example of a cartridge side shutter, to form a peripheral surface of the outer cylinder 107 is formed in the front-rear direction to extend from the rear side wall of the inner cylinder 108 to the engagement groove 120.


As shown in FIG. 9B, a cartridge outside supply port 123, a cartridge outside return port 124, and a waste toner outside reception port 125 are formed on one side surface (left side surface in FIG. 9B) of the outer cylinder peripheral wall 122. The cartridge outside supply port 123, the cartridge outside return port 124, and the waste toner outside reception port 125 pass through the outer cylinder peripheral wall 122, and lower edges thereof are positioned above at least the lower edge of the inner peripheral surface of the outer cylinder peripheral wall 122. The waste toner outside reception port 125 is a circular hole of almost the same size as the waste toner inside reception port 118, and is positioned at the rear end of the outer cylinder peripheral wall 122. The cartridge outside supply port 123 is positioned at the front end of the outer cylinder peripheral wall 122, and has a rectangular shape of almost the same size as the partition wall side supply port 95 (see FIGS. 11A and 11B). As shown in FIG. 9B, the cartridge outside return port 124 is adjacent to a obliquely front lower part of the cartridge outside supply port 123, and has a circular shape of almost the same size as the partition wall side return port 96 (see FIGS. 11A and 11B). The second seal 98 is attached to the outside surface of the outer cylinder peripheral wall 122 so as to surround the periphery of the cartridge outside supply port 123, the cartridge outside return port 124, and the waste toner outside reception port 125. The second seal 98 is formed of the same material as the first seal 97.


On the outer cylinder peripheral wall 122, a radius-direction protrusion 126 projecting toward the outside in the radial direction is provided at a position shifted from the cartridge outside return port 124 by about 90 in the counterclockwise direction when viewed from back. The radius-direction protrusion 126 is provided to extend from the front end of the outer cylinder peripheral wall 122 to the rear end. As shown in FIG. 8B, on the outer cylinder peripheral wall 122, a projection reception groove 127 passing through the outer cylinder peripheral wall 122 in the radial direction is formed between a position shifted from the cartridge outside return port 124 by about 90 in the clockwise direction when viewed from back and a position shifted from the cartridge outside return port 124 by about 180 in the clockwise direction when viewed from back. The projection reception groove 127 is positioned in front of the front end of the radius-direction protrusion 126.


As shown in FIGS. 10A and 10B, the front edge and the rear edge of the outer cylinder peripheral wall 122 are bent toward the axial center over the whole circumference.


The outer cylinder 107 is attached to the inner cylinder 108 so that the outer cylinder peripheral wall 122 covers substantially the rear half portion of the outer peripheral surface of the inner cylinder peripheral wall 119. In more detail, the front edge of the outer cylinder peripheral wall 122 is engaged with the engagement groove 120 of the inner cylinder peripheral wall 119. The rear edge of the outer cylinder peripheral wall 122 is engaged with the peripheral edge of the rear side wall of the inner cylinder 108.


As shown in FIGS. 9A and 9B, the driven projection 111 and the axial direction projection 121 of the inner cylinder 108 are exposed rearward from the rear side opening portion of the outer cylinder 107. As shown in FIGS. 8A and 8B, the radius-direction projection 130 of the inner cylinder 108 is exposed at a forward side of the front end of the radius-direction protrusion 126 toward the outside in the radial direction from the projection reception groove 127 of the outer cylinder 107.


In the state in which the outer cylinder 107 is attached to the inner cylinder 108, the outer peripheral surface of the inner cylinder peripheral wall 119 slides on the inner peripheral surface of the outer cylinder peripheral wall 122 in the circumferential direction. In more detail, the inner cylinder 108 can be freely rotated with respect to the outer cylinder 107 between the closed position (see FIG. 8A, FIG. 9A and FIG. 11A) and the open position (see FIG. 8B, FIG. 9B and FIG. 11B). When the inner cylinder is at the closed position, as shown in FIG. 9A, the cartridge inside supply port 116, the cartridge inside return port 117 and the waste toner inside reception port 118 are closed from outside by the outer cylinder peripheral wall 122. The handle 109 is long in the up-down direction (see FIG. 8A). On the other hand, the position in which the inner cylinder 108 is rotated from the closed position of FIG. 9A by about 90 in the clockwise direction when viewed from back is the open position shown in FIG. 9B. When the inner cylinder 108 is at the open position, the cartridge inside supply port 116 and the cartridge outside supply port 123 are opposite in the radial direction of the inner cylinder 108 and communicates with each other. Similarly, the cartridge inside return port 117 and the cartridge outside return port 124 are opposite in the radial direction and communicate with each other, and the waste toner inside reception port 118 and the waste toner outside reception port 125 are opposite in the radial direction and communicate with each other. The handle 109 is long in the width direction (see FIG. 8B). As stated above, the inner cylinder 108 is rotated between the open position and the closed position, so that the cartridge inside supply port 116, the cartridge inside return port 117 and the waste toner inside reception port 118 are simultaneously opened and closed by the outer cylinder peripheral wall 122. Even if the inner cylinder 108 is located at a position between the open position and the closed position, the lower edges of the cartridge inside supply port 116, the cartridge inside return port 117 and the waste toner inside reception port 118 are positioned above the lower edge of the inner peripheral surface of the inner cylinder peripheral wall 119.


The radius-direction projection 130 of the inner cylinder 108 is moved in the projection reception groove 127 in accordance with the rotation of the inner cylinder 108. When the inner cylinder 108 is at the closed position, the radius-direction projection 130 comes in contact with the lower edge of the projection reception groove 127 and projects downward (see FIG. 8A). When the inner cylinder 108 is at the open position, the radius-direction projection 130 comes in contact with the upper edge of the projection reception groove 127 and projects rightward (see FIG. 8B).


As stated above, the black toner cartridge 39K (see FIG. 10A) includes the waste toner containing unit 70, while the other three toner cartridges 39 (see FIG. 10B) do not include the waste toner containing unit 70. Thus, as shown in FIGS. 10A and 10B, as compared with the other three toner cartridges 39, the black toner cartridge 39K projects rearward by the waste toner containing unit 70. The black cartridge receiving space 89K (see FIG. 5) also projects rearward as compared with the other cartridge receiving spaces 89.


(4) Attachment and Detachment of the Toner Cartridge to and from the Main Body Casing


(4-1) Mounting of the Toner Cartridge to the Main Body Casing

First, as shown in FIG. 6, the cartridge door 18 is rotated to the open position such that the cartridge attachment-detachment ports 17 are opened. The handle 109 of the toner cartridge 39 in which the inner cylinder 10 is at the closed position is grasped, and the toner cartridge 39 is inserted from the front side wall 13 side into the corresponding cartridge attachment-detachment port 17 while the horizontal posture is being kept. For example, if the cartridge is the black toner cartridge 39K, the cartridge is inserted into the black cartridge attachment-detachment port 17K.


The toner cartridge 39 is pressed into the cartridge receiving space 89 continuous with the cartridge attachment-detachment port 17 rearward. For example, if the cartridge is the black toner cartridge 39K, the cartridge is pressed into the black cartridge receiving space 89K. At this time, the radius-direction protrusion 126 is continuously received in the notch 88. That is, the radius-direction protrusion 126 is guided by the notch 88, and the toner cartridge 39 is moved rearward along the horizontal direction in the cartridge receiving space 89. When the front edge of the radius-direction protrusion 126 is also received by the notch 88, the radius-direction projection 130 (see FIG. 8A) projecting downward is received by the notch 88 of the lower end of the cartridge attachment-detachment port 17.


As shown in FIG. 11A, when the toner cartridge 39 is further pressed rearward, although not shown, the radius-direction protrusion 126 comes in contact with the rear edge of the notch 88 receiving the radius-direction protrusion 126. The radius-direction projection 130 is delivered from the notch 88 receiving the radius-direction projection 130 to the reception unit 132 (see FIG. 12A) of the body shutter 99 at the closed position, and the axial direction projection 121 (see FIG. 9) is fitted in the through-hole 133 (see FIG. 12A) of the body shutter 99. By this, the radius-direction projection 130 and the axial direction projection 121 (see FIG. 9) are engaged with the body shutter 99. The driven projection 111 (see FIGS. 9A and 9B) of the toner cartridge 39 passes through the insertion hole 134 (see FIG. 12A) of the body shutter 99, and is coupled to a drive mechanism (not shown) provided in the main body casing 2. By this, the toner cartridge 39 has been completely received in the cartridge receiving space 89. Here, when all the toner cartridges 39 are received in the corresponding cartridge receiving spaces 89, the lowermost black toner cartridge 39K is disposed closest to the waste toner discharge port 128, in more detail, at the right side (see FIG. 2).


When the toner cartridges 39 adjacent to each other in the up-down direction are received in the corresponding cartridge receiving spaces 89, the radius-direction projection 130 of the upper toner cartridge 39 and the radius-direction protrusion 126 of the lower toner cartridge 39 are received in the common notch 88. However, the notch 88 is formed to be relatively narrow so that the radius-direction projection 130 and the radius-direction protrusion 126 are not received simultaneously. Thus, even if the toner cartridges 39 adjacent to each other in the up-down direction are attempted to be simultaneously received in the cartridge receiving space 89, the radius-direction projection 130 of the upper toner cartridge 39 and the radius-direction projection 126 of the lower toner cartridge 39 to be received in the common notch 88 interfere with each other. Accordingly, one toner cartridge 39 is received in the cartridge receiving space 89 first and the inner cylinder 108 is rotated to the closed position, and then, the other toner cartridge 39 is inserted into an adjacent cartridge attachment-detachment port 17. Accordingly, it is possible to prevent the toner cartridge 39 from being received in an erroneous cartridge receiving space 89, i.e., a cartridge receiving space that does not correspond to the color of the toner cartridge. In other words, the radius-direction projections and the notches perform a keying function.


In the state in which the toner cartridge 39 has been completely received in the cartridge receiving space 89, as shown in FIG. 5, the handle 109 is grasped and is twisted to rotate the inner cylinder 108 from the closed position to the open position. The body shutter 99 in the state in which the body shutter 99 is engaged with the radius-direction projection 130 of the inner cylinder 108 and the axial direction projection 121 is rotated to the open position in accordance with the rotation of the inner cylinder 108 to the open position as shown in FIG. 11B and FIG. 12B.


By this, the cartridge inside supply port 116, the cartridge outside supply port 123, the partition wall side supply port 95 and the drum side supply port 105 are respectively opposite in the width direction and communicate with each other. The cartridge inside return port 117, the cartridge outside return port 124, the partition wall side return port 96 and the drum side return port 106 (see FIG. 7) are respectively opposite in the width direction and communicate with each other. Also, the waste toner inside reception port 118, the waste toner outside reception port 125, and the waste toner discharge port 128 are respectively opposite in the width direction and communicate with each other (see FIG. 2). Here, as shown in FIG. 4, when the cartridge door 18 is rotated to the closed position, the mounting of the toner cartridge 39 to the main body casing 2 is completed.


In this state, when the drive motor (not shown) of the main body casing 2 is driven, the drive force is transmitted from the drive mechanism (not shown) to the driven projection 111 (see FIG. 10A), and the driven projection 111 is rotated. In accordance with the rotation of the driven projection 111, as shown in FIG. 11B, the agitator rotation shaft 110 and the agitator 113 (the front agitator 113A and the rear agitator 113B) are rotated in the clockwise direction when viewed from front. By the rotation of the front agitator 113A, in the new toner containing unit 115, new toner is agitated and is supplied to the cartridge inside supply port 116. The new toner supplied to the cartridge inside supply port 116 passes through the cartridge outside supply port 123, the partition wall side supply port 95 and the drum side supply port 105 in sequence to the left side as indicated by an illustrated thick solid line arrow, drops at the drum side supply port 105, and is supplied to the supply auger 48. Then, as described above, the new toner is conveyed to the left by the supply auger 48 and is supplied to the supply roller 45. The new toner which has not been supplied to the supply roller 45 is conveyed to the right by the return auger 49 as described above, and as indicated by an illustrated thick broken line arrow, the unsupplied toner passes through the drum side return port 106 (see FIG. 7), the partition wall side return port 96, the cartridge outside return port 124 and the cartridge inside return port 117 in sequence to the right, and is returned to the new toner containing unit 115. The toner returned to the new toner containing unit 115 is again supplied to the cartridge inside supply port 116 by the front agitator 113A. Accordingly, the new toner circulates between the new toner containing unit 115 and the corresponding drum unit 38. Since the first seal 97 and the second seal 98 intervene between the outer cylinder 107 and the partition wall 91 (in more detail, the curved unit 93), at the time of circulation of the toner, it is possible to prevent the toner leakage between the partition wall side supply port 95 and the cartridge outside supply port 123 and the toner leakage between the partition wall side return port 96 and the cartridge outside return port 124.


The waste toner removed from the surface of the transfer belt 54 in the cleaning unit 33 and conveyed to the right by the discharge auger 68 passes through the waste toner discharge port 128, the waste toner outside reception port 125 and the waste toner inside reception port 118 in sequence as shown in FIG. 2, and is contained in the waste toner containing unit 70 provided in the black toner cartridge 39K. The waste toner contained in the waste toner containing unit 70 is agitated by the rotating rear agitator 113B and is conveyed in the direction of separating from the waste toner inside reception port 118.


(4-2) Separation of the Toner Cartridge from the Main Body Casing


On the other hand, in the case where the toner cartridge 39 is separated from the main body casing 2, conversely to the procedure at the time when the toner cartridge 39 is received in the cartridge receiving space 89, first, as shown in FIG. 5, the cartridge door 18 is rotated to the open position, and the cartridge attachment-detachment port 17 is opened. Then, the handle 109 is grasped and twisted, and when the inner cylinder at the open position is rotated to the closed position, as shown in FIG. 11A, the body shutter 99 is rotated to the closed position. Thereafter, as shown in FIG. 6, when the handle 109 is grasped and pulled forward, the toner cartridge 39 is separated from the main body casing 2.


As stated above, the toner cartridge 39 is mounted to the main body casing 2 along the front-rear direction through the corresponding cartridge attachment-detachment port 17. On the other hand, the drum section 44 (drum units 38) is attached to and detached from the main body casing 2 along the substantially vertical direction (see FIG. 3). That is, the attachment and detachment direction of the toner cartridge 39 with respect to the main body casing 2 is different from the attachment and detachment direction of the drum section 44 with respect to the main body casing 2. The toner cartridge 39 and the drum section 44 (drum units 38) are independently attached to and detached from the main body casing 2.


3. Operation and Effects

In the color laser printer 1, a color image can be formed by the plurality of drum units 38 and the plurality of toner cartridges 39 shown in FIG. 2.


Each of the toner cartridges 39 includes the new toner containing unit 115 for containing the toner to be supplied to the developing roller 46 of the drum unit 38. Besides, at least one toner cartridge 39 (black toner cartridge 39K) further includes the waste toner containing unit 70 for containing the waste toner. The black toner cartridge 39K is detached from the body casing 2, so that the waste toner in the waste toner containing unit 70 can be simultaneously removed from the body casing 2.


Here, as shown in FIG. 11B, the toner cartridge 39 is disposed to be opposite to the end (right end), in the width direction, of the drum unit 38 along the substantially horizontal direction, and further, the cartridge inside supply port 116 of the new toner containing unit 115 and the drum side supply port 105 of the drum unit 38 are disposed to be opposite to each other along the substantially horizontal direction. Thus, the toner in the new toner containing unit 115 passes through the cartridge inside supply port 116 and the drum side supply port 105 sequentially and substantially horizontally, and is received in the drum unit 38. Since the new toner containing unit 115 is disposed to be opposite to the right end of the drum unit 38 along the substantially horizontal direction, there is little difference in height between the new toner containing unit 115 and the drum unit 38. Thus, when the toner is supplied from the new toner containing unit 115 to the drum unit 38, the toner can be easily conveyed without opposing gravity.


Among toners received in the developing unit 38, a toner which has been transferred to the photosensitive drum 37 but has not been finally used for formation of the toner image on the sheet 3 becomes a waste toner. As shown in FIG. 2, the waste toner sequentially passes through the waste toner discharge port 128 of the body casing 2 and the waste toner inside reception port 118 of the waste toner containing unit 70, and is contained in the waste toner containing unit 70. Since the waste toner discharge port 128 and the waste toner inside reception port 118 are disposed to be opposite to each other along the substantially horizontal direction, even if a complicated conveying mechanism is not provided between these openings, the waste toner can be smoothly collected by the simple structure in the waste toner containing unit 70.


That is, the toner cartridge 39 and the drum unit 38 are disposed at almost the same height so that they are opposite to each other in the substantially horizontal direction, and accordingly, the toner hardly moves in the height direction (gravity direction), and the toner is conveyed along the substantially horizontal direction between the toner cartridge 39 and the drum unit 38. Similarly, also in the case where the waste toner is returned from the body casing 2 side to the waste toner containing unit 70, the waste toner is not moved in the gravity direction but is conveyed along the substantially horizontal direction. Thus, the excellent conveying of the toner becomes possible by using the simple mechanism such as the supply auger 48, the return auger 49 and the discharge auger 68. Especially, in the case where the polymerized toner having excellent fluidity is used, since it is difficult to convey this toner upward in the gravity direction, this structure in which the toner is conveyed along the substantially horizontal direction is effective.


Further, since the cartridge inside supply port 116 and the drum side supply port 105 are disposed to be opposite to each other along the substantially horizontal direction (see FIG. 11B), the toner is hard to stay in the connection port of these supply ports, and it is possible to prevent the hand from being soiled by the toner at the time of detachment or attachment of the toner cartridge 39.


Since the new toner containing unit 115 and the waste toner containing unit 70 are disposed in parallel in the longitudinal direction (front-back direction) of the toner cartridge 39, the waste toner containing unit 70 can be disposed in the toner cartridge 39 in an indistinctive manner, that is, in such a manner that the waste toner containing unit 70 is not caught by a surrounding member when the toner cartridge 39 is detached or attached.


In the transfer unit 32, the toner image on the photosensitive drum 37 is once transferred to the transfer belt 54, and then is anew transferred to the sheet 3. Thus, the waste toner remains on the transfer belt 54. However, since the transfer unit 32 is required to have high positioning accuracy in order to prevent a color shift, it is necessary to reduce the exchange frequency as compared with the drum unit 38 or the toner cartridge 39, and if possible, it is desirable that the transfer unit cannot be exchanged. However, in that case, since the transfer belt 54 becomes obstructive, the disposal of the waste toner on the transfer belt 54 becomes difficult. Thus, there has been a tendency that a storage space for storing the waste toner must be secured to be large. However, the cleaning unit 33 for collecting the waste toner remaining on the transfer belt 54 is provided, and the collected waste toner is contained in the waste toner containing unit 70. Thus, even if the transfer unit 32 is not moved or exchanged, the waste toner on the transfer belt 54 can be removed.


The waste toner discharge port 128 is provided in the cleaning unit 33, and the discharge auger 68 provided in the cleaning unit 33 conveys the waste toner to the waste toner discharge port 128, and accordingly, the waste toner collected by the cleaning unit 33 can be smoothly collected in the waste toner containing unit 70.


Since the transfer belt 54 is held between the driven roller 53 around which the transfer belt 54 is wound and the cleaning unit 33, it is not necessary to separately provide a member for bringing the transfer belt into contact with the cleaning unit 33.


Besides, since the toner cartridge 39 (black toner cartridge 39K) closest to the waste toner discharge port 128 includes the waste toner containing unit 70, the waste toner can be further smoothly collected through the shortest passage in the waste toner containing unit 70.


The toner cartridge 39 (black toner cartridge 39K) disposed lowest in the substantially vertical direction includes the waste toner containing unit 70. Thus, as compared with the case where the toner cartridge above the black toner cartridge 39K includes the waste toner containing unit 70, the waste toner can be smoothly collected without being conveyed upward in the waste toner containing unit 70.


The toner cartridge 39 including the waste toner containing unit 70 is the black toner cartridge 39K in which black toner is contained in the new toner containing unit 115 and which has the highest exchange frequency. Thus, the waste toner in the waste toner containing unit 70 can be removed from the body casing 2 relatively frequently so that the waste toner does not fill the waste toner containing unit 70.


Since the method of the so-called cleaner-less development is adopted in which the developing roller 46 collects the toner remaining on the photosensitive drum 37, it is not necessary to separately provide a mechanism for collecting the toner remaining on the photosensitive drum 37. Further, when the waste toner on the transfer belt 54 is collected in the waste toner containing unit 70, since this waste toner is disposed of at the time of exchange of the toner cartridge 39, the user is not required to be conscious of the disposal of the waste toner.


As shown in FIG. 9, since the outer cylinder peripheral wall 122 simultaneously opens and closes the cartridge inside supply port 116 and the waste toner inside reception port 118, it is not necessary to individually provide shutters for the cartridge inside supply port 116 and the waste toner inside reception port 118.


As shown in FIG. 10A, the rear agitator 113B disposed in the vicinity of the waste toner inside reception port 118 has the frame shape. Thus, while it is prevented that the rear agitator 113B presses back the waste toner, which has been received in the waste toner containing unit 70 from the waste toner inside reception port 118, toward the waste toner inside reception port 118, the waste toner can be agitated so that the waste toner does not clog the waste toner inside reception port 118.


As shown in FIG. 7, the toner received from the drum side supply port 105 can be smoothly supplied to the developing roller 46 by the supply auger 48. Besides, the toner conveyed by the supply auger 48 is returned from the drum side return port 106 to the toner cartridge 39, so that the toner can be circulated between the toner cartridge 39 and the drum unit 38 as shown in FIG. 11B. Here, since the toner cartridge 39 is disposed to be opposite to the drum unit 38 along the substantially horizontal direction, there is little difference in height between the toner cartridge 39 and the drum unit 38. Thus, when the toner is circulated between the toner cartridge 39 and the drum unit 38, the toner can be easily conveyed without opposing gravity.


As shown in FIG. 11, since the body shutter 99 simultaneously opens and closes the drum side supply port 105 and the drum side return port 106 (see FIG. 7), it is not necessary to individually provide shutters for the drum side supply port 105 and the drum side return port 106.


As shown in FIG. 10A, since the rear agitator 113B and the front agitator 113A to agitate the toner in the new toner containing unit 115 have a common rotating shaft (agitator rotating shaft 110), it is not necessary to individually provide rotating shafts for the rear agitator 113B and the front agitator 113A.


4. Modified Example

In the above exemplary embodiment, as shown in FIG. 2, although the intermediate transfer type color laser printer 1 has been exemplified in which the toner images of the respective colors are once transferred from the respective photosensitive drums 37 to the transfer belt 54, and then, the toner images are collectively transferred onto the sheet 3, the invention is not limited to this, and for example, the inventive concept can be constructed as a direct transfer type color laser printer in which toner images of the respective colors are directly transferred onto the sheet 3 from the respective photosensitive drums 37.


In the above exemplary embodiment, although the toner remaining on the transfer belt 54 is contained as the waste toner in the waste toner containing unit 70, the toner remaining on the photosensitive drum 37 may be contained in the waste toner containing unit 70. In that case, the toner remaining on the photosensitive drum 37 is collected by, for example, the foregoing cleaning roller 42 (see FIG. 1), and is conveyed to the waste toner containing unit 70.


The transfer unit 32 and the cleaning unit 33 may be united or may be separated.


Further, in the scanner unit 30, although the photosensitive drum 37 is exposed by the laser beam emitted from the polygon mirror 35 shown in FIG. 1, instead of this, a light exposure unit may be used in which an exposure light source includes light-emitting elements including LEDs or the like and disposed in an array.


While the present invention has been shown and described with reference to certain exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.


According to a first aspect of the invention, there is provided an image forming apparatus comprising a housing which comprises a housing side opening through which waste toner passes; a plurality of developing units which are disposed in parallel in the housing, each of the developing units comprising an image carrier on which an electrostatic latent image is formed, a toner carrier which carries a toner for supplying the toner to the image carrier and visualizing the electrostatic latent image to form a toner image, and a developing unit side reception port for receiving the toner; and a plurality of toner cartridges which correspond to the plurality of developing units, each of the toner cartridges being disposed in parallel in the housing, each of the toner cartridges comprising a first containing unit for containing the toner to be supplied to the toner carrier, and a cartridge side supply port through which the toner passes to the respective toner carrier; wherein at least one of the toner cartridges comprises a second containing unit for containing the waste toner, the second containing unit comprises a cartridge side opening for receiving the waste toner having passed through the housing side opening, wherein the developing units and the toner cartridges can be independently attached to and detached from the housing, each of the toner cartridges are disposed to be opposite to an end of a respective one of the developing units along a substantially horizontal direction in a longitudinal direction of the toner carrier, and wherein the cartridge side supply port and a developing unit side reception port are disposed to be opposite to each other along the substantially horizontal direction, the housing side opening and the cartridge side opening are disposed to be opposite to each other along the substantially horizontal direction.


Besides, according to a second aspect of the invention, the first containing unit and the second containing unit are disposed in parallel in a longitudinal direction of the toner cartridge.


Besides, according to a third aspect of the invention,


a transfer unit which transfers the toner image formed by the developing unit to a recording medium, the transfer unit comprising a belt which is disposed to be opposite to the image carriers of the plurality of developing units, and a roller around which the belt is wound, and a collecting unit which collects the waste toner remaining on the belt, wherein the waste toner collected by the collecting unit is contained in the second containing unit.


Besides, according to a fourth aspect of the invention, the housing side opening is provided in the collecting unit, and the collecting unit comprises a first conveying member for conveying the collected waste toner to the housing side opening.


Besides, according to a fifth aspect of the invention, the belt is held between the roller and the collecting unit, and the toner cartridge closest to the housing side opening among the plurality of toner cartridges comprises the second containing unit.


Besides, according to a sixth aspect of the invention, the plurality of developing units are disposed in parallel along a substantially vertical direction in the housing, the plurality of toner cartridges are disposed in parallel along the substantially vertical direction in the housing, and the toner cartridge disposed lowest in the substantially vertical direction among the plurality of toner cartridges comprises the second containing unit.


Besides, according to a seventh aspect of the invention, the first containing unit of the toner cartridge that comprises the second containing unit contains black toner.


Besides, according to an eighth aspect of the invention, the toner carrier collects toner remaining on the image carrier.


Besides, according to a ninth aspect of the invention, the toner cartridge comprises a cartridge side shutter that simultaneously opens and closes the cartridge side supply port and the cartridge side opening.


Besides, according to a tenth aspect of the invention, the toner cartridge comprises a first agitating member that is disposed in a vicinity of the cartridge side opening in the second containing unit and rotates to agitate the waste toner.


Besides, according to an eleventh aspect of the invention, the developing unit comprises a second conveying member for conveying the toner received from the developing unit side reception port along an axial direction of the toner carrier and supplying the toner to the toner carrier, and a developing unit side return port for returning the toner conveyed by the second conveying member to the toner cartridge, and the housing comprises a housing side shutter that simultaneously opens and closes the developing unit side reception port and the developing unit side return port.


Besides, according to a twelfth aspect of the invention, the toner cartridge comprises a second agitating member which is disposed in a vicinity of the cartridge side supply port in the first containing unit and rotates to agitate the toner, the first agitating member and the second agitating member have a common rotating shaft.


According to the invention of the first aspect, in the image forming apparatus, a color image can be formed by the plurality of developing units and the plurality of toner cartridges.


Each of the toner cartridges includes the first containing unit for containing the toner to be supplied to the toner carrier of the developing unit, and at least one toner cartridge further includes the second containing unit for containing the waste toner. When the toner cartridge including the second containing unit is detached from the housing, the waste toner in the second containing unit can be simultaneously removed from the housing.


Here, the toner cartridge is disposed to be opposite to the end, in the longitudinal direction of the toner carrier, of the developing unit along the substantially horizontal direction, and further, the cartridge side supply port of the first containing unit and the developing unit side reception port of the developing unit are disposed to be opposite to each other along the substantially horizontal direction. Thus, the toner in the first containing unit passes through the cartridge side supply port and the developing unit side reception port sequentially and substantially horizontally and is received in the developing unit. Since the first containing unit is disposed to be opposite to the end of the developing unit along the substantially horizontal direction, there is little difference in height between the first containing unit and the developing unit. Thus, when the toner is supplied from the first containing unit to the developing unit, the toner can be easily conveyed without opposing gravity.


Among toners received in the developing unit, a toner which has been transferred to the image carrier but has not been finally used for formation of the toner image on the recording medium becomes a waste toner. The waste toner sequentially passes through the housing side opening formed in the housing and the cartridge side opening formed in the second containing unit, and is contained in the second containing unit. Since the housing side opening and the cartridge side opening are disposed to be opposite to each other along the substantially horizontal direction, even if a complicated conveying mechanism is not provided between these openings, the waste toner can be smoothly collected by a simple structure in the second containing unit.


That is, in the case where the toner is conveyed from the first containing unit to the developing unit, or the waste toner is returned from the housing side to the second containing unit, the toner is not moved in the gravity direction, but can be well conveyed along the substantially horizontal direction. Especially, in the case where a polymerized toner having excellent fluidity is used, since it is difficult to convey the toner upward in the gravity direction, this structure in which the toner is conveyed along the substantially horizontal direction is effective.


According to the invention of the second aspect, since the first containing unit and the second containing unit are disposed in parallel in the longitudinal direction of the toner cartridge, the second containing unit can be disposed in the toner cartridge in an indistinctive manner, that is, in such a manner that when the toner cartridge is attached or detached, the second containing unit is not caught by a surrounding member.


According to the invention of the third aspect, in the transfer unit, the toner image on the image carrier is once transferred to the belt, and then is again transferred to the recording medium, or the recording medium is conveyed to the image carrier of each of the developing units by the belt, and the toner image is directly transferred from the image carrier to the recording medium. Thus, although the waste toner remains on the belt, since the transfer unit is required to have high positioning accuracy in order to prevent a color shift, it is necessary to reduce an exchange frequency as compared with the developing unit or the toner cartridge, and if possible, it is desirable that the transfer unit cannot be exchanged. However, in that case, since the belt becomes obstructive, the disposal of the waste toner on the belt becomes difficult. However, the collecting unit to collect the waste toner remaining on the belt is provided, and the collected waste toner is contained in the second containing unit. Thus, even if the transfer unit is not moved or exchanged, the waste toner on the belt can be removed.


According to the invention of the fourth aspect, the housing side opening is provided in the collecting unit, and the first conveying member provided in the collecting unit conveys the waste toner to the housing side opening, and accordingly, the waste toner collected by the collecting unit can be smoothly collected in the second containing unit.


According to the invention of the fifth aspect, since the belt is held between the roller around which the belt is wound and the collecting unit, it is not necessary to separately provide a member for bringing the belt into contact with the collecting unit.


Besides, since the toner cartridge closest to the housing side opening includes the second containing unit, the waste toner can be further smoothly collected through the shortest passage in the second containing unit.


According to the invention of the sixth aspect, since the toner cartridge disposed lowest in the substantially vertical direction includes the second containing unit, as compared with a case where a toner cartridge above this toner cartridge includes the second containing unit, the waste toner can be smoothly collected in the second containing unit without being conveyed upward.


According to the invention of the seventh aspect, since the toner cartridge including the second containing unit is the toner cartridge in which black toner is contained in the first containing unit and which has the highest exchange frequency, the waste toner in the second containing unit can be relatively frequently removed from the housing so that the waste toner does not fill the second containing unit.


According to the invention of the eighth aspect, since the toner carrier collects the toner remaining on the image carrier, it is not necessary to separately provide a mechanism for collecting the toner remaining on the image carrier. Further, when the waste toner on the belt is collected in the second containing unit, since this waste toner is disposed of at the time of exchange of the toner cartridge, the user is not required to be conscious of the disposal of the waste toner.


According to the invention of the ninth aspect, since the cartridge side shutter simultaneously opens and closes the cartridge side supply port and the cartridge side opening, it is not necessary to provide shutters individually for the cartridge side supply port and the cartridge side opening.


According to the invention of the tenth aspect, since the first agitating member disposed in the vicinity of the cartridge side opening has the frame shape, the waste toner can be agitated so that the waste toner does not clog the cartridge side opening, while it is prevented that the first agitating member presses back the waste toner, which has been received in the second containing unit from the cartridge side opening, toward the cartridge side opening.


According to the invention of the eleventh aspect, the toner received from the developing unit side reception port can be smoothly supplied to the toner carrier by the second conveying member. Besides, the toner conveyed by the second conveying member is returned from the developing unit side return port to the toner cartridge, so that the toner can be circulated between the toner cartridge and the developing unit. Here, since the toner cartridge is disposed to be opposite to the developing unit along the substantially horizontal direction, there is little different in height between the toner cartridge and the developing unit. Thus, when the toner is circulated between the toner cartridge and the developing unit, the toner can be easily conveyed without opposing gravity.


Since the housing side shutter simultaneously opens and closes the developing unit side reception port and the developing unit side return port, it is not necessary to provide shutters individually for the developing unit side reception port and the developing unit side return port.


According to the invention of the twelfth aspect, since the first agitating member and the second agitating member for agitating the toner in the first containing unit have the same rotating shaft, it is not necessary to provide rotating shafts individually for the first agitating member and the second agitating member.

Claims
  • 1. An image forming apparatus, comprising a housing;a plurality of developing units disposed in parallel with each other in the housing, each of the developing units comprising an image carrier on which an electrostatic latent image is configured to be formed, and a toner carrier configured to supply toner to the image carrier;a plurality of toner cartridges configured to be disposed in parallel with each other in the housing, each toner cartridge corresponding to a respective one of the plurality of developing units, and each of the toner cartridges comprising a first container for containing toner;a transfer unit comprising a belt disposed to face the image carriers, and a roller around which the belt is wound; anda collecting unit configured to collect waste toner remaining on the belt;wherein a first toner cartridge further comprises a second container in which the waste toner collected by the collecting unit is stored, and each of the toner cartridges other than the first toner cartridge does not comprise a second container in which the waste toner collected by the collecting unit is stored, andwherein the first toner cartridge when disposed in the housing is positioned closer to the collecting unit than the other toner cartridges.
Priority Claims (1)
Number Date Country Kind
2007-199950 Jul 2007 JP national
CROSS REFERENCE TO RELATED APPLICATION

The present application is a continuation of co-pending U.S. Ser. No. 12/182,542, filed Jul. 30, 2008, which claims priority from Japanese Patent Application No. 2007-199950, which was filed on Jul. 31, 2007, the disclosures of which are herein incorporated by reference in its entirety.

Continuations (1)
Number Date Country
Parent 12182542 Jul 2008 US
Child 13280432 US