Embodiments described herein relate to an image forming apparatus.
An image forming apparatus generally forms a latent image on a photoconductive drum, develops and visualizes the latent image with toner, and then transfers the visualized toner image to a recording paper and fixes the visualized toner image on the recording paper by heating. Heating is needed on the fixing process, and a fixing device which heats and fixes an image through induction heating is known.
The heating temperature control in the fixing device is important, and in the induction heating, generally, the power supplied for an IH coil is controlled to control the heating temperature. However, if the temperature is set to a given value, the frequency of changing power is increased and the temperature ripple is increased. When the temperature is low, an image defect is caused and a stable fixing processing cannot be carried out due to the low temperature offset and the like. Thus, it is necessary to maintain the heating temperature in a constant width and reduce the temperature ripple.
However, in most cases, the fixing condition changes due to the temperature in the image forming apparatus even if the heating temperature is maintained in a constant width, which leads to an unstable fixation.
Thus, the purpose of the present invention is to provide an image forming apparatus capable of carrying out a stable fixing processing constantly.
In accordance with one embodiment, an image forming apparatus comprises a heating member configured to heat a recording medium, on the surface of which a toner image is carried, to fix the toner on the recording medium; a pressing member configured to contact with the recording paper from the back side of the recording paper; an induction heating section configured to heat the heating member through induction heating; a temperature sensor configured to detect the temperature nearby the heating member; a driving control section configured to carry out a control based on the temperature detected by the temperature sensor so that the temperature of the heating member based on the induction heating section is within an allowable temperature range; a temperature range setting section configured to set the allowable temperature range so that the allowable temperature range is narrowed as time elapses from the start of a fixing processing.
The embodiments of the present invention are described below with reference to the accompanying drawings.
An image forming apparatus 1 comprises a cassette mechanism 3 for feeding paper P serving as a recording medium to an image forming section 2, and comprises, at the upper portion, a scanning device 6 for reading a document D fed by an automatic document feeder 4. A register roller 8 is arranged on a conveyance path 7 from the cassette mechanism 3 to the image forming section 2.
The image forming section 2 is provided with, in sequence in a rotation direction of the photoconductive drum 11 indicated by an arrow q, a charging device 12 which uniformly charges a photoconductive drum 11, a laser exposure device 13 which forms a latent image on the charged photoconductive drum 11 based on the image data from the scanning device 6, a developing device 14, a transferring charger 16, a peeling charger 17, a cleaner 18 and a charge removing LED 20 around the photoconductive drum 11. The image forming section 2 forms a toner image on the photoconductive drum 11 through an image forming process based on a well-known electro photographic system and then transfers the toner image to the paper P.
At the downstream side of the conveyance direction of the paper P in the image forming section 2, a paper discharge conveyance path 22 is arranged to convey the paper P transferred with the toner image towards the direction of a paper discharge section 21. On the paper discharge conveyance path 22, a conveyance belt 23 for conveying the paper P peeled from the photoconductive drum 11 to a fixing device 26 and a paper discharge roller 24 for discharging the paper P passing through the fixing device 26 to the paper discharge section 21 are arranged. The fixing device 26 consists of a fixing roller 27 and a pressing roller 28 which is brought into press contact with the fixing roller 27 under, for example, a pressure of 40 kg.
The constitutions of the fixing device 26 are described with reference to
The fixing device 26 further comprises an IH coil 33 which directly heats the fixing belt 31 from the outside through induction heating, an IH coil driving section 34 which supplies power for the IH coil 33, a machine temperature sensor 35 which detects the temperature in the machine and a power condition setting section 36 which carries out a control on the IH coil driving section 34 so as to detect the temperature outside the fixing belt 31 using a fixing belt temperature sensor 35b and to control the temperature of the fixing belt.
The fixing device 26 further includes the pressing roller 28 arranged opposite to the fixing roller 27, on which the fixing belt 31 is wound, to press against the recording paper P from the back side of the recording paper P; a heater 38 arranged inside the pressing roller 28; a pressing roller temperature sensor 39 which detects the temperature outside the pressing roller 28; and a heater control section 30 which controls the power supplied for the heater 38 according to the temperature detected by the temperature sensor 39.
The relation among the IH coil 33, the IH coil driving section 34, the machine temperature sensor 35, the fixing belt temperature sensor 35b and the power condition setting section 36 is shown in
The machine temperature sensor 35, the fixing belt temperature sensor 35b and the power condition setting section 36 constitute a power control section 40. The power condition setting section 36 comprises a temperature range setting section 41 for setting a given temperature range, a timer 42 and a sheet number counter 43 which are connected with the temperature range setting section 41, a temperature comparing section 44 for comparing the temperature set by the temperature range setting section 41 with the temperature detected by the machine temperature sensor 35, and a driving control section 45 which carries out a control according to the output of the temperature comparing section 44. The driving control section 45 drives and controls the IH coil driving section 34.
The IH coil driving section 34 and the IH coil constitute an induction heating section. The paper-passing time is measured by the timer 42 from the start of the operation of the induction heating section, and a control is carried out to narrow an allowable temperature range in response to the paper-passing time. Further, as will be described later, the number of paper passing through the fixing device is measured by the sheet number counter 43, and a control is carried out to narrow the allowable temperature range in response to the number of passing paper.
A ROM 51 for storing a control program, a RAM 52 for storing data, a print engine 53, a paper conveyance unit 54, a process unit 55 and the fixing device 26 are connected with the print controller 50, respectively. The print engine 53 emits laser light to form the image read by the scan unit 49 on the photoconductive drum of the process unit 55. The paper conveyance unit 54 consists of a conveyance mechanism of the paper P and a drive circuit thereof, and the like.
The process unit 55 forms an electrostatic latent image corresponding to the image read by the scan unit 49 on the surface of the photoconductive drum through the laser light emitted from the print engine 53, develops and visualizes the electrostatic latent image on the photoconductive drum with developing agent (toner), and transfers the toner image to the paper P.
Herein, the relation between the temperature measured by the fixing belt temperature sensor 35b and the amount of power supplied for the IH coil 33 by the IH coil driving section 34 is described with reference to
A standard setting temperature (lower limit setting temperature) T0 is, for example, 170 degrees centigrade. As shown in
At this time, the amount of power supplied for the IH coil 33 by the IH coil driving section 34 is as shown in
Ina case of desiring to set the temperature of the fixing belt 31 in a range of (T2˜T0) first, the maximum power amount (upper limit) Wh is supplied so as to raise the temperature of the IH coil, that is, the temperature of the fixing belt. At the time t1, if the temperature reaches the upper limit setting temperature T2, the power amount is reduced to the minimum power amount (lower limit) WL in stages. Next, if a given paper-passing time elapses, the allowable temperature range of the fixing belt is lowered to (T1˜T0). At this time, the power amount is intermittently increased from the minimum power amount (lower limit) WL, so as to maintain the fixing belt temperature at a constant value (T1).
Next, when lowering the allowable temperature range of the fixing belt to zero, that is, to the standard setting temperature T0, the power amount is intermittently increased from the minimum power amount WL in a more frequent manner, so as to maintain the fixing belt temperature at a constant value (T0). When lowering the temperature range of the fixing belt to T0˜T−1, similarly, the power amount is intermittently increased from the minimum power amount WL in a more frequent manner. In this case, the allowable temperature range is minus.
The control of the allowable temperature range in the temperature range setting section 41 in the present embodiment is described below.
First, the temperature (Te) in the machine is detected by the machine temperature sensor 35 shown in
For example, the standard setting temperature Tc is set to 170 degrees centigrade.
The temperature of the fixing belt 31 is measured by the fixing belt temperature sensor 35b. For example, as shown in
Further, when the machine temperature Te is ordinary temperature, as shown in
When the paper-passing time exceeds two minutes, the upper limit setting temperature of the fixing belt is lowered to +5 degrees centigrade and the allowable temperature range is set to +5˜0 degrees centigrade, that is, 175˜170 degrees centigrade. Further, when the paper-passing time exceeds five minutes, the upper limit setting temperature of the fixing belt temperature is lowered to 0 degree centigrade. At this time, the allowable temperature range becomes zero.
Moreover, when the machine temperature Te is high temperature, the allowable temperature range is controlled as shown in
Such a relation of controlling the temperature of the fixing belt based on the machine temperature and the paper-passing time is shown in
The relation of the fixing belt temperature according to the paper-passing time and the machine temperature is shown in
By the way, it is also possible to lower the temperature of the IH coil according to the number of paper passing through the fixing device 26, that is, the number of passing paper, instead of the paper-passing time. Examples of the numbers of passing paper are shown in the rightmost column of the table shown in
In addition, it is also possible to carry out power supply in the following way. During the warming up (W/U) of the operation start of the image forming apparatus, for example, a control is carried out so that the amount of power supplied for the coil is sequentially stepped up by 200 W every 200 ms until the surface temperature of the fixing belt 31 reaches a target temperature. Such a control is executed by the IH coil driving section 34 according to an instruction from the driving control section 45 shown in
The temperature T0 is the control temperature and the temperature Tn is the detected current fixing belt temperature. Wn is the current power value of the induction heating power, Wh is the maximum power amount (upper limit power setting value), and WL is the minimum power amount (lower limit power setting value). The fixing belt temperature changes in the range of T0+Ti, T0−Ti around the temperature Tc.
First, in ACT A101, it is determined whether the detected temperature Tn is lower or higher than the temperature T0. In a case where the detected temperature Tn is lower than the temperature T0, the flow proceeds to ACT A102, and if the current power value Wn is smaller than the upper limit power setting value, the power is increased in ACT A103.
On the other hand, in a case where the detected temperature Tn is higher than the temperature T0 (NO in ACT A101), it is determined whether or not the current power value Wn is greater than the lower limit power setting value WL in ACT A104. In a case where the power value Wn is greater than the lower limit power setting value WL, the power is lowered in ACT A105. Further, in a case where the power value Wn is smaller than the power value WL (NO in ACT A104), in ACT A106, it is determined whether or not the detected temperature Tn is higher than the temperature T0 and lower than the temperature T0+Ti, or whether or not the detected temperature Tn is higher than the temperature T0−Ti and lower than the temperature T0.
In a case where the temperature meets these conditions (YES in ACT A106), the power Wn is set to the lower limit power setting value WL, and in a case where the temperature does not meet these conditions (NO in ACT A106), the power Wn is set to zero in ACT A108.
After the processing in ACT A103, A105 and A107 described above is carried out, the flow proceeds to ACT A109 to wait for next detection timing. The processing following ACT A109 is the same as described above, that is, it is determined whether or not the detected temperature Tn is lower than the temperature T0 in ACT A101. In this way, the amount of power supplied for the IH coil 33 can be controlled so as to control the fixing belt temperature.
In accordance with the present embodiment, in a given time range from the start of the fixing processing, the allowable temperature range can be narrowed in response to the increase of paper-passing time or the number of passing paper, thereby carrying out a stable fixing processing.
By the way, in the image forming apparatus according to the first embodiment, there is only one category of recording paper, that is, plain paper. However, it is preferred to correct the temperature of the IH coil in the fixing device in a case where there is a plurality of categories of recording paper.
Such a second embodiment is described below. The constitutions shown in
In
Further, in
In the present embodiment, the power condition setting section 86 comprises the temperature range setting section 91, the timer 92, the sheet number counter 93, the temperature comparing section 94, the driving control section 95 and the paper category detection section 98. The relation among the paper category, the paper basis weight and the correction condition of the upper limit setting temperature is shown in
Basically, the temperature control shown in
Only in a case of plain paper having a paper basis weight of less than 79 g/m2, recycled paper and thick paper 1 having a paper basis weight of 106 g/m2˜156 g/m2, and when the machine temperature is ordinary temperature, is the control carried out according to the correction condition. A table of a correction condition 1 in a case of plain paper having a paper basis weight of less than 79 g/m2 and recycled paper is shown in
In accordance with the second embodiment, a proper fixing processing can be carried out according to the category of the recording paper.
In the embodiments described above, a case of fixing the toner image on the recording paper through the fixing belt is described. However, the present invention can also be applied to an image forming apparatus provided with a fixing device which fixes a toner image on a recording paper through a fixing roller, instead of a fixing belt.
In the embodiments described above, a case is described in which the machine temperature is divided into low temperature, ordinary temperature and high temperature by taking 16 and 30 degrees centigrade as a boundary to change the upper limit temperature setting value and the like. However, the present invention is not limited to this. The boundary when dividing the machine temperature is not limited to 16 and 30 degrees centigrade, and the machine temperature, which is not limited to be divided into three parts, may also be divided into two or more than four parts to change the upper limit temperature setting value and the like.
According to the embodiments described above, an image forming apparatus provided with a fixing device capable of carrying out a stable fixing processing is obtained.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the invention. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the invention. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the invention.