Field of the Invention
The present invention relates to image forming apparatuses, such as copying machines, printers, facsimile machines, and multifunction apparatuses, that employ an electrophotographic system and perform image formation.
Description of the Related Art
In the related art, a toner image formed on a recording material by using an electrophotographic process undergoes a heating and fixing treatment performed by a fixing unit. Recording materials to which toner images have been fixed are ejected to a stacking tray by a transport device. The recent increase in printing speed is one of the reasons that recording materials to which toner images have been fixed are stacked in a stacking tray while the temperatures of the recording materials are still high. In addition, when a printing operation is continuously performed, sheet members are consecutively stacked in a stacking tray before they are cooled, and as a result, toners on the sheet members may re-melt. The toners that have re-melted stick to the sheet members and toner images that are superposed with the toners. By separating the sheets, which have been stuck to each other, from each other, the toner images of plural sheets become separated from the sheets simultaneously, and a problem of missing portions of an image occurs. In addition, with the recent demands from users for power-saving products, the melting points of toners are likely to decrease, and accordingly, toners fixed to sheet members in a stacking tray are more likely to re-melt.
For example, Japanese Patent Laid-Open No. 2005-77565 describes that, in an image forming apparatus, an area in the vicinity of ejection rollers that are disposed downstream from a fixing device is cooled by a cooling fan, and that the flow of air from the cooling fan is changed in accordance with the presence or absence of a sheet-ejection device mounted on the image forming apparatus.
However, in the configuration disclosed in Japanese Patent Laid-Open No. 2005-77565, when cooling a recording material, the ejection rollers and the like are also cooled, and thus, a toner image is cooled unevenly due to differences between the temperature of a recording material that is ejected immediately after undergoing a heating and fixing treatment and the temperatures of the ejection rollers and discharge rollers. As a result, an image defect such as a contact mark formed by the ejection rollers sometimes occurs.
The present invention has been made to address the above situations and is directed at an image forming apparatus that efficiently cools recording materials, which are ejected after toner images have been fixed to the recording materials, so as to suppress the recording materials from sticking to one another due to a melted toner. An image forming apparatus according to an aspect of the present invention includes a pair of ejection rollers that are used for ejecting the recording material to the stacking unit from a main body of the image forming apparatus and a cooling unit that cools the recording material ejected to the stacking unit by the pair of ejection rollers by blowing air onto the recording material. The cooling unit includes, at least one air-blowing port that is used for causing the air to be blown onto the recording material in a direction crossing a transport direction of the recording material is positioned in a region that is located above a position of a nip portion of the pair of ejection rollers and below an extension line tangent to the nip portion of the pair of ejection rollers.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Embodiments of the present invention will be described in detail below as examples with reference to the drawings. However, dimensions, materials, shapes, and the relative positions of the components in the following embodiments should be suitably changed in accordance with the configuration of an apparatus to which the present invention may be applied and in accordance with various conditions. Therefore, the scope of the present invention is not limited to the dimensions, materials, shapes, and the relative positions of the components in the following embodiments unless otherwise particularly stated.
As illustrated in
An electrostatic latent image formed on the photoconductor drum 1 is developed by a developing unit 4. A developer (toner) is supplied to the surface of the photoconductor drum 1 from a developing sleeve 4a included in the developing unit 4, and the electrostatic latent image on the surface of the photoconductor drum 1 is sequentially developed into a toner image. In the case of a laser beam printer, a reversal developing system in which an electrostatic latent image is developed by causing a toner to be deposited onto a light-exposed portion of the electrostatic latent image is generally employed.
Recording materials P that are stacked in a sheet-feeding cassette 5, which is a sheet-feeding device, are separated from one another and fed one by one by a sheet-feeding roller 6 on the basis of a sheet-feeding start signal. After that, one of the recording materials P passes through registration rollers 7 and a sheet path 8a and is transported, at a predetermined timing, to a contact nip portion R (transfer section) formed by the photoconductor drum 1 and a transfer roller 9, which serves as a transfer member. In other words, transportation of the recording material P is controlled by the registration rollers 7 in such a manner that a front edge of the recording material P reaches the transfer portion R at the same time as a front edge of a toner image on the photoconductor drum 1 reaches the transfer portion R.
During the period when the recording material P, which has been transported to the transfer portion R, is nipped and transported through the transfer portion R, a predetermined, controlled transfer voltage (transfer bias) is applied to the transfer roller 9 by a transfer power supply (not illustrated). By applying a transfer bias having a polarity opposite to that of the toner to the transfer roller 9, the toner image on the surface of the photoconductor drum 1 is electrostatically transferred onto a surface of the recording material P in the transfer portion R.
The recording material P, to which the toner image has been transferred in the transfer portion R, is separated from the surface of the photoconductor drum 1, and the recording material P is transported and introduced into a heating device 11 by passing through a sheet path 8b. Then, the recording material P undergoes heating, pressing, and fixing treatments for the toner image. After the recording material P has been separated from the surface of the photoconductor drum 1 (after the toner image has been transferred to the recording material P), a cleaning device 10 cleans the surface of the photoconductor drum 1 by removing residual toner, paper dust, and the like, and the photoconductor drum 1 is repeatedly used in image formation. The recording material P that has passed through the heating device 11 is guided toward a sheet path 8c and ejected to a sheet-ejection tray 14, which is a stacking unit, via an ejection opening 13.
The heating and fixing device 11, which is a fixing unit, according to the first embodiment will now be described.
The film guide 21 can be made of a highly heat-resistant resin, such as a polyimide, polyamidoimide, polyether ether ketone (PEEK), polyphenylene sulfide (PPS), or a liquid crystal polymer, and alternatively, the film guide 21 can be made of a composite material containing, for example, one of the above-mentioned resins and a ceramic, a metal, or glass or the like. In the first embodiment, a liquid crystal polymer is used. A U-shaped sheet metal can be made of a metal, such as stainless steel (SUS) or iron. In order to cause the film 22 to have a small heat capacity and to improve the quick start-up performance of the film 22, a heat-resistant film having a film thickness of 100 μm or less and preferably of 50 μm or less and 20 μm or more can be used as the film 22. In the first embodiment, a polyimide film having a film thickness of about 50 μm whose outer peripheral surface is coated with polytetrafluoroethylene (PTFE) is used. The outer diameter of the film 22 is set to 18 mm.
A pressure roller 24 forms a nip portion N with the film 22 interposed between the pressure roller 24 and the heating member 23, and the pressure roller 24 is a film-outer-surface-contact driving unit that drives the film 22 so that the film 22 rotates. The pressure roller 24 includes a core metal, an elastic body layer, and a release layer, which is an outermost layer, and is arranged so as to be pressed into contact with a surface of the heating member 23 with the film 22 interposed between the pressure roller 24 and the heating member 23 as a result of receiving a predetermined pressing force by a bearing unit and an urging unit (not illustrated).
The pressure roller 24 is driven by a driving system (not illustrated) so as to rotate in the direction of an arrow in
The substrate 27 of the heating member 23 has heat resistance and an insulating property and is made of, for example, a ceramic material such as alumina or aluminum nitride. Each of the power-supplying electrodes 29 and 60 is formed of a silver palladium pattern formed by screen printing. A main reason why the overcoat layer 28 of the resistance heating element 26 is provided is to ensure electrical insulation between the resistance heating element 26 and the surface of the heating member 23 and the slidability of the film 22. In the first embodiment, a heat-resistant glass layer having a thickness of about 50 μm is used as the overcoat layer 28.
The heating member 23 is arranged so as to be fixed in place by exposing the front surface of the heating member 23, which includes the overcoat layer 28 formed thereon, toward a lower side and by causing the front surface of the heating member 23 to be held on a bottom surface of the film guide 21. By employing the above configuration, the overall heat capacity of the heating member 23 can be lower than the case of employing a heat roller system, and quick start-up can be performed. The temperature of the heating member 23 is increased by causing the resistance heating element 26 to generate heat across the entire longitudinal length thereof by supplying power to the power-supplying electrodes 29 and 60 at the longitudinal ends of the resistance heating element 26. The temperature of the heating member 23 is detected by the thermistor 25, and the output of the thermistor 25 is loaded into the CPU 61 by being A/D converted. A triac 62 controls, on the basis of the information regarding the loaded output, the electrical power that is supplied to the resistance heating element 26 by phase control, frequency control, or the like, so that the temperature of the heating member 23 is controlled. In other words, the temperature of the heating member 23 is maintained at a certain degree when a fixing treatment is performed by controlling the energization of the resistance heating element 26 in such a manner that when the temperature detected by the thermistor 25 is lower than a predetermined temperature, the temperature of the heating member 23 is increased, and that when the temperature detected by the thermistor 25 is higher than the predetermined temperature, the temperature of the heating member 23 is decreased.
In a state where the temperature of the heating member 23 has been increased to a predetermined degree, and where the peripheral speed at which the film 22 is caused to rotate by rotation of the pressure roller 24 has become steady, one of the recording materials P is transported to the nip portion N formed by the heating member 23 and the pressure roller 24 with the film 22 interposed between the heating member 23 and the pressure roller 24. Then, the recording material P is nipped and transported through the press-contact nip portion N together with the film 22, and as a result, the heat generated by the heating member 23 is applied to the recording material P via the film 22, so that a toner image on the recording material P is heated and fixed onto a surface of the recording material P. The recording material P that has passed through the nip portion N is separated from the surface of the film 22 and transported.
The ejected-sheet-cooling unit will now be described. As described above, when the recording materials P to which toner images have been fixed are ejected to the sheet-ejection tray 14 while the temperatures of the recording materials P are still high, in some cases, toners on the recording materials P re-melt, which in turn results in the recording materials P sticking to one another. When the recording materials P, which have been stuck to each other, are separated from each other, portions of toner images are separated from the recording materials P, and a problem of missing portions of an image occurs. Therefore, the recording materials P stacked in the sheet-ejection tray 14 need to be efficiently cooled. In the first embodiment, an axial flow fan 31 is provided as a cooling unit. The recording materials P are cooled by air supplied by the axial flow fan 31.
The guide 36R, which is a first guiding member, and the guide 36L, which is a second guiding member, cause the cooling air, which has been discharged, to be jetted out from the exhaust port 37R (first air-blowing unit) and the exhaust port 37L (second air-blowing unit), each of which is an air-blowing port formed in the vicinity of the sheet-ejection tray 14. The exhaust ports 37R and 37L are disposed on opposite sides of the sheet-ejection tray 14 in a width direction of the sheet-ejection tray 14, the width direction being perpendicular to the direction in which the recording materials P are to be ejected, and the direction in which the cooling air is discharged crosses a direction of movement of the recording materials P. In the first embodiment, the direction in which the cooling air is discharged is a direction that is perpendicular to the direction of movement of the recording materials P and is indicated by arrows as illustrated in
The exhaust ports 37R and 37L are disposed in the area of the dashed-line shaded portion C, through which one of the recording materials P in the process of being ejected passes, so that the exhaust ports 37R and 37L can directly cool the recording material P in the process of being ejected. Each of the exhaust ports 37R and 37L has a discharge opening having a width (L1) of 20 mm and a height (L2) of 3 mm, and the air is to be jetted out through these discharge openings. Regarding the positions of the exhaust ports 37R and 37L, the distance from the ejection opening 13 to the exhaust port 37R is set to 20 mm, and the distance from the ejection opening 13 to the exhaust port 37L is set to 40 mm, so that the air discharged through the exhaust port 37R and the air discharged through the exhaust port 37L are prevented from coming into contact with each other. In the present configuration, since the width (L1) of each of the exhaust ports 37R and 37L is 20 mm, the displacement amount (L3) of the exhaust ports 37R and 37L with respect to each other is set to 20 mm. Therefore, in the case of increasing the width L1 of each of the exhaust ports 37R and 37L, it is desirable that the displacement amount (L3) of the exhaust ports 37R and 37L with respect to each other be increased.
By employing the above-described configuration, the cooling air can flow along a surface of one of the recording materials P rather than a cut surface of the recording material P, and the recording material P can be effectively cooled without the occurrence of air turbulence. As a result, the probability of the recording materials P on the sheet-ejection tray 14 sticking to one another in the case where image formation is performed in a continuous manner can be reduced.
The guides 36R and 36L may be formed so as to cause the cooling air to be discharged at a desired angle.
The recording materials P are not cooled between the fixing unit 11 and the pair of ejection rollers 51 in the transport direction of the recording materials P but cooled after being ejected by the pair of ejection rollers 51, so that ultrafine particles that are generated from a toner wax in the image forming apparatus 100 can be kept in the image forming apparatus 100.
The mechanism of the occurrence of ultrafine particles (hereinafter referred to as UFPs) from a toner wax will now be described. A wax in a toner is liquefied by applying heat and pressure to a toner image when the toner image passes through the press-contact nip portion N, and the wax exudes from the toner. In this case, a portion of the wax is vaporized and released into the air. In addition, a small portion of the wax remains on the film 22 even after the toner image has passed through the press-contact nip portion N and is vaporized as a result of being kept heated by the film 22. The vaporized wax becomes fine particles in the liquid or solid phase as a result of the ambient temperature. The UFPs, which have been generated, are caused to move in a direction toward the sheet-ejection opening 13 by an upward air flow due to air heated by the fixing unit 11 and by the flow (Couette flow) of air having a certain viscosity around the UFPs, the air flow being generated along with the movement of one of the recording materials P, and a portion of the UFPs may sometimes be discharged to outside of the image forming apparatus 100.
The longer UFPs, which are in a floating state, remain in the floating state, the more likely the UFPs are to be coagulated and attracted by the peripheral members. In addition, coagulation of the UFPs is more likely to occur as the concentration of the floating UFPs is higher. Thus, in order to promote the coagulation and to reduce the number concentration of the UFPs, it is necessary to increase the residence time of the UFPs in the image forming apparatus 100 by reducing the flow velocity of the air that transports the UFPs while maintaining a high concentration of the UFPs in a path from a source of the UFPs to the ejection opening 13.
The configuration of a cooling unit according to Comparative Example 1 will now be described for the sake of description of the advantageous effect of the first embodiment.
A comparative evaluation that is related to the number concentration of UFPs and the sticking of ejected recording materials to one another in the configuration of Comparative Example 1 and the configuration of the first embodiment was conducted. As a method for evaluating the UFPs, an image forming apparatus was disposed in a chamber of 3 cubic meters that was hermetically sealed and filled with purified air, and the concentration of the UFPs in the chamber immediately after printing an image having an image coverage rate of 5% for 5 minutes in a continuous manner was measured. A nanoparticle size distribution measuring apparatus FMPS3091 (manufactured by TSI Inc.) was used for the measurement. Regarding the sticking of the recording materials to one another, degrees of sticking were scored by sensory evaluation. No sticking is scored as an A, light sticking is scored as a B, and considerable sticking is scored as a C. Note that a laser beam printer (LBP) whose process speed is about 150 mm/sec and 27 ppm was used as the image forming apparatus.
Table 1 shows the results of a comparison that is related to the number concentration of UFPs and the sticking of recording materials to one another in the first embodiment and Comparative Example 1. Here, the unit of UFP number concentration is a percentage (%) value relative to the number concentration of 100% in Comparative Example 1.
As shown in Table 1, in the configuration of the first embodiment, the UFP number concentration can be reduced while the degree of sticking is kept low.
The reason why this can be achieved will now be described. UFPs are nanoscale particles grown by nucleation, which occurs as a result of a wax component of a toner deposited on the fixing film 22 or deposited on the pressure roller 24 volatilizing due to being heated to a high temperature and as a result of air becoming oversaturated with diffused high-boiling substances. In the first embodiment, the recording materials P that have been ejected are cooled at a position downstream from the ejection opening 13, and thus, the air flow through which substances derived from the UFPs are discharged to outside of the image forming apparatus 100 is not directly disturbed. In addition, since the cooling air that is used for cooling one of the recording materials P at a position outside of the sheet-ejection opening 13 flows along the surface of the recording material P, there is nothing that disturbs the air flow for the UFPs that have been discharged to outside of the image forming apparatus 100 through the ejection opening 13.
Here, the flows of the UFPs and the UFP-derived substances discharged from the fixing unit 11 (fixing film 22 and pressure roller 24) are schematically indicated by a velocity vector (dashed arrows) in
On the other hand, in the configuration of Comparative Example 1, cooling air (solid arrows in
Therefore, the coagulation of the particles is suppressed, and there is an increase in the probability of the UFPs being discharged to outside of the image forming apparatus 100 in a state where the number concentration is high. In addition, it is assumed that, as a result of an internal pressure of the image forming apparatus 100 becoming high due to the influence of the cooling air that has been taken in from outside of the image forming apparatus 100, the moving speed of the UFPs and the UFP-derived substances toward the sheet-ejection opening 13 is increased. As a result, the UFPs and the UFP-derived substances are discharged to outside of the image forming apparatus 100 for a short time, so that the coagulation of the UFPs is suppressed, and the probability of the UFPs being attracted by the peripheral members is reduced. Accordingly, the probability of the UFPs being discharged to outside of the image forming apparatus 100 increases.
As described above, in the first embodiment, air is not blown in order to cool one of the recording materials P that is transported from the fixing unit 11 to the pair of ejection rollers 51, and the recording material is cooled at a position outside the ejection opening 13. Thus, the air flow through which the UFP-derived substances are discharged to outside of the image forming apparatus 100 is not directly disturbed. In addition, since the cooling air used for cooling the recording material at a position outside the sheet-ejection opening 13 is caused to flow along the surface of the recording material, there is nothing that disturbs the air flow for the UFPs and the UFP-derived substances. Therefore, in the first embodiment, the number concentration of the UFPs discharged to outside of the image forming apparatus 100 can be reduced while performing a necessary operation of cooling the recording materials P that have been ejected and suppressing the recording materials P from sticking to one another.
In the first embodiment, the configuration in which the air discharged through the exhaust ports 37R and 37L is blown in a direction perpendicular to the cut surface of one of the recording materials P has been described. In a second embodiment, a configuration in which the air discharged through the exhaust ports 37R and 37L is blown in a direction crossing the cut surface of one of the recording materials P will be described. More specifically, the configuration of each of the guides is changed. Note that the rest of the configuration of an image forming apparatus according to the second embodiment is the same as that of the image forming apparatus according to the first embodiment, and thus, similar reference numerals will be used in the following description.
In addition, the guide 360L faces downward, and the guide 360R face upward with respect to a line tangent to the nip portion of the pair of ejection rollers 51. As a result, a top surface of one of the recording materials P can be cooled by the cooling air discharged through the exhaust port 37R by passing through the guide 360R, and a bottom surface of the recording material P can be cooled by the cooling air discharged through the exhaust port 37L by passing through the guide 360L. With this configuration, the recording material P can be effectively cooled, and the probability of the recording materials P on the sheet-ejection tray 14 sticking to one another can be reduced.
Although the shape of each of the exhaust ports 37R and 37L is a rectangular shape in the above embodiments, the opening shape may be a square shape, a round shape, a triangular shape, or the like as long as the air from the left exhaust port and the air from the right exhaust port do not come into contact with each other. In addition, although the configuration in which a single fan is used for sending cooling air to the exhaust ports 37R and 37L, and in which the air duct is separated into two duct paths so as to send air to each of the exhaust ports 37R and 37L has been presented, the present invention is not limited to this configuration. Two or more fans may be used for sending the cooling air to the exhaust ports 37R and 37L. In addition, a centrifugal fan may be used.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application Nos. 2015-116138, filed Jun. 8, 2015, and 2015-117601, filed Jun. 10, 2015, which are hereby incorporated by reference herein in their entirety.
Number | Date | Country | Kind |
---|---|---|---|
2015-116138 | Jun 2015 | JP | national |
2015-117601 | Jun 2015 | JP | national |