This disclosure relates to an image forming apparatus including a process cartridge, a scanner unit, and a toner cartridge.
An image forming apparatus is conventionally known. The image forming apparatus includes a process cartridge having a photosensitive drum, a scanner unit that exposes the photosensitive drum, and a toner cartridge that stores toner. In this image forming apparatus, the toner cartridge is disposed below the scanner unit.
According to one aspect, this specification discloses an image forming apparatus. The image forming apparatus includes an apparatus main body, a process unit, a development unit, a scanner unit, and a reception portion. The process unit includes a photosensitive drum rotatable about a rotational axis extending in a first direction. The development unit includes a development roller configured to supply toner to the photosensitive drum. The scanner unit is configured to expose the photosensitive drum. The reception portion is configured to receive toner from a toner container for supplying toner into the development unit. The process unit, the development unit, the scanner unit, and the reception portion are arranged in the apparatus main body. The scanner unit and the photosensitive drum overlap each other as viewed from a second direction perpendicular to the first direction and a gravitational direction. The scanner unit is arranged at a center in the first direction in the apparatus main body. The reception portion is arranged on a same side as the scanner unit with respect to the photosensitive drum in the second direction. The reception portion is closer to an end of the apparatus main body in the first direction than the scanner unit is.
Embodiments in accordance with this disclosure will be described in detail with reference to the following figures wherein:
In the above-described image forming apparatus, there is a problem that, if the volume of a toner container is increased, the image forming apparatus becomes large in the vertical direction.
In view of the foregoing, an example of an object of this disclosure is to increase the volume of the toner container while suppressing height of the image forming apparatus.
An aspect of this disclosure will be described while referring to the drawings.
In the following description, directions are defined based on a view of a user who uses an image forming apparatus 1. That is, the right side in
As shown in
The apparatus main body 2 includes a front cover 21, a paper discharge tray 22 that is located in an upper portion of the apparatus main body 2, and a mount guide 23. The front cover 21 is arranged at a front end portion of the apparatus main body 2. By operating the front cover 21 (see
The supply unit 3 is provided in a lower portion within the apparatus main body 2. The supply unit 3 includes the manual feed tray 31 and a supply tray 32 that is provided below the manual feed tray 31. Each of the manual feed tray 31 and the supply tray 32 is configured to individually support recording sheets S. The supply unit 3 includes a first pickup roller 33A, a first separation roller 34A, and a first separation pad 35A for the manual feed tray 31, and includes a second pickup roller 33B, a second separation roller 34B, and a second separation pad 35B for the supply tray 32. The recording sheets S are picked up by the pickup rollers 33A and 33B, separated by the separation rollers 34A and 34B and the separation pads 35A and 35B one sheet at a time, and supplied toward the image forming unit 4.
The image forming unit 4 mainly includes the process cartridge 5, a scanner unit 6, a toner cartridge 7, a transfer roller 8, and a fixing unit 9.
The process cartridge 5 is arranged above the supply unit 3 and near a rear end portion of the apparatus main body 2 in a front-rear direction. The process cartridge 5 mainly includes a photosensitive drum 51, a charging roller 52, and a development unit 10. The process cartridge 5 can be detachably mounted on the apparatus main body 2. The photosensitive drum 51 rotates about a rotation axis that extends in a left-right direction serving as an example of a first direction. The development unit 10 mainly includes a housing 11, a supply roller 12, and a development roller 13. The development unit 10 is configured to supply toner to the photosensitive drum 51.
The scanner unit 6 is arranged substantially in the center of the apparatus main body 2. The scanner unit 6 mainly includes, within a scanner housing 61, a polygon mirror 62, a laser emitting portion (not shown), and a lens (not shown). The polygon mirror 62 deflects light for exposing the photosensitive drum 51. In the scanner unit 6, a laser beam passes through a light path L indicated by a single-dot chain line in
The scanner housing 61 is supported by a bracket 63, and thereby the scanner unit 6 is fixed to the apparatus main body 2. The scanner housing 61 includes an upper surface 6A. In other words, the scanner unit 6 includes the upper surface 6A. The upper surface 6A guides the process cartridge 5 to the mount guide 23 when the process cartridge 5 is mounted onto the apparatus main body 2 (see
The toner cartridge 7 is arranged above the supply unit 3 and near the front end portion of the apparatus main body 2. The toner cartridge 7 stores toner therein, and mainly includes a toner container 71 that stores the toner and a waste-toner container 72 that stores waste toner.
The photosensitive drum 51 of the process cartridge 5, the scanner unit 6 and the toner cartridge 7 are aligned in this order in a front-rear direction. The front-rear direction serves as an example of a second direction perpendicular to both the first direction and the gravitational direction. At least part of the photosensitive drum 51, at least part of the scanner unit 6, and at least part of the toner cartridge 7 overlap one another as viewed from the front-rear direction. In the present embodiment, the photosensitive drum 51, the polygon mirror 62 of the scanner unit 6, and the toner cartridge 7 overlap one another as viewed from the front-rear direction.
The transfer roller 8 is arranged to face the photosensitive drum 51 within the apparatus main body 2.
The fixing unit 9 is provided above the process cartridge 5 and includes a heating roller 91 and a pressure roller 92 that faces the heating roller 91 and presses the heating roller 91.
In the image forming unit 4, the surface of the photosensitive drum 51 is uniformly charged by the charging roller 52 and is thereafter exposed by the high-speed scanning of the laser light from the scanner unit 6, and thereby an electrostatic latent image is formed on the photosensitive drum 51. The toner within the toner cartridge 7 is supplied through the supply roller 12 to the development roller 13 to be carried on the development roller 13.
Then, the toner carried on the development roller 13 is supplied to the electrostatic latent image on the photosensitive drum 51, and thereby the electrostatic latent image is visualized, and a toner image is formed on the photosensitive drum 51. Thereafter, the recording sheet S supplied from the supply unit 3 is conveyed between the photosensitive drum 51 and the transfer roller 8, and thereby the toner image on the photosensitive drum 51 is transferred onto the recording sheet S. Then, the recording sheet S is conveyed between the heating roller 91 and the pressure roller 92, and thereby the toner image transferred on the recording sheet S is thermally fixed. The recording sheet S on which the toner image is thermally fixed is discharged to the outside of the apparatus main body 2 and is stacked on the paper discharge tray 22.
The detailed configuration of the process cartridge 5 will be described.
As shown in
The side frames 54 are individually arranged at both end portions in the left-right direction to be arranged as a pair, and support the photosensitive drum 51, the drum cleaner 53, and the development unit 10. The side frame 54 is formed with a through hole 54A (also see
One of the pair of protrusion portions 55 is arranged at the left end of the process cartridge 5 and protrudes from the left side frame 54 in the leftward direction. The other of the pair of protrusion portions 55 is arranged at the right end of the process cartridge 5 and protrudes from the right side frame 54 in the rightward direction. Each protrusion portion 55 engages the mount guide 23 of the apparatus main body 2 when the process cartridge 5 is mounted onto or detached from the apparatus main body 2 (see
The drum cleaner 53 collects the waste toner from the photosensitive drum 51. As shown in
The cleaning blade 53A is a plate-shaped member and extends in the left-right direction. The cleaning blade 53A is arranged such that the tip end thereof is in contact with the circumferential surface of the photosensitive drum 51. The conveyance tube 53B has a cylindrical shape and extends in the left-right direction. The conveyance tube 53B includes an opening 53D in a part facing the photosensitive drum 51. The waste-toner auger 53C is arranged within the conveyance tube 53B. The waste toner that is scraped off with the cleaning blade 53A from the photosensitive drum 51 enters the inside of the conveyance tube 53B through the opening 53D and is thereafter conveyed rightward by the waste-toner auger 53C.
As shown in
The main body portion 111 has a hollow cylindrical shape, and the first auger 114 is arranged therein. The first reception portion 112 is arranged at the front end of the toner conveyance pipe 110 and is configured to be connected to the toner cartridge 7. The first discharge portion 113 is arranged at the rear end of the toner conveyance pipe 110 and is fixed to the left side surface of the side frame 54. A supply port 113A for supplying the toner to the development unit 10 is provided at a lower portion of the first discharge portion 113. The first auger 114 receives a drive force from a drive source (not shown) to be rotated and thereby conveys the toner within the main body portion 111 from the front end to the rear end. In other words, the toner conveyance pipe 110 is configured to convey the toner from the toner cartridge 7 to the development unit 10.
As shown in
The first shutter 112C has a cylindrical shape and slidably moves forward and rearward relative to the outer circumferential surface of the first reception portion 112. Specifically, the first shutter 112C is configured to move between an open position (the position of
As shown in
As shown in
As shown in
The reception portion 122 is arranged at the rear end of the waste-toner conveyance pipe 120 and is fixed to the right side frame 54. The reception portion 122 communicates with the conveyance tube 53B of the drum cleaner 53. The second discharge portion 123 is arranged at the front end of the waste-toner conveyance pipe 120, and is configured to be connected to the waste-toner container 72 of the toner cartridge 7. The rear end of the coil auger 124 is connected to the waste-toner auger 53C of the drum cleaner 53, and the coil auger 124 rotates together with the waste-toner auger 53C to convey the waste toner within the main body portion 121. The waste-toner conveyance pipe 120 conveys the waste toner collected by the drum cleaner 53 to the waste-toner container 72.
As shown in
The second shutter 123C has a cylindrical shape and slidably moves forward and rearward relative to the outer circumferential surface of the second discharge portion 123. Specifically, the second shutter 123C is configured to move between an open position (the position of
As shown in
As shown in
As shown in
As shown in
The side walls 11A are provided at both sides of the development unit 10 in the left-right direction. Each side wall 11A extends upward from the housing 11.
The swing shaft 14 extends in the left-right direction, and both end portions are fixed to the side walls 11A. Both ends of the swing shaft 14 are swingably supported by the pair of side frames 54 of the process cartridge 5. With this configuration, the development unit 10 is configured to swingably move relative to the pair of side frames 54. The development unit 10 is urged by an urging member (not shown) such as a spring, and thereby the development roller 13 is pressed against the photosensitive drum 51.
As shown in
As shown in
A seal member 19 is arranged between the reception port 18 of the development unit 10 and the supply port 113A of the toner conveyance pipe 110. As shown in
As shown in
The third auger 16 is arranged between the second auger 15 and the supply roller 12. The third auger 16 has substantially the same configuration as the second auger 15 and is arranged to face (in juxtaposition with) the second auger 15. The third auger 16 rotates in a second rotation direction (counterclockwise in
The partition plate 17 is provided between the second auger 15 and the third auger 16. A first opening 17A and a second opening 17B are formed in the partition plate 17. The first opening 17A is provided at the right end of the partition plate 17. The toner conveyed by the second auger 15 in the rightward direction passes through the first opening 17A to move from the second auger 15 toward the third auger 16. The second opening 17B is provided at the left end of the partition plate 17. With this configuration, the toner passes through the second opening 17B to move from the third auger 16 toward the second auger 15. In this way, the toner is circulated within the development unit 10 so as not to accumulate in one place.
The detailed configuration of the toner cartridge 7 will be described.
As shown in
The toner cartridge 7 includes a handle 73 in addition to the toner container 71 and the waste-toner container 72 described previously. In the present embodiment, the toner cartridge 7 includes the toner container 71 and the waste-toner container 72 that are formed integrally.
The toner container 71 includes a toner storage chamber 71A that stores toner, a main agitator 71B that agitates the toner, sub-agitators 71C, a fourth auger 71D, and a first connection portion 74 (see
The main agitator 71B and the sub-agitators 71C are arranged within the toner storage chamber 71A so as to rotate by receiving a drive force from a drive source (not shown) to agitate the toner therein and to move the toner toward the fourth auger 71D. The numbers and arrangements of the main agitator 71B and the sub-agitators 71C may be changed as necessary according to the shape of the toner cartridge 7.
The fourth auger 71D extends in the left-right direction. The fourth auger 71D receives a drive force from a drive source (not shown) to convey the toner from the right side to the left side and to thereby send the toner to the first connection portion 74.
As shown in
The first discharge port 74A is formed in the upper surface of the first connection portion 74 and communicates with the toner storage chamber 71A. The third shutter 74B slidably moves between a closed position (the position of
As shown in
As shown in
The waste-toner container 72 is arranged below the toner container 71. As shown in
As shown in
The second discharge port 75A is formed at the lower surface of the second connection portion 75 and communicates with the right extension portion 72C of the waste-toner container 72. The fourth shutter 75B slidably moves between a closed position (the position of
As shown in
As shown in
As shown in
A method of mounting the toner cartridge 7 and the process cartridge 5 onto the apparatus main body 2 and a method of detaching the toner cartridge 7 and the process cartridge 5 from the apparatus main body 2 will be described.
When the toner cartridge 7 is detached from the apparatus main body 2, as shown in
Then, when the process cartridge 5 is detached from the apparatus main body 2, the grip portion 130 of the process cartridge 5 is grasped, and the process cartridge 5 is pulled forward. Then, the process cartridge 5 moves along the mount guide 23 from the position of
When the process cartridge 5 is mounted onto the apparatus main body 2, as shown in
When the toner cartridge 7 is mounted to the apparatus main body 2, the toner cartridge 7 is first placed at a particular position (the position of
At this time, as shown in
According to the above-described embodiment, the following effects are obtained.
In the image forming apparatus 1, the photosensitive drum 51, the scanner unit 6, and the toner cartridge 7 are aligned in this order in the front-rear direction. Thus, a space at the opposite side from the photosensitive drum 51 with respect to the scanner unit 6 is utilized as a space for arranging the toner cartridge 7. With this configuration, the capacity (volume) of the toner cartridge 7 is increased while suppressing the height of the image forming apparatus 1.
The process cartridge 5 includes the toner conveyance pipe 110. Thus, although the development unit 10 and the toner cartridge 7 are located away from each other, the toner is supplied through the toner conveyance pipe 110 from the toner cartridge 7 to the development unit 10. Therefore, the toner cartridge 7 can be arranged at the opposite side from the photosensitive drum 51 with respect to the scanner unit 6.
The toner conveyance pipe 110 overlaps the scanner unit 6 as viewed from the left-right direction, and thus an increase in the size of the image forming apparatus 1 in the vertical direction can be suppressed.
The toner cartridge 7 integrally includes the waste-toner container 72 that stores waste toner. Thus, by replacing the toner cartridge 7, the waste-toner container 72 that is integrally provided is also replaced. Hence, a user can omit time and effort for replacing the waste-toner container 72.
The waste-toner conveyance pipe 120 is provided. Thus, although the drum cleaner 53 and the waste-toner container 72 are located away from each other, waste toner can be moved through the waste-toner conveyance pipe 120 from the drum cleaner 53 to the waste-toner container 72. Hence, the flexibility of the design of the image forming apparatus 1 is enhanced.
The waste-toner conveyance pipe 120 overlaps the scanner unit 6 as viewed from the left-right direction. Thus, an increase in the size of the image forming apparatus 1 in the vertical direction can be suppressed.
The process cartridge 5 includes the grip portion 130 that is fixed to the end portion of the toner conveyance pipe 110 and the end portion of the waste-toner conveyance pipe 120. Thus, by using the grip portion 130, the process cartridge 5 is easily mounted and detached. The grip portion 130 also couples the toner conveyance pipe 110 and the waste-toner conveyance pipe 120 together, and thus the toner conveyance pipe 110 and the waste-toner conveyance pipe 120 are reinforced.
When the process cartridge 5 (the process unit) is mounted onto or detached from the apparatus main body 2, the operation of mounting or detaching the process cartridge 5 is guided by the upper surface 6A of the scanner unit 6. Thus, the process cartridge 5 is easily mounted and detached.
The seal member 19 having elasticity is arranged between the reception port 18 of the development unit 10 and the supply port 113A of the toner conveyance pipe 110. Thus, even when the development unit 10 swingably moves, the leakage of toner from between the reception port 18 and the supply port 113A is suppressed. Further, the seal member 19 is arranged in a compressed state. Thus, even when the development unit 10 swingably moves, a gap is unlikely to be produced, and the leakage of toner is suppressed.
While the disclosure has been described in detail with reference to the above aspects thereof, it would be apparent to those skilled in the art that various changes and modifications may be made therein without departing from the scope of the claims. Examples are provided below.
In the above-described embodiment, the toner container 71 and the waste-toner container 72 are formed integrally. Alternatively, a toner container and a waste-toner container may be formed in a detachable configuration, or may be formed separately.
In the above-described embodiment, this disclosure is applied to the image forming apparatus 1 such as a monochromatic laser printer. This disclosure is not limited to this, and may be applied to a color printer and other image forming apparatuses such as a copier and a multifunction peripheral (MFP), for example.
Further, each element described in the above-described embodiment and modifications may be combined arbitrarily.
Number | Date | Country | Kind |
---|---|---|---|
2018-156470 | Aug 2018 | JP | national |
This application is a continuation of U.S. patent application Ser. No. 18/313,422, filed May 8, 2023, which is a continuation of U.S. patent application Ser. No. 18/047,338, filed Oct. 18, 2022, now U.S. Pat. No. 11,669,041, which is a continuation of U.S. patent application Ser. No. 17/371,249, filed Jul. 9, 2021, now U.S. Pat. No. 11,526,121, which is a continuation of U.S. patent application Ser. No. 16/892,416, filed Jun. 4, 2020, now U.S. Pat. No. 11,061,361, which is a continuation of U.S. patent application Ser. No. 16/460,186, filed Jul. 2, 2019, now U.S. Pat. No. 10,705,479, which claims priority from Japanese Patent Application No. 2018-156470 filed Aug. 23, 2018. The entire contents of the aforementioned applications are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 18313422 | May 2023 | US |
Child | 18603811 | US | |
Parent | 18047338 | Oct 2022 | US |
Child | 18313422 | US | |
Parent | 17371249 | Jul 2021 | US |
Child | 18047338 | US | |
Parent | 16892416 | Jun 2020 | US |
Child | 17371249 | US | |
Parent | 16460186 | Jul 2019 | US |
Child | 16892416 | US |