a and 3b are diagrams illustrating the structures of cleaning members in
a to 7b are diagrams showing three types of cleaning members in
a to 8d are plane views of places where the three types of cleaning members are respectively disposed.
Image recording apparatuses in accordance with the invention will be described below, according to preferred embodiments.
In
The cleaning members 12 and 13 will be described in detail below.
a and 3b are diagrams illustrating the structures of the cleaning members in
a shows a cross section of the cleaning member 12, which is constructed with a sponge roller 122, core metal 123 being the rotation shaft of the sponge roller 122, and a nonwoven fabric 121 wound around the sponge roller 122, and the like. The cleaning members 12 are mounted on sliding members, not shown, slidable in arrow direction H, and the positions of the slide rollers 122 are controlled by a control unit so that both side edge surfaces of a sheet contact the sponge rollers 122, corresponding to the width size of the sheet. The core metals 123 are driven by a driving section, not shown, and thus the sponge rollers 122 rotate in the same direction as the conveyance of the sheet at a contact section S. At the contact section S in the process where a sheet, which has been subjected to printing by the printing section W of a recording head 10, passes the conveying section F, excess ink at the both side edge surfaces of the sheet is adsorbed, and the leading edge of the sheet reaches the cleaning member 13.
b shows the cross-section of the cleaning member 13, which is constructed with a nonwoven fabric 131 wound around a rotation shaft 132, sponge guide roller 133, take up shaft 135, and the like. A web belt 136 is tension-supported by the nonwoven web roll 131, which is the source side edge, and the take up shaft 135 via the guide roller 133. The take up shaft 135 is driven by a driving section, not shown, and rotates at a predetermined rotation speed to take up the belt.
When the leading edge surface of a printed sheet has reached the cleaning member 13, the sheet comes in contact with a web-belt 136 so that excess ink at the leading edge surface is adsorbed, and the sheet slides on a the guide roller 133 with a spur 14 to be conveyed and ejected onto a sheet ejection tray 15. The ejected sheet slides down due to the slant, and the trailing edge surface of the sheet hits the cleaning member 13 and stops there, by which excess ink at the trailing edge surface is adsorbed.
In such a manner, ink at peripheral edge surfaces of a sheet is adsorbed, which prevents contamination of edge surfaces of the sheet and accompanying contamination of the hands of a user and the like.
Next, a second embodiment will be described.
An image forming unit 1A is constructed with a photoreceptor drum 21, charger 24, developer 22, cleaning unit 23 and the like. Writing device 25 is a digital type exposure writing unit. An intermediate transfer belt 20 is an intermediate transferor. Image forming units 1A for respective colors are disposed in the order of Y, M, C, and K with respect to the running direction of the intermediate transfer belt 20. At the time of transfer, each primary transfer roller 26 presses the intermediate transfer belt 20 against the photoreceptor 21 to make them press-contact with each other. In the press-contact area, each photoreceptor drum 21 rotates at the same linear speed and in the same direction as the intermediate belt 20.
The mechanical structures of the image forming units 1A for the respective colors are the same, and accordingly reference numerals are shown only for the structure for Y color in
The intermediate transfer belt 20 is tension-supported by a drive roller 27, earth roller 28, tension roller, driven roller, etc. These rollers, the intermediate transfer belt 20, primary transfer roller 26, cleaning device 29 and the like construct an intermediate transfer belt unit 2A. The charger 25 statically charges photoreceptor drum 21, and electrical signals corresponding to image data are converted into optical signals by an image forming laser so that a writing device 25 projects light onto the photoreceptor 21 to form a latent image. The latent image is visualized (toner image) by the developer 22.
The intermediate transfer roller 2o runs with rotation of the drive roller 27 driven by a drive motor, not shown.
The primary transfer roller 26 is applied with a DC voltage in the polarity opposite to the toner, and presses the intermediate transfer belt 20 against the photoreceptor drum 21 from the inner side edge of the belt with a pressing-and-releasing mechanism, not shown, thereby primarily transferring the toner image onto the intermediate transfer belt 29.
The image forming process starts with color Y, such that a toner image is transferred onto the intermediate transfer belt 20. In synchronization with this, superimposed toner images are formed on the intermediate transfer belt 20 in the order of M, C and K in the same image forming process. The intermediate transfer belt 20 carrying the superimposed toner images is transported clockwise, as shown with the arrow. A sheet P is fed out from a sheet cassette 72 by a sheet feed-out roller 70, conveyed through a conveying roller 73 to a timing roller 71 and temporarily stopped there, then synchronized, driven by the timing roller 71, with the superimposed toner images on the intermediate transfer roller 20, conveyed to a nip section S (secondary transfer section) of a secondary transfer roller 30 (in a state pressed against the intermediate transfer belt 20) which is applied with a DC voltage in the polarity opposite to the toner, and the superimposed toner images on the intermediate transfer belt 20 are transferred onto the sheet P at a time.
A fixing device 40 is provided with a heat roller 41 and a press roller 42. The heat roller 41 is formed in a thin tube shape of aluminum provided with a halogen heater 43 that heats the heat roller 41 up to a predetermined temperature from inside, wherein the temperature is detected by a contact-temperature sensor, not shown, arranged for the heat roller 41 and controlled.
A sheet ejection roller 81 ejects a transfer medium having been subjected to fixing, to a sheet ejection tray 82 having a certain inclination angle.
A control section B1 which serves as a control unit performs image forming process control, fixing temperature control, transfer medium conveying control, cleaning member driving control, toner density control and the like.
The structure related to the image forming process has been described. Now, a conveying path of a sheet will be described, referring to
For normal (with a margin) printing, a sheet P with a toner image transferred at the nip section S1, passes the fixing device 40, conveyed through the conveying path 51 and then ejected onto the sheet ejection tray 82. For double side edged printing, a sheet P is subjected to fixing, then passes a conveying path 52, gets reversed by a reverse feed roller 54 without being stacked on the stack 53, passes a sheet feeding path 55, and a superimposed toner image, which has been formed on the intermediate transfer belt 20, is transferred onto the back side edge surface of the sheet P by the image forming process same as described above. Them the sheet P is subjected to fixing by the fixing device 40, passes the conveying path 51, and is ejected onto the ejection tray 82.
Now, cleaning of edge surfaces of a sheet will be described for a case of printing on an entire sheet.
In a case of printing on an entire sheet, the sheet is subjected to transferring of toner images onto the entire sheet at the nip section S1, passes the fixing device 40, and conveyed to the conveying path 52 side edge. The both side edge surfaces are cleaned by cleaning members 56 at a midway of the conveying path 52, and stacked on the stacker 53 to be temporarily stopped. A cleaning member 57 is arranged in the stacker 53 to clean the surface of the trailing edge portion (with respect to the conveying direction) of the stopping sheet. After completion of cleaning, the sheet is re-fed from the stacker 53 to return to the conveying path 52 side, passes through the conveying path 51, and is ejected by the sheet ejection roller 81 onto the sheet ejection tray 82. At the position where the sheet is ejected, the rest of the edge surfaces of the sheet (Herein, the edge which was the trailing edge before re-feeding becomes the leading edge after re-feeding.) is cleaned.
The structures of the cleaning members 56 to 58 will be described below.
a to 7c show three types of cleaning members, shown in
a to 8d are plan views of structures where the three types of cleaning members are respectively arranged.
a shows the cross-sectional view of a cleaning member 56, which is constructed with a sponge roller 562, core metal 563 being the rotation shaft of the sponge roller 562, nonwoven fabric 561 wound around the outer circumference of the sponge roller 562, and the like.
In
In
b shows a cross-sectional view of the cleaning member 57, and
c shows a cross-sectional view of the cleaning member 58, and
The three types of cleaning members have been described. However, for an image recorded on a single side of a sheet P which sticks out on the trailing edge side, the sheet P having been conveyed through the conveying path 51 without being conveyed to the stacker 53, and ejected onto the sheet ejection tray 82 may be cleaned only by the cleaning member 58.
In accordance with invention, contamination of edge surfaces of a recording medium can be removed, and particularly, a problem of contaminating the hands of a user in taking out sheets stacked on a tray and a problem of contaminating other print sheets can be solved.
Number | Date | Country | Kind |
---|---|---|---|
JP2006-149482 | May 2006 | JP | national |