With reference to the drawings, embodiments according to the present invention are explained in detail below.
An image forming apparatus A has an image forming apparatus body having a sheet feeding unit A1, an image forming unit A2, a sheet delivering unit A3, and a control unit (Central Processing Unit (CPU)), and a post-processing device (center folding device) F that performs a post-process on a sheet delivered from the sheet delivering unit A3.
The sheet feeding unit A1 includes sheet-feeding cassettes 4a and 4b on which transfer sheets 20 are placed. Also, a manual sheet-feeding tray MF is provided for manual sheet feeding from a side of the image forming apparatus.
The image forming unit A2 includes four image forming units 1Y, 1M, 1C, and 1K for forming images of yellow (Y), magenta (M), cyan (C), and black (K), respectively, a transferring unit 6, a fixing unit 7, and others. The order of colors of Y, M, C, and K is not meant to be restricted to an arrangement example shown in
The image forming units 1Y, 1M, 1C, and 1K each include a relevant one of photosensitive drums 11Y, 11M, 11C, and 11K as an image carrier, a charging unit, a developing unit, and a cleaning unit. Also, the image forming units 1Y, 1M, 1C, and 1K are set to be arranged with predetermined pitches in a transfer-sheet moving direction so that the rotational axes of the photosensitive drums 11Y, 11M, 11C, and 11K are parallel to one another.
Above the image forming units 1Y, 1M, 1C, and 1K is an optical writing unit 3 including a light source, a polygon mirror, an f-θ lens, and a reflection mirror. In the optical writing unit 3, the surfaces of the photosensitive drums 11Y, 11M, 11C, and 11K are scanned and radiated with laser light based on image data. Below the image forming units 1Y, 1M, 1C, and 1K is the transferring unit 6 as a belt driving device having a transfer conveyor belt 9 that carries and conveys a transfer sheet so that the transfer sheet can pass through a transferring unit of each image forming unit.
On an outer circumferential surface of the transfer conveyor belt 9, a cleaning device 19 including a brush roller and a cleaning blade is disposed to be making contact with the transfer conveyor belt 9. With the cleaning device 19, foreign matters such as toner attached onto the transfer conveyor belt 9 are removed.
On a side of the transferring unit 6 are the fixing unit 7 of a belt fixing scheme, a sheet-delivery tray 8, paired sheet-delivery rollers (paired sheet-delivery members) 21 and 22, and others. Below the image forming unit A2 is the sheet feeding unit A1.
In addition, a toner resupply container TC is provided, and also a waste toner bottle, a both-side/reversing unit, a power supplying unit, and others that are not shown are provided in a space S indicated by a one-dot-chain line.
Developing devices 10Y, 10M, 10C, and 10K as developing units have a similar configuration, are of a two-component development type, and are different only in toner color for use. The developing devices 10Y, 10M, 10C, and 10K each have accommodated therein a developer formed of a toner and a magnetic carrier.
The developing devices 10Y, 10M, 10C, and 10K each include a developing roller facing the photosensitive drum 11, a screw that conveys and agitates the developer, a toner density sensor, and others. The developing roller is formed of a freely-rotatable sleeve on an outer side and a magnet fixed to an inner side. According to an output from the toner density sensor, the toner is resupplied from the toner resupply container TC.
The paired sheet-delivery rollers (paired sheet-delivery members) 21 forming the sheet delivering unit A3 are units that deliver a recording medium conveyed from the image forming unit A2 with its face up (with an image surface upward) to the outside of the machine. The sheet-delivery tray 8 is a unit that receives the recording medium delivered from the paired sheet-delivery rollers (paired sheet-delivery members) 22 with its face down (with an image surface downward).
In the present invention, the paired sheet-delivery rollers 21 and 22 are formed such that one roller is freely movable back and forth (closer and away) with respect to another roller, thereby making it possible to adjust a pressure onto the recording medium to be delivered.
Each component explained above operates based on a control signal from the control unit not shown.
An image formation flow is explained. First, a predetermined voltage is applied from a power supply not shown to a charging roller to charge the photosensitive drum 11 (Y, M, C, and K) that faces the charging roller. The surface of the photosensitive drum 11 (Y, M, C, and K) charged at a predetermined potential is then scanned with laser light by the optical writing unit 3 based on image data. With this, an electrostatic latent image is written.
When the surface of the photosensitive drums 11 (Y, M, C, and K) carrying the electrostatic latent image reaches the developing device 10 (Y, M, C, and K), toner is supplied to the electrostatic latent image on the surface of the photosensitive drums 11 (Y, M, C, and K) from the developing roller disposed so as to face the photosensitive drum 11 (Y, M, C, and K), thereby forming a toner image.
The operation explained above is performed similarly on all photosensitive units 2Y, 2M, 2C, and 2K at each predetermined timing. On each of the surfaces of the photosensitive drums 11Y, 11M, 11C, and 11K, a toner image of a predetermined color is formed.
The transfer sheet 20 is conveyed from any one of sheet-feeding cassettes 4a and 4b and the manual sheet-feeding tray MF, and temporarily stops when reaching resist rollers 5. Then, the transfer sheet 20 is sent from the resist rollers 5 in timing with the image forming operation of the photosensitive units 2Y, 2M, 2C, and 2K, and conveyed by the transfer conveyor belt 9, thereby sequentially transferring the toner images on the photosensitive drums 11 (Y, M, C, and K).
The toner images are transferred onto the transfer sheet from initial transfer rollers 16Y, 16M, 16C, and 16K disposed so as to face the photosensitive drums 11Y, 11M, 11C, and 11K across the transfer conveyor belt 9 by applying a voltage with a polarity opposite to the polarity of the toner on the photosensitive drums 11 (Y, M, C, and K) is supplied from the power supply not shown.
The transfer sheet 20 passing through a position-facing the photosensitive drum 11K to have the toner images of four colors superposed thereon is then conveyed to the fixing unit 7, where the image is fixed by receiving heat and pressure.
The image forming units for use in the present embodiment are not particularly characterized by the configuration explained above. Alternatively, for example, a light-emitting diode can be used in place of a laser for writing. Still alternatively, one-component developing units can be used in place of the two-component developing units. Still alternatively, a roller or an induction-heating scheme can be used as a fixing unit in place of the belt. Still alternatively, an inkjet printing unit can be used as an image forming unit.
Also, the image forming unit A2 according to the present invention has a configuration that allows image formation on not only a normal paper sheet but also a transparent resin sheet, such as an overhead projector (OHP) sheet. Furthermore, the image forming unit A2 has a function of forming an image with photographic quality on a recording medium.
For a recording medium, such as an OHP sheet, depriving a large amount of heat at the time of fixing, an amount of temperature decrease of a heating roller at the time of fixing by the fixing unit 7 is large. Therefore, a conveying speed has to be decreased. For this reason, when image formation is performed on an OHP sheet, the conveying speed is decreased approximately by half of the conveying speed for normal paper sheets in the image forming apparatus. Therefore, the OHP sheet delivered after heat fixing is soft due to residual heat, and a roller mark tends to be attached to the OHP sheet by the pressure from a sheet-delivery roller (roller for providing strength) provided at the sheet delivering unit.
In
Alternatively, as in
Here, the non-transparent portion 20a includes those in white color or other non-transparent portions, and the transparent portion 20b does not mean a portion in a completely transparent state, but broadly includes portions in a translucent state and other quasi-transparent states.
Also, the transparent portion 20b may be configured of an OHP sheet, whilst the non-transparent portion 20a is configured of a normal paper sheet or the like. Alternatively, the entire portion may be configured of an OHP sheet, whilst a non-transparent sheet may be attached to a portion corresponding to the non-transparent portion 20a.
Examples of a scheme of setting in the image forming apparatus a condition in which the recording medium 20 at least a part of which is the transparent portion 20b is allowed to pass through include a scheme in which a user specifies in advance with settings from an operating unit or the sheet-feeding unit and a scheme in which a transparent area of a specific size is registered in advance in the image forming apparatus.
After a transparent area is defined, when determining that an image is formed on at least the transparent portion 20b, the control unit causes an image to be formed automatically as being reversed. As a result, on one side of the recording medium 20 after passing through the fixing unit 7 (
The recording medium 20 subjected to the image formation with the scheme explained above is superposed with its image formation surface downward on a white medium, thereby easily obtaining a photographic image. With the image formation surface facing down and being on the white medium, excellent preservability can be achieved without directly damaging the image formation surface from outside.
After passing through the fixing unit 7, the recording medium 20 is conveyed from the image forming apparatus A to the post-processing device (in this case, the center folding device F). That is, a branching nail E is disposed at an appropriate position after fixing, and by switching the branching nail E, whether the recording medium is delivered via the sheet-delivery rollers 22 to the sheet-delivery tray 8 or is delivered via the sheet-delivery rollers 21 to the center folding device F (in a C direction) is switched.
In a normal center folding device F, for the purpose of sequentially superposing sheets of a plurality of pages, they are reversed before entering the center folding device F. In the present embodiment, a branching device not shown is provided at this portion, thereby allowing the sheets to be sent to the center folding device F without reversal. That is, only with the provision of the branching device, a folding reverse to the folding of the normal center folding device can be achieved.
The center folding device F is generally used to stack outputs of a plurality of sheets and staple and fold them at a center portion. For photographic images with excellent preservability according to the present embodiment, a folding operation is performed every time a single photographic image is obtained. Therefore, no reversing operation is required.
As shown in
In this case, the tip of the recording medium 20 passing through the paired rollers 23 and conveyed to the paired roller 24 is once conveyed in an H direction in
First, in the image forming procedure in
The image output in this manner is in a form where a toner layer T is present between the transparent portion 20b and the non-transparent portion 20a of the recording medium 20 as shown in
For comparison with
The recording medium 20 reversed and delivered so that the first surface comes outside is conveyed by the paired rollers 23 to the paired rollers 25 and a center folding plate 26, which are center folding units (
In the present embodiment, unlike a general use depicted as a comparison in
Since the transparent portion 20b is the image-provided surface of the recording medium 20, a photographic image with a uniform gloss can be viewed from the back of the recording medium. Also, the configuration is such that the image surface cannot be directly touched, and therefore excellent preservability can be achieved. Furthermore, since an opposite surface is non-transparent white, the color of the image is clear, and a more desirable image can be obtained.
A heat-sensitive adhesive layer formed on an image opposite surface of non-transparent white is explained below. The heat-sensitive adhesive contains a solid plasticizer and a thermoplastic resin emulsion as requisite components, these components being mixed with an adhesion providing agent. Such a mixture is applied on a supporting member to obtain a heat-sensitive adhesion material.
The surface of the adhesive layer of the heat-sensitive adhesion material does not have adhesiveness at all at room temperatures. However, by heating, adhesiveness becomes more apparent and, this adhesiveness maintains for a while even after a heat source is removed (an adhering state is maintained semipermanently). It is considered that the solid plasticizer is first melt by heating to the thermoplastic resin and the adhesion providing agent, thereby causing adhesiveness to become apparent.
The heat-sensitive adhesion material of this type is advantageous in view of resource saving and environmental protection because a releasing paper sheet is not used as in a general adhesion material. Furthermore, the heat-sensitive adhesion material can be attached only by being heated after abutting on an adherend, thereby preventing an adhesion error.
It was found that, as a compound for use as a solid plasticizer, in particular, at least one or more types of compounds having a benzoate group, a benzophenone group, a phenylenediamine group, and a benzothiazole group is used to further promote a low-temperature adhesive strength.
Specific examples include, but are not limited to: a compound 1 as a compound having a benzoate group; a compound 2, a compound 3, and a compound 4 as compounds having a benzophenone group, a compound 5 and a compound 6 as compounds having a phenylenediamine group; and a compound 7, a compound 8, a compound 9, a compound 10, and a compound 11 as compounds having a benzothiazole group.
In particular, the compound 1 having a benzoate group, the compound 2 having a benzophenone group, the compound 5 having a phenylenediamine group, and the compound 7 having a benzothiazole group have a high compatibility with thermoplastic resin or adhesion providing agent among others, and therefore have a high adhesiveness under a low-temperature environment.
Thermoplastic resin emulsions forming a heat-sensitive adhesive layer include, but are not necessarily limited to: (meta) acrylic ester copolymer, styrene-isoprene copolymer, styrene-acrylic ester copolymer, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, ethylene-vinyl acetate copolymer; vinyl acetate-acrylic ester copolymer, ethylene-vinyl chloride copolymer, ethylene-acrylic ester copolymer, vinyl acetate-ethylene-vinyl chloride copolymer, vinyl acetate-ethylene-acrylic ester copolymer, vinyl acetate-ethylene-styrene copolymer, polybutadiene, and polyurethane.
When an acrylic ester copolymer is used as a thermoplastic resin emulsion of a heat-sensitive adhesive layer, high adhesiveness can be achieved. Among others, it was found that 2-ethylhexyl acrylate is a resin that can increase an adhesive strength.
To the heat-sensitive adhesive layer, an adhesion providing agent can be added to increase an adhesive strength. Specific examples of the adhesion providing agent for use include terpene resin, aliphatic-series petroleum resin, aromatic-series petroleum resin, coumarone-indene resin, styrene-series resin, phenol resin, terpene phenol resin, and rosin derivative resin. These adhesion providing agents are used in a range of equal to or lower than 2.0 parts with respect to 1.0 part of the thermoplastic resin, preferably in a range of 0.2 to 1.5 parts. If the number of parts of the blocking inhibitor exceeds 2.0, blocking tends to occur.
By adding a blocking inhibitor to the heat-sensitive adhesive layer, blocking prevention in a high-temperature environment is further improved. Examples of the blocking inhibitor include waxes and inorganic fillers, which are listed below but are not restrictive.
Waxes include, for example, waxes such as animal wax, plant wax, and synthetic wax; higher fatty acids; higher fatty amides other than N-hydroxymethylstearic amid and stearic amid; higher fatty anilides; acetylatylides of aromatic amine; paraffin wax; Japan wax; carnauba wax; shellac; montan wax; paraffin oxide; polyethylene wax; and polyethylene oxide.
Higher fatty acids include, for example, sodium stearate and behenic acid. Higher fatty amides include, for example, stearate amid, oleic amid, N-methylstearic amid, eruci amid, methylol behenic amid, methylol stearic amid, methylene-bis-stearic amid, and ethylene-bis-stearic amid. Higher fatty anilides include, for example, stearic anilide and linoleic anilide. Acetylatylides of aromatic amine include, for example, acetotoluidide.
In addition, hot-melt materials other than waxes can include leuco dyes and developers for general use in photosensitive recording materials. These hot-melt materials including waxes desirably have a melting point as high as possible so as to minimize an influence on an adhesive strength.
Inorganic fillers include, for example, carbonates, oxides, hydroxides, and sulfates of aluminum, zinc, calcium, magnesium, barium, and titanium; and inorganic pigments containing clays, such as natural silica, zeolite, kaoline, and calcined kaoline. These inorganic fillers desirably have a oil absorbency as low as possible to minimize an influence on an adhesive strength.
These blocking inhibitors are used in a range of equal to or lower than 1.5 parts with respect to 1.0 part of the thermoplastic resin, preferably in a range of 0.6 to 1.0 part. If the number of parts of the blocking inhibitor exceeds 1.5, the adhesive strength tends to be decreased.
To the heat-sensitive adhesive layer, in order to increase adhesiveness between the heat-sensitive adhesive layer and the supporting member and coagulability in the heat-sensitive adhesive layer, a water-based high-polymer binder can be added, such as polyvinyl alcohol, polyvinyl acetate, starch oxide, etherified starch, cellulose derivatives such as carboxymethyl cellulose and hydroxyethyl cellulose, casein, gelatin, or alginic acid soda.
A mixing ratio of the water-based high-polymer binder is set so as not to impair an original adhesive strength of the heat-sensitive adhesive sheet. Specifically, the water-based high-polymer binder is used in a range equal to or lower than 30 weight percent with respect to all solids, more preferably, equal to or lower than 10 weight percent. To the heat-sensitive adhesive layer according to the present invention, other various additives can be added as required, such as a hardening agent, a preservative, a dye, a developer, a potential of hydrogen (pH) regulator, and an antifoaming agent.
The solid plasticizer and the thermoplastic resin of the heat-sensitive adhesive layer have melting points lower than a melting point of toner. Heating at a temperature between these melting points can achieve adhesion without melting the toner to disturb the image.
As has been discussed above, by implementing the present invention, as shown in
Therefore, a photographic image with excellent preservability conventionally requiring a complex configuration or a complex procedure can be easily obtained only by supplying a non-transparent portion and a transparent portion of a recording medium to the image forming apparatus. Also, according to the present embodiment, a center folding function can be used in a post-processing device can be used. Therefore, a photographic image can be automatically obtained.
Next, an image forming apparatus including a sheet-member attaching device according to another embodiment of the present invention is explained based on
A sheet-member attaching device G exemplarily shown in
The image forming apparatus A has a configuration similar to that shown in
The sheet-member attaching device G includes, as shown in
The box 101 is to form an outer shape of the sheet-member attaching device G, having formed inside therein each of the following functional units in a boxed shape, and is provided on one side surface of an upper portion of the box 101 with a recording-sheet receiving port 101a communicable with a sheet delivering unit 122 (of
The conveying unit 102 includes first paired rollers 121 rotatably provided near the recording-sheet receiving port 101a, second paired rollers 122 rotatably provided lower left of the first paired rollers 121, third paired rollers 123 rotatable provided below the second paired rollers 122 so as to be slightly left of the second paired rollers 122, and a guide wall not shown. In this configuration, a transparent sheet S1 (mirror image P has been recorded thereon) delivered in an approximately horizontal direction from the sheet delivering unit 122 (of
The letting-out unit 103 includes a rotation-controllable winding-up shaft 131 approximately straight below the arrangement position of the first paired rollers 121 and located at a predetermined position on a right side of the arrangement position of the second paired rollers 122, an original-sheet supporting shaft 132 rotatably provided approximately straight below the arrangement position of the winding-up shaft 131 and located at a predetermined position above the paired crimping rollers 104, which will be explained further below, an idle shaft 133 rotatably provided between the original-sheet supporting shaft 132 and the winding-up shaft 131 and located at a predetermined position of the winding-up shaft 131, and the separation plate 134 that is formed in a band-plate shape gradually tapered from one side edge in a longitudinal direction to an opposite side edge is diagonally provided so that the tapered side edge is oriented at a predetermined angle toward a sheet conveying route connecting the second paired rollers 122 and the third paired rollers 123.
Also, as shown in
The rotary solenoid 135 may be of a so-called ON/OFF type, but, preferably, is of a pulse-driven latching type (self-retaining type), in which a swinging speed and swinging angle can be easily controlled.
In the present embodiment, swings of the separation plate 134 using the rotary solenoid 135 is exemplified. However, this is not meant to be restrictive. For example, the configuration may be such that the other side edge mentioned above is pivoted at a fixing unit, such as a machine casing, and the separation plate 134 and the fixing unit, such as a machine casing, are connected via a linear solenoid to cause the separation plate 134 to swing with expansion and contraction of the linear solenoid.
Furthermore, as shown in
Still further, the letting-out unit 103 uses an original sheet with a plurality of white non-transparent sheets S2 with predetermined length attached to the band-plate-shaped releasing paper sheet S3, the original sheet being wound with the non-transparent sheets S2 being inside. Here, on one side of the non-transparent sheet S2, an adhesion layer S2a onto which a transparent sheet S1 is to be attached. The adhesion layer S2a formed on one side of the non-transparent sheet S2 and a releasing layer formed on the releasing paper sheet S3 are attached together.
The state where the original sheet is set is explained. As shown in
In the letting-out unit 103 with the original sheet is set, the winding-up shaft 131 is rotated based on a control instruction from the control unit of the image forming apparatus A. Then, a part of the original sheet set around the original-sheet supporting shaft 132 is let out. Then, the sheet is folded over by the separation plate 134 and, at the same time, the non-transparent sheet S2 is released from the releasing paper sheet S3 and is diagonally let out toward a direction of conveying the transparent sheet S1 so as to be attachable to the transparent sheet S1 being conveyed by the conveying unit 102. In the present embodiment, the transparent sheet S1 and the non-transparent sheet S2 are conveyed by the conveying unit 102 and the letting-out unit 103 so as to be crossed each other. On the other hand, the releasing paper sheet S3 from which the non-transparent sheet S2 has been released is wound up by the winding-up shaft 131 for collection.
Here, the separation plate 134 is at an initial location (angle) so that an angle formed between the non-transparent sheet S2 and the transparent sheet S1 before contact is an angle at which the non-transparent sheet S2 and the transparent sheet S1 are reliably attached with a shock being suppressed when they are in contact with each other. Thereafter, the position can be varied at a predetermined timing.
The paired crimping rollers 104 are paired rollers rotatably provided at a predetermined position in the course of the sheet conveying route connecting the second paired rollers 122 and the third paired rollers 123, the predetermined position being slightly downstream of a position where the transparent sheet S1 and the non-transparent sheet S2 cross each other in a conveying direction. The paired crimping rollers 104 receives the attached transparent sheet S1 and non-transparent sheet S2 for further pressing, thereby strongly attaching these sheets together.
The sheet-member attaching device G according to a first embodiment of the present invention as configured above is removably connected to the image forming apparatus A to perform a series of the following operations.
First, by using an operation panel or the like of the image forming apparatus A, an output mode using the sheet-member attaching device G is selected for starting the formation a mirror image P onto the transparent sheet S1. At this time, an original image for image formation is a captured image from a scanner device provided at the top of the image forming apparatus A or an electronic image transmitted from an electronic device, such as a personal computer or a digital camera. Here, supplying the transparent sheet S1 to the image forming apparatus A is not particularly restrictive. The transparent sheet S1 can be supplied from a sheet tray provided in the device or can be supplied through so-called manual feeding.
Then, through a known electrophotographic process, a toner image (mirror image) formed with a small-particle-diameter polymerized toner is transferred and fixed onto the transparent sheet S1, and is then delivered out from the sheet-delivering unit 122 for external device connection. At this time, the transparent sheet S1 passing through the fixing unit 7 in the image forming apparatus A toward the sheet-delivering unit 122 for external device connection has its image surface with the recorded mirror image P oriented downward. The downward-oriented transparent sheet S1 passes the sheet-delivering unit 122 for external device connection and then enters the sheet-member attaching device G from the recording-sheet receiving port 101a.
The conveying unit 102 that has received the transparent sheet S1 conveys the transparent sheet S1 downward. At this time, the winding-up shaft 131 is rotated at a predetermined timing based on a control instruction from the control unit of the image forming apparatus A, thereby causing a part of the original sheet set around the original-sheet supporting shaft 132 to be let out, causing the non-transparent sheet S2 to be released from the releasing paper sheet S3 by the separation plate 134 and to be diagonally let out so that the non-transparent sheet S2 is superposed on the transparent sheet S1 being conveyed. Here, the conveying speed of the transparent sheet S1 and the conveying speed of the non-transparent sheet S2 are equal to each other.
The transparent sheet S2 started to be conveyed is attached and affixed to the tip of the transparent sheet S1, as shown in
Immediately after the start of attachment or after attachment over a predetermined length from the start of attachment, the rotary solenoid 135 is activated with a control signal from the control unit. As shown in
Also, the timing of changing the attachment angle θ0 to the attachment angle θ1 may be when the tip of the attached sheets reaches the paired crimping rollers. The timing is not particularly restricted to this case, and may be taken through temporal control by a time count or the like, or may be taken by using a sensor to detect a collision state between the tip of the transparent sheet S1 and the tip of the non-transparent sheet S2 or whether the tip of the attached sheets has reached the paired crimping rollers and use the detection result.
In this manner, the transparent sheet S1 and the non-transparent sheet S2 are attached together until the rear ends of both sheets are superposed each other. In this procedure, the paired crimping rollers 104 strongly attaches both sheets immediately after their initial attachment.
Then, when the rear end of the transparent sheet S1 and the rear end of the non-transparent sheet S2 pass through the third paired rollers 123 to complete attachment of both sheets, the separation plate 134 moves back to the initial position, the rotation of the winding-up shaft 131 stops, and the resulting sheet is delivered to an internal sheet delivering unit provided at a lower portion inside the box 101 as an image recording sheet. When the delivery is completed, the conveying unit 102 stops the conveying operation, and waits until the start of the next attaching operation. With this, a series of operations of the sheet-member attaching device G according to the first embodiment is completed.
Here, the speed of changing from the attachment angle θ0 to the attachment angle θ1 is set at a predetermined speed at which the sheet (the releasing paper sheet and the non-transparent sheet S2) can be smoothly let out. Alternatively, the speed can be gradually varied from the attachment angle θ0 mentioned to the attachment angle θ1 and eventually become the attachment angle θ1 at or immediately before the end of attachment.
As for the relation between entrance of air bubbles and the attachment angle, consider the case of an attachment angle on the order of 10 degrees to 45 degrees, for example. In this case, when both sheets makes contact with each other, although attachment with a suppressed shock can be ensured, air bubbles tend to enter due to asperities on the surface of the adhesion layer S2a, subtle fluctuations of the sheets, and other factors, as shown in
Conversely, in the case of an attachment angle over 30 degrees and within 90 degrees, for example, although attachment with a suppressed shock is extremely difficult to achieve, it was found that intake of the air bubbles C is extremely decreased if the sheets have been attached already. In the present embodiment, the attachment angle is changed from the attachment angle θ0 to the attachment angle θ1 through the operation of the separation angle 134, and therefore the sheets can be reliably attached without the occurrence of air bubbles.
Then, when the rear end of the transparent sheet S1 and the rear end of the non-transparent sheet S2 pass through the third paired rollers 123 to complete attachment of both sheets, the resulting sheet is delivered to the internal sheet delivering unit provided at a lower portion inside the box 101 as an image recording sheet. Then, the conveying unit 102 stops the conveying operation, and waits until the start of the next attaching operation. With this, the series of operations of the sheet-member attaching device G according to the present embodiment is completed.
In this manner, the sheet-member attaching device G according to the present embodiment attaches the transparent sheet S1 and the non-transparent sheet S2 together so as to interpose the mirror image P by increasing, with the actuation of the separation plate 134, the attachment angle between the transparent sheet S1 formed with the mirror image P and the non-transparent sheet S2 from the attachment angle θ0 to the attachment angle θ1. In this manner, as shown in
Here, the transparent sheet S1 exemplified in the present embodiment is transparent all over the entire area of the sheet, as shown in
While the sheet-member attaching device G according to the present invention has been explained above, the embodiment explained above represents merely an exemplary embodiment of the present invention. The present invention is not restricted to this embodiment, and can be variously modified and implemented within a scope not deviating from the gist of the invention.
For example, in the present embodiment, when the attachment angle is changed, the separation plate 134 is activated. This is not meant to be restrictive. Alternatively, an operation-controllable guide plate may be used that can press the first sheet member or the second sheet member so as to bend the sheet member to change the conveying direction. In this case, the specific configuration of the guide plate is preferably identical to the configuration of the separation plate 134 due to its simplicity.
Still alternatively, in place of such an attachment-angle varying unit as the guide plate or the separation plate 134, the arrangement position of the conveying unit or the letting-out unit may be varied by shifting. In this case, it is preferable that these conveying unit and letting-out unit be configured as a unit and this unit itself be activated.
Also, the exemplary case has been discussed in the present embodiment in which the mirror image P is formed on the transparent sheet S1 and the white non-transparent sheet S2, for example, and the transparent sheet S1 are then attached together. Alternatively, the image P may be formed on the non-transparent sheet S2 and that non-transparent sheet S2 and the transparent sheet S1 may be then attached together.
In the present embodiment, the sheet-member attaching device G in conjunction with the image forming apparatus A has been exemplified. The present invention can be applied not only to devices that output an image recording sheet, but also to devices as long as the devices attach sheets together.
Furthermore, although the sheet-member attaching device G has been exemplified in the present embodiment, a sheet-member attaching method may be used in which a conveying direction(s) of either one or both of the first sheet member and the second sheet member is (are) varied to change the attachment angle for attachment. Also, in this case, the attachment angles θ0 and θ1 and the varying timing exemplified in the embodiment explained above are suitable.
In addition, a method may be used in which the first sheet member and the second sheet member are attached together so as to interpose the image P therebetween to obtain an image recording sheet. As exemplified in the embodiment explained above, it is preferable that the mirror image P be formed on the transparent sheet S1 by using a small-particle-diameter polymerized toner and the white non-transparent sheet S2, for example, and the transparent sheet S1 be attached together.
According to the present invention, the first sheet member and the second sheet member are conveyed so as to cross each other, and the first sheet member and the second sheet member cross at their crossing position so as to be attachable together. Also, the sheet-member conveying direction is varied to change the attachment angle (for example, the attachment angle is increased as appropriate at the time of attachment), thereby optimizing the attachment angle at the time of the start of attachment and the attachment angle during attachment. With this, a shock when the first sheet member and the second sheet member cross is suppressed, and attachment can be achieved with entrance of air bubble being preventable.
In particular, in the case of an image recording sheet formed by interposing an image formed by an electrophotographic image forming apparatus (it is extremely suitable to form an image by using a small-particle-diameter polymerized toner) between a transparent sheet and a non-transparent sheet, such as a white paper sheet, for attachment, extremely high image quality close to photographic quality can be obtained without entrance of air bubbles.
The paired sheet-delivery rollers (paired sheet-delivery members) 21 that deliver the sheet subject to image formation to the post-processing device F or G include a plurality of strength-providing rollers (sheet-delivery members) 21a and a plurality of the sheet-delivery rollers (sheet-delivery members) 21b. Each strength-providing roller 21a is disposed with each predetermined space in a state where an axial center of these rollers is supported by a shaft 21A. Each sheet-delivery roller 21b is disposed with each predetermined space in a state where an axial center of these rollers is supported by a shaft 21B. Each strength-providing roller 21a is formed of an uneven roller portion (capstan roller portion) 21a-1 having a large diameter with asperities in a gear shape around an outer circumference and a flat roller portion 21a-2 having a small diameter without asperities. Each sheet-delivery roller 21b has a flat configuration without asperities, and is arranged so as to have a positional relation corresponding to a relevant one of the flat roller portions 21a-2 of the strength-providing rollers 21a.
As a material for forming a surface layer of each of the rollers 21a and 21b, resin, such as polyacetal (POM), or rubber can be used.
As shown in
To get around this problem, in the present invention, as shown in
A mechanism that releases the pressure, that is, widens a space between the sheet-delivery rollers 21b and the strength-providing rollers 21a (a pressure reducing mechanism or a mechanism for widening a space between the paired sheet-delivery rollers) is configured such that, as schematically shown in
When an image obtained by reversing an original image is formed on the recording medium 20 at least a part of which is transparent, the pressure onto the recording medium 20 from the sheet-delivery rollers 21 immediately after fixing is reduced, thereby preventing an uneven roller mark on the recording medium 20 having the transparent portion 20b.
With this, it is possible to improve a texture of the surface with photographic quality obtained by superposing the non-transparent portion 20a or another non-transparent recording medium on the transparent portion 20b. Also, not only reducing the pressure of the sheet-deliver rollers, the strength-providing rollers 21a for supporting thin sheets are released, thereby not only improving the texture of the surface of the image but also preventing a wavy portion.
As explained above, the OHP sheet when delivered from the fixing unit is softened due to heat and is in a state where a roller mark tends to be left. Therefore, a roller mark also tends to be left on a non-image formation surface side of the transparent portion 20b of the recording medium. Such a roller mark can significantly degrade the quality of the photographic image.
On the other hand, the OHP sheet (having a thickness on the order of 0.2 millimeters) originally has a strength, and therefore no strength-providing units (sheet-delivery rollers) for normal paper sheets are required.
As in the present embodiment, for the sheet-delivery rollers 21, it is preferable that one type of rollers be formed as the strength-providing rollers 21a formed of capstan rollers each having the uneven roller portion 21a-1 on its outer circumference, whilst the other be formed as the sheet-delivery rollers 21b without asperities. In particular, the strength-providing rollers 21a formed of capstan rollers are disposed on a lower portion and the sheet-delivery rollers 21b without asperities are disposed on an upper portion. With this, a sheet-delivering effect can be expected in which the rear edge of the recording medium is reliably pushed (kicked) by the uneven roller portions (asperities) 21a-1 of the strength-providing rollers 21a. Also, the strength-providing rollers 21a disposed on a lower portion are taken as a driving side and the sheet-delivery rollers 21b without asperities disposed on an upper portion are taken as a driven side. With this, conveyance with a minimum pressure onto the recording medium 20 can be achieved, thereby preventing formation of a scar on the recording medium.
In a first case shown in
Next, in a second case shown in
In a third case shown in
In a fourth case shown in
As in the first and second cases shown in
That is, when the strength-providing rollers 21a on the upper side are taken as a driving side, for excellent delivery of the OHP sheet, conveyance (sheet delivery) cannot be ensured unless the space between the rollers is set narrow so that a sheet-feeding pressure (P1) to the recording medium is sufficiently strong.
On the other hand, when the strength-providing rollers 21a on the upper side are taken as a driven side, the space between the rollers is set wide so that a sheet-feeding pressure (P2) is weaker than the sheet-feeding pressure (P1). With this, the OHP sheet can be conveyed to some extent, but stability cannot be achieved.
Next, as in the third and fourth cases shown in
That is, when the strength-providing rollers 21a positioned on the lower side are taken as driving rollers, for excellent delivery of the OHP sheet, the space between the rollers 21a and 21b is set maximum, thereby minimizing a sheet-feeding pressure (P3). In this case, an effect can be expected in which the rear edge of the recording medium is engageably stopped with the asperities of the strength-providing rollers 21a positioned on the lower side, thereby reliably pressing the recording medium in a sheet-delivering direction. Therefore, the space between the delivery rollers can be maximized. Thus, by appropriately setting the space between the rollers, a roller mark that may be formed on the surface of the recording medium can be minimized.
On the other hand, when the sheet-delivery rollers 21b on the upper side are taken as a driving side and the strength-providing rollers 21a on the lower side are taken as a driven side, the space between the rollers 21a and 21b has to be narrowed more compared with the case where the lower side is taken as a driving side so as to maximize a sheet-feeding pressure (P4). In this case, stable sheet delivery cannot be achieved unless the sheet-feeding pressure (P4) is maximized. In this case, the surface of the recording medium is pressed and slid onto the stopping asperities. Therefore, a roller mark tend to be formed most strongly on the surface of the recording medium.
Thus, the sheet-feeding pressures in the cases shown in
P4>P1>P2>P3.
Next, other issues found from the experiment results shown in
(a) Conveyance is more increased when the rollers disposed on the lower portion are taken as a driving side irrespectively of the presence or absence of uneven roller portions.
(b) When the strength-providing rollers 21a having the uneven roller portions are disposed on the lower side, a sheet-delivery effect can be expected in which the rear edge of the recording medium sagging downward by gravity can be kicked out. Therefore, conveyance can be improved.
(c) When the rollers disposed on the upper side are taken as a driving side irrespectively of the presence or absence of uneven roller portions, the circumferential surfaces of the rollers on the upper side slide over the surface of the recording medium. As a result, a sliding mark tends to be left on the surface of the recording medium. That is, when the rollers on the upper side are driven, these rollers slide over the surface of the recording medium to possibly cause a mark to be left. However, even if the rollers on the lower side are driven, a sliding mark produced by strongly sliding over the surface of the recording medium can be prevented. Therefore, driving the rollers on the lower side irrespectively of the presence or absence of uneven roller portions is preferable in view of preventing damages on the recording medium.
Next, a measure is explained below for mitigating or eliminating damages from the rollers onto the surface of the recording medium 20 at least a part of which has the transparent portion 20b (OHP portion), aside from the consideration mentioned above for ensuring conveyance.
The transparent portion 20b of the recording medium 20 immediately after delivered from the fixing unit 7 has one surface with an image being formed. After delivery from the image forming apparatus, the non-transparent portion 20a or the non-transparent sheet S2 is attached onto the image formation surface of the transparent portion 20b by the center folding device F or the sheet-member attaching device G. For this reason, such a roller mark as being formed by shallowly scraping the image portion of the transparent portion 20b with the roller may often be unrecognizable from the front surface.
On the other hand, the front surface side (non-image formation surface) of the transparent portion 20b is in a state where the surface tends to be damaged by heat for fixing. Therefore, a roller mark (in particular, a mark due to the asperities of the strength-providing rollers) tends to be formed.
To improved conveyance, as explained above, the space between the rollers has to be narrowed to increase the sheet-feeding pressure on the recording medium. By increasing the sheet-feeding pressure, however, a roller mark tends to be formed on the surface of the recording medium. To get around this, it is preferable that the sheet-feeding pressure be set so as not to damage the image formed on the transparent portion 20b or the front surface side (non-image surface). Specifically, the sheet-feeding pressure is set slightly lower than a minimum sheet-feeding pressure that can ensure sufficient conveyance, thereby preventing damages onto the surface of the recording medium.
The timing of providing and releasing a sheet-feeding pressure from both types of rollers onto the recording medium 20 to be delivered by the sheet-delivery rollers 21 is varied depending on the configuration of the recording medium 20 (an area ratio between the transparent portion and the non-transparent portion or a positional relation). That is, when the sheet-feeding pressure of the paired sheet-delivery rollers 21 is set higher at the time of selecting and entering by an operator an OHP sheet as a sheet for use, the sheet-feeding pressure has to be returned to the one for normal paper sheets when image formation is halted immediately before its start. For this reason, the sheet-feeding pressure is set high after the image forming operation has started.
When the entire surface of the recording medium 20 is configured of a transparent portion formed of an OHP sheet, the control unit returns the sheet-feeding pressure to the one for normal paper sheets after delivery of all recording media associated with a series of jobs has been completed. Whether sheet delivery has been completed may be detected by a filler dedicated for sheet delivery, a photosensor, or the like, or may be determined based on a detection timing by another sheet-passing sensor provided near an outlet of the fixing unit and, if no next job is present, the sheet-feeding pressure is returned to the original.
When a photographic image is formed on the transparent portion 20b of the recording medium 20 having the non-transparent portion 20a, the pressure may be applied or released at the same timing as that when the entire surface is formed of an OHP sheet. Alternatively, a sheet-feeding pressure may be applied at a timing when the tip of the transparent portion 20b enters a nip portion (a portion where the rollers face each other) of the paired sheet-delivery rollers 21, and the sheet-feeding pressure may be released at a timing of releasing the transparent portion.
In this manner, the pressure by the paired sheet-delivery rollers is decreased immediately before the transparent portion enters the nip portion, the pressure is decreased at a timing when the non-transparent portion (non-photographic image portion) enters the nip portion while the space between the rollers is widened, or the space between the rollers is narrowed. With this, degradation in conveyance is prevented.
Alternatively, as shown in
Still alternatively, as shown in
According to the present invention, when an image obtained by reversing an original image is formed on a recording medium at least a part of which has a transparent portion, a pressure from the sheet-delivery rollers to a recording medium immediately after fixing is reduced, thereby preventing an uneven roller mark on the transparent portion. With this, it is possible to improve a texture of the surface with photographic quality obtained by superposing a non-transparent portion of the recording medium or another non-transparent recording medium.
Although the invention has been described with respect to a specific embodiment for a complete and clear disclosure, the appended claims are not to be thus limited but are to be construed as embodying all modifications and alternative constructions that may occur to one skilled in the art that fairly fall within the basic teaching herein set forth.
Number | Date | Country | Kind |
---|---|---|---|
2006-156713 | Jun 2006 | JP | national |
2007-056451 | Mar 2007 | JP | national |