This application claims priority from Japanese Patent Application Nos. 2008-193635, filed on Jul. 28, 2008, and 2009-135859, filed on Jun. 5, 2009, the entire subject matter of which is incorporated herein by reference.
1. Technical Field
An aspect of the present invention relates to an image forming apparatus having an image forming unit to form an image on a recording medium, a feeder unit to feed the recording medium to the image forming unit, and frames to hold the image forming unit and the feeder unit.
2. Related Art
An image forming apparatus having an image forming unit to form an image on a recording medium in, for example, an electrophotographic method has been known. The image forming apparatus may be equipped with a pair of frames to hold the image forming unit, which are arranged on each side with respect to a feeding direction.
When the recording medium is fed in a feeding path to the image forming unit by a feeder unit having a feeding component such as a feed roller, it is required that the feeder unit is in a specific position with respect to the image forming unit. In an image forming apparatus disclosed in Japanese Patent Provisional Publication No. 2004-154974, for example, the feeder unit is attached to the image forming apparatus with a pair of frames, which are angled substantially orthogonally, so that the feeder unit is settled in a correct position defined by the orthogonal surfaces of the frames.
When the frames are made of resin, the resin may thermally expand or contract upon molding or during image forming operations; and therefore, the accurate positioning of the feeder unit by the frame may not be steadily maintained. Although the frames may be made of metals, metal frames may also not steadily and accurately maintain their bent shapes.
In view of the above drawbacks, the present invention is advantageous in that an image forming apparatus having a feeder unit, which can be set in an accurate position with respect to frames of the image forming apparatus to hold an image forming unit, is provided.
According to an aspect of the present invention, an image forming apparatus is provided. The image forming apparatus includes at least one image forming unit configured to form an image on a recording sheet which is conveyed along a sheet feeding path, a feeder unit configured to feed the recording sheet in the sheet feeding path, and a frame unit configured to support the image forming unit and the feeder unit. The frame unit includes a pair of plate-like metal frames, each arranged on each side of the sheet feeding path, each plate-like metal frame having an inner surface extending in a parallel direction to the sheet feeding path and in a perpendicular direction of a surface of the recording sheet, the inner surfaces facing each other. The frame unit further includes a plurality of connecting frames, which connect and hold the metal frames to be apart from each other. The image forming unit is arranged in space defined by the plurality of connecting frames and is held by the pair of metal frames to be substantially fitted in between the pair of metal frames. The feeder unit is attached to an end of each of the pair of metal frames by an attachment system provided on each widthwise side of the feeder unit, the attachment system fixing the feeder unit to the pair of metal frames along a direction in parallel with the inner surfaces of the metal frames.
According to the above configuration, the feeder unit is attached in a correct position with respect to the frame unit. Because the frame unit holds the image forming unit therein, when the feeder unit is attached in the correct position with respect to the frame unit, the image forming unit is installed in a correct position with respect to the feeder unit. Therefore, the recording sheet can be fed correctly in the sheet feeding path so that the image can be formed by the image forming unit on a correct position of the recording sheet.
Hereinafter, an embodiment according to an aspect of the present invention will be described with reference to the accompanying drawings.
The printer 1 is a direct-tandem color LED printer with a casing 2, in which four photosensitive drums 3 are arranged in line in a front-rear direction. The photosensitive drums 3 include a photosensitive drum 3K for black, a photosensitive drum 3Y for yellow, a photosensitive drum 3M for magenta, and a photosensitive drum 3C for cyan. Each of the photosensitive drums 3A is arranged to oppose a scorotron charger 4, an LED unit 5, and a rotatable developer roller 6a.
Each of the photosensitive drums 3 includes a drum body (not shown) and a positively chargeable photosensitive layer (not shown) covering the drum body. A surface of the photosensitive layer is positively charged by the scorotron charger 4 and exposed to beam that scans the surface of the photosensitive drum 3 according to image data, which represents an image to be formed on a recording medium. Thus, a latent image is formed on the surface of the photosensitive drum 3.
The developer roller 6a is rotatably arranged in a lowermost portion of a developer cartridge 6, which contains nonmagnetic mono-component toner therein. The developer roller 6a frictionally charges the toner positively and carries the charged toner in a thin layer on a surface thereof. The positively charged toner is thus supplied to the photosensitive drum 3. As the photoconductive drum 3 with the latent image on the surface thereof is rotated, the toner positively charged on the surface of the developer roller 6a is transferred and adhered to the lower-potential region, which corresponds to the latent image on the surface of the photosensitive drum 3. Thus, the latent image is developed to be a toner image on the surface of the photosensitive drum 3. The photosensitive drum 3, the scorotron charger 4, and the developer cartridge 6 are contained in a casing 7a of a processing cartridge 7.
In each of the processing cartridges 7, the photosensitive drums 3, the scorotron chargers 4, and the developer roller 6a are arranged in space enclosed by four flanged pipes 200. The processing cartridges 7 are removably installed in the printer 1 through an inlet (not shown) which is exposed when a discharge tray 11 is uplifted. The discharge tray 11 is attached to the casing 2 of the printer 1 and swingable about a rear end thereof.
The four flanged pipes 200 are linear connecting frames to extend in parallel with one another in the right-left direction to connect and hold metal frames 100, which will be described later in detail, steadily apart from each other. The four flanged pipes 200 include two pipes 200X at upper positions and two pipes 200Y at lower positions. Distance between the two upper pipes 200X in the front-rear direction is greater than distance between the two lower pipes 200Y in the front-rear direction so that the processing cartridges 7 can be inserted in and retracted from the printer 1 from above through the inlet between the two upper pipes 200X. As shown in
Recording sheets P are recording media to have images printed thereon by the printer 1 in the present embodiment. The recording sheets P are stored in a sheet cassette 70, which is removably installed in a bottom portion of the casing 2 of the printer 1. As shown in
The recording sheet P with the transferred four colored toner images is conveyed to a fixing unit 10, in which the four colored images are thermally fixed to the surface of the recording sheet P. The recording sheet P is thereafter carried by rollers to be discharged in the discharge tray 11.
Next, internal configurations of the feeder unit 50 and the sheet cassette 70 will be described. As shown in
The topmost recording sheet P is thereafter conveyed by rotation of a conveyor roller 53, which is provided in the feeder unit 50, and a roller 73, which is provided in the sheet cassette 70, and forwarded to enter in between a pair of register rollers 54, 55, which are provided in the feeder unit 50. When a front or leading end of the recording sheet P reaches the register rollers 54, 55, the recording sheet P is paused to be straighten its orientation by the pair of register rollers 54, 55. The recording sheet P is forwarded in the sheet feeding path on the conveyor belt 8 after a predetermined time period by the register rollers 54, 55. Thus, the recording sheets P are fed in the sheet feeding path by the feed roller 51, the separator roller 52, the conveyor roller 53, and the register rollers 54, 55.
A front portion of the casing 2 includes a manual sheet holder 19, which can be extended outwardly to hold recording sheets (not shown). The recording sheets set on the manual sheet holder 19 are withdrawn through an inlet 21, which is provided at the front portion of the casing 2, and fed in the sheet feeding path to enter in between the register rollers 54, 55. Thus, the recording sheet P is forwarded in the sheet feeding path on the conveyor belt 8.
Next, a frame structure of the printer 1 according to the present embodiment will be described with reference to
The printer 1 according to the present embodiment includes a pair of plate-like metal frames 100, which are set to be apart from and in parallel with each other with a predetermined distance therebetween so that a width of the processing cartridges 7 can be substantially fitted therein. The printer 1 further includes a pair of resin frames 300, which are set outer sides (i.e., outside left and outside right) of the metal frames 100. The pair of metal frames 100 includes a left-side metal frame 100L and a right-side metal frame 100R. The pair of resin frames 300 includes a left-side resin frame 300L and a right-side resin frame 300R.
As shown in
Each of the flanged pipes 200 is formed to have flanges 201 at each end thereof so that the flanged pipes 200 can be fixed to the metal frames 100 by screws 202. On the outer surfaces of the left-side metal frame 100L and the right-side metal frame 100R of the metal frames 100, the left-side resin frame 300L and the right-side resin frame 300R of the resin frames 300 are fixed respectively by screws 98.
As shown in
As shown in
Next, an attaching mechanism of the feeder unit 50 to the printer 1 will be described with reference to
The feeder unit 50 to be attached to the metal frames 100 is formed to have flange-like attachment portions 56L, 56R, which extend sideward or outward, at positions to oppose the holder portions 103 of the metal frames 100L, 100R respectively. The attachment portion 56L is formed to have holes 57L, through which the screws 99 penetrate when the feeder unit 50 is attached to the printer 1. The attachment portion 56R is formed to have holes 57R, through which the shoulders of the shouldered screws 98 penetrate when the feeder unit 50 is attached to the printer 1. The holes 57R are formed to have diameters larger in the left-right direction than the diameters of the shoulders of the shouldered screws 98. The attachment portion 56L is further formed to have a positioning slit 58, into which the projection 108 of the left-side metal frame L is inserted when the feeder unit 50 is attached to the printer 1, so that the feeder unit 50 is prevented from being displaced in the right-left direction. Thus, the feeder unit 50 is fixed to the printer 1 by the positioning slit 58 and the projection 108 in the right-left direction.
Meanwhile, dimensional difference due to different temperatures in the feeder unit 50 and the metal frames 100 is absorbed by the attachment of the feeder unit 50 to the metal frames 100. More specifically, dimensional difference between the metal frames 100 and the feeder unit 50 due to temperature difference is substantially small in the positioning side (i.e., the left-hand side) of the feeder unit 50. Therefore, the feeder unit 50 can be fixed tightly to be immovable to the left-side metal frame 100L by the shoulderless screws 99. Meanwhile, dimensional difference due to temperature difference between the feeder unit 50 and the metal frames 100 may likely to occur in the right-hand side of the feeder unit 50. Therefore, the feeder unit 50 is attached to the right-side metal frame 100R by the shouldered screws 98 so that the feeder unit 50 is allowed to move in the right-left direction without being tightly fixed to the right-side metal frame 100R.
Further, the feeder unit 50 is formed to have cylindrical bosses 61 and bosses 62. The width of the feeder unit 50 corresponds to the distance between the inner surfaces of the left-side metal frame 100L and the right-side metal frame 100R, and the bosses 61 and the bosses 62 substantially project outwardly in the right-left direction from the right side and the left side of the feeder unit 50, to be held in the cutouts 106, 107 respectively. In
As illustrated in
Further, for example, while the positions of the bosses 61 and the bosses 62 are vertically and horizontally restricted, the feeder unit 50 may be distorted when the feeder unit 50 is thermally expanded. When the bosses 61 are allowed to move vertically in the cutouts 106, however, the feeder unit 50 can be prevented from being distorted even when resin in the feeder unit 50 thermally expands.
Next, a positioning mechanism of the sheet cassette 70 to the printer 1 will be described. As shown in
When disposed in the casing 2 of the printer 1, the sheet cassette 70 is supported by a pair of support rails 370 (solely one on the right-side resin frame 300R is shown in
Further, as shown in
The sheet cassette 70 is further formed to have a projection 76, of which horizontal cross-sectional shape resembles a triangle with an angle projected outward, on each of the right and left sides and at a position closer to the rear end thereof. The projection 76 has an oblique plane closer to the front and an oblique plane closer to the rear. The oblique plane closer to the front is inclined in an angle more acute than an angle of the oblique plane closer to the rear.
As shown in
As shown in
The restricting portion 80b of each of the lock pieces 80b is formed in adjacent to the protrusive portion 80a and restricts the protrusive portion 80a from being projected beyond a predetermined amount. The restricting portion 80b is formed to become in contact with a vertical plane of the resin frame 300 and stopped thereat when the protrusive portion 80a is biased inwardly by the compression spring 81. Therefore, the lock piece 80 is restricted from being rotated inwardly beyond the point in which the restricting portion 80b becomes in contact with the resin frame 300. Thus, the protrusive portion 80a is restricted against the expanding force of the compression spring 81 from being protruded inwardly beyond the predetermined amount.
Detailed behaviors of the lock piece 80 and the projection 76 will be described below. As indicated by an arrow in
As has been described above, the feeder unit 50 is set in the correct position with respect to the metal frames 100 by inserting the pair of bosses 61 and the pair of bosses 62 in the cutouts 106 and the cutouts 107 respectively. The cutouts 106 and 107 can be stamp-formed in the metal frames 100, which is a more effective method to form a positioning structure than other methods such as the metal frames 100 being bent to dispose the feeder unit 50 or the cutouts being formed in the resin frames 300. Further, according to the above embodiment, the bosses 61 and 62 can be securely settled in the cutouts 106 and 107 by tightening the screws 98, 99.
Therefore, according to the above embodiment, the feeder unit 50 can be disposed in the accurate position with respect to the metal frames 100. Further, when the feeder unit 50 is in the correct position with respect to the metal frames 100, the processing cartridges 7 held by the metal frames 100 can be maintained in the correct positions with respect to the feeder unit 50 so that the images can be formed in correct positions on the recording sheet P being fed by the feeder unit 50. In the above embodiment, further, portions of the metal frames 100, where the guide grooves 101 to guide the processing cartridges 7 and the cutouts 106, 107 are provided, are formed in a same plane without a bent portion; therefore, the positional relation between the guide grooves 101 holding the processing cartridges 7 and the cutouts 106, 107 to hold the feeder unit 50 can be steadily maintained. Furthermore, in the above embodiment, the sheet cassette 70 can be also settled in the correct position with respect to the feeder unit 50 so that the sheet feeding path to convey the recording sheet P can be maintained steadily and the images can be formed in the correct position in the recording sheet P.
Furthermore, the metal frames 100L, 100R can be assembled together in correct positions with respect to each other by the flanged pipes 200, which can be fixed to the metal frames 100L by the screws 202 using a jig. In the above embodiment, the feeder unit 50 can be attached to front of the fixed assembly of the metal frames 100L, 100R so that the printer 1 can be assembled in the correct position.
It is to be noted that, for example, if the feeder unit 50 is attached to the metal frames 100, which does not directly define the position of the sheet cassette 70, the sheet cassette 70 is settled in the correct position with respect to the feeder unit 50 in the embodiment. Thus, accuracy of the positional relation between the feeder unit 50 and the sheet cassette 70 may be achieved.
Although an example of carrying out the invention has been described, those skilled in the art will appreciate that there are numerous variations and permutations of the image forming apparatus that falls within the spirit and scope of the invention as set forth in the appended claims. It is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or act described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
For example, in the above embodiment, the sheet cassette 70 is disposed in the horizontally correct position by having the positioning edge 64 of the feeder unit 50 in contact with the positioning edge 74 of the sheet cassette 70. However, the sheet cassette 70 may be disposed in a vertically correct position by, for example, having bosses inserted in U-shaped cutouts, similarly to the positioning mechanism of the metal frames 100 and the feeder unit 50. It is to be noted that, in such a positioning mechanism with the cutouts and the bosses, the recording sheet P may be fed even more steadily.
For another example, in the above embodiment, the pair of bosses 61 and the pair of bosses 62 are fitted in the U-shaped round cutouts 106 and 107. However, each of the bosses 61 and 62 may be inserted in a cutout with three linear sides and one opening. In such a case, the bosses 61 and/or 62 may be rectangular columns. Further, three or more pairs of bosses and cutouts may be provided. Furthermore, the bosses and cutouts are not necessarily provided evenly on each of the right and left sides of the feeder unit 50 and the metal frames 100. For example, one boss and a cutout may be provided on the right side of the feeder unit 50 and the right-side metal frame 100R while two bosses and two cutouts are provided on the left side of the feeder unit 50 and the left-side metal frame 100L.
Furthermore, the printer 1 may not necessarily be a multicolor-enabled LED printer, but may be, for example, a monochrome laser or LED printer, a multicolor-enabled or a single-color laser or inkjet printer, copier, or facsimile machine.
Number | Date | Country | Kind |
---|---|---|---|
2008-193635 | Jul 2008 | JP | national |
2009-135859 | Jun 2009 | JP | national |