a to 5c are diagrams illustrating operation for detecting the leading edge of a sheet S with a sheet leading edge detection sensor;
a to 6c are diagrams illustrating operation of detecting reference marks formed on the sheet S with a mark detection sensor;
a and 7b are diagrams illustrating other types of reference marks; and
An image forming apparatus in an embodiment in accordance with the present invention will be described below.
An image forming apparatus 1 is constructed with a reverse automatic document feeder RADF and a main body section A.
The reverse automatic document feeder RADF is disposed on the top of the main body section A and can be opened and closed with respect to the main body section A. An original document sheet having been set on a document feeding table ‘a’ is conveyed by various rollers toward an image reading section 2.
The main body section A is constructed with the image reading section 2, an exposure section 3, image forming section 4, sheet storage section 5, conveying section 6, fixing section 7, sheet ejection section 8, re-conveying section 9, etc.
The optical system of the image reading section 2 is constructed with an exposure unit 21 provided with a light source and a first mirror, V mirror unit 22 provided with a second and third mirrors, lens 23, CCD image sensor 24, and the like. Reading operation of an original document sheet conveyed by the reverse automatic document feeder RADF is performed in a state where the exposure unit 21 is located below a slit exposure glass 25. Reading operation of an original document sheet loaded on a document table glass 26 is performed such that the exposure unit 21 and the V mirror unit 22 move.
An image of an original document sheet read by the image reading section 2 is subjected to image processing, and the image-processed data is stored in a RAM.
Now, a process of image forming on a sheet S will be described.
The photoreceptor 41 is driven by a main motor (not shown), the surface of the photoreceptor 41 is supplied with power from a power source (not shown) and charged to the positive polarity by a discharge of a charger 42 (+800 V in the present embodiment). Then, the photoreceptor 41 is exposed by the exposure section 3, corresponding to image information, and an electrostatic latent image is formed on the photoreceptor 41. When the formed electrostatic latent image passes through a developer 43, toner charged to the positive polarity is adhered to the latent image by applying positive polarity developing bias in the developer 43, and thus a toner image is formed on the photoreceptor 41. The formed toner image is transferred from the photoreceptor 41 to a sheet S by a transferer 44A, and the sheet S is separated by a separator 44B. Toner remaining on the photoreceptor 41 after transfer is cleaned off by a cleaning section 45. The separated sheet S is conveyed to the fixing section 7 having a pair of a heating roller and pressing roller. As a result, the tone image is fixed to the sheet S, and the sheet S with an image formed thereon is ejected outside the apparatus by the sheet ejection section 8.
In a case of double-sided printing, a sheet S with an image formed on which front side is conveyed to a conveying path 91 in a re-conveying section 9 by a conveying path switching plate 82, and is switched back by a reversing section 92 to be reversed the front and back sides. Then, the sheet S is again conveyed to the image forming section 4, subjected to image forming on the back side, and ejected outside the apparatus by the sheet ejection section 8.
Herein, the image forming apparatus 1 in the present embodiment forms a monochrome image by an electrophotographic method. However, an image forming apparatus in accordance with the invention is not limited to the present embodiment, and may be a color image forming apparatus, of course. Also, the image forming method may be any one other than electrophotographic methods.
A sheet S conveyed from the sheet storing section 5 or a sheet S conveyed from the re-conveying section 9 is stopped at a registration roller 61 once, shown in
A sheet leading edge detection sensor SI that functions as an edge portion detection sensor in this embodiment is disposed on the conveying path, and detects an edge of a sheet S conveyed from the registration roller 61. For example, the sheet leading edge detection sensor S1 is constructed with a photosensor having a light emitting device and light receiving device. A sheet S passes between the light emitting device and light receiving device, and thereby an edge of the sheet S is detected.
A mark detection sensor S2 is disposed on the conveying path, and detects a reference mark formed on a sheet S. For example, the mark detection sensor may be a reflection type photosensor. Details of detection operation and the like will be described later.
When a detection signal is generated by the sheet leading edge detection sensor S1 or the mark detection sensor S2, exposure timing at the exposure section 3 is controlled, based on the signal, and an electrostatic latent image is formed at a predetermined position of the photoreceptor 41. As a result, an image on the front side and an image on the back side are formed at the same position from the same edge of the sheet S.
Although in the present embodiment, the sheet leading edge detection sensor S1 and the mark detection sensor S2 are implemented by separate sensors, it is possible to use a single sensor to function as both sensors.
A scale factor detection sensor S3 is disposed on a conveying path 91 in the re-conveying section 9. A reference mark formed on a sheet S, which has an image formed on which front side and has been conveyed, is detected by the scale factor detection sensor S3, and the position and scale factor of an image on the back side are adjusted, based on the detection result. The sheet S thermally shrinks in the fixing section, which causes the image on the front side to shrink. Therefore, the scale factor detection sensor S3 is necessary so as to make the scale factors of the image on the front side and the image on the back side be equal to each other.
A first determination section, second determination section, and CPU 100, which functions as a switching section, control the operation of the entire image forming apparatus, and are connected to a ROM (Read Only Memory) 101, RAM (Random Access Memory) 1o2, and so on, via a system bus 112. The CPU 100 reads various control programs stored in the RAM 101 and loads them on the RAM 102 to control operations of the respective sections. The CPU 100 executes various processings according to the programs loaded on the RAM 102, stores obtained processing results in the RAM 102 and displays them on an operation display section 104. Then, the CPU 100 saves the processing results stored in the REAM 102 at a predetermined storing destination.
The ROM 101 stores programs and data in advance, and is constructed with a magnetic or optical recording medium, or a semiconductor memory.
The RAM 102 forms a work area to temporarily store data processed by various control programs which are executed by the CPU 100, and the like.
A HDD 103 has functions, for example, to store image data of an image of an original document sheet having been read by the image reading section 105, and to store image data having been output. The HDD 103 has a structure with a number of metallic disks coated or deposited with a magnetic material. The disks are laminated at a uniform space and rotated by a motor at a high speed, and a magnetic head is put close to the disks to read and write data.
An operation display section 104, which functions as a setting section, enables various settings. The operation display section 104 is a touch panel type, for example, wherein the user inputs settings via the operation display section 104 so as to set conditions related to double-sided printing. Further, various kinds of information, such as information on network setting, is displayed on the operation display section 104.
The image reading section 105 optically reads the image of an original document sheet and converts it into an electrical signal, thereby generating image data. The generated image data is subjected to processing by an image processing section 107, and output to an image forming section 106.
The image forming section 106 performs image forming on a sheet S, based on image data subjected to processing by the image processing section 107. The image forming section 106 includes the exposure section 3 which writes image information onto the photoreceptor 41. Ina case of forming an image on the back side in double-sided printing, exposure timing at the exposure section 3 is controlled by the CPU 100, based on detection results by the sheet leading edge detection sensor S1 and the mark detection sensor S2. In other words, the CPU 100 determines the position of the image to be formed on the back side of the sheet, based on a predetermined control program.
A network interface card (NIC) 111 is an interface between a system bus 112 and an external network such as a LAN, and enables the image forming device 1 to communicate with an external terminal via the NIC 111.
First, a print job is started to execute printing operation in the image forming device 1 (Step 1). A print job is a print instruction transmitted from a terminal connected with the image forming device 1, and may be a print instruction to be executed, for which the user sets printing conditions via the operation display section 104.
Next, the CPU 100 confirms setting information in the print job, and determines whether the printing operation to be executed is double-sided printing (Step 2). Setting information for double-sided printing can be information contained in a print job ticket, information having been set by the user via the operation display section 104, or the like. If the CPU 100 has determined that double-sided printing is not set, an image is formed on the front side of a sheet S (Step 3), the sheet S is ejected outside the apparatus without forming an image on the backside, and the job is completed.
If the CPU has determined that double-sided printing is set, the CPU 100 determines whether a cutting area is to be formed on a sheet S to be printed next (Step 4). For example, a cutting area is an area to be set so as to form a sheet in a special size by cutting a sheet in a large size. Setting information on double-sided printing contains information as to whether or not to form a cutting area on a sheet S, and accordingly, it is determined whether or not to form a cutting area, based on the setting information.
If a cutting area is not to be formed on a sheet S, an unnecessary area is not formed on the sheet S. Accordingly, it is not preferable that reference marks for superposing are formed on the sheet S. Therefore, in such a case where a cutting area is not to be formed on a sheet S, the position of an image on the back side is determined by detecting an edge of the sheet S and referring to it. This determination operation will be described, referring to the schematic diagram of
a to 5c show a sheet S viewed in a direction perpendicular to the conveying direction and from above. As show in
When the image has been formed on the front side of the sheet S, the sheet S is switched back at the reversing section 92 (refer to
This operation will be described, referring to the flowchart in
If it has been determined that there is a cutting area on a sheet S, then reference marks corresponding to the position of the image on the front side are formed in the cutting area, and the position of the back side is determined, referring to the reference marks. Since the cutting area is an unnecessary area, the reference marks formed in this area do not cause inconvenience for the user. The operation of determining the position of the image of the back side with reference to the reference marks will be described, referring to the schematic diagrams in
a to 6c show a sheet S viewed in a direction perpendicular to the conveying direction and from above. As show in
A cutting area Al is formed on the sheet S. The cutting area A1 is cut, after printing operation is completed and the sheet S is ejected outside the apparatus. As shown in
When the image of the front side has been formed, the sheet S is switched back and reversed front and back sides at the reversing section 92 (shown in
When the reversed sheet S is conveyed toward the registration roller 61, the scale factor detection sensor S3 (shown in
The sheet S is temporarily stopped by the registration roller 61, and then conveyed toward the photoreceptor 41 at a predetermined timing. Herein, as shown in
Herein, the reference marks are not limited to “+” sown in
This operation described with reference to
The CPU 100 reads a control program stored in the ROM 101 and loads the program onto the RAM 102 to execute the operation in accordance with this flowchart. The CPU 100 switches as to which method is to be applied for determination of the position of the image to be formed on the back side.
As has been described above, the method for determination of the position of an image of the back side is switched, based on setting information on double-sided printing, specifically, information as to whether a cutting area is to be formed on a sheet S. Superposing between the images of the front side and back side is executed, switching two types of methods. Thus, unnecessary images are not formed in the image area of the sheet, and it is possible to perform superposing by a suitable method, based on setting information on double-sided printing. Further, image forming operation can be executed, with effective use of information as to whether a cutting area is to be formed on the sheet in superposing images of the front side and back side.
It is to be expressly understood that the present invention is not restricted to the embodiment described above. The invention is not limited thereto, and various modifications and additions can be made within the scope and spirit of the invention.
Number | Date | Country | Kind |
---|---|---|---|
JP2006-197811 | Jul 2006 | JP | national |