The present invention relates to an image forming apparatus, such as a copying machine or a printer, of an electrophotographic type.
In a conventional image forming apparatus of an electrophotographic type, as a charging means for electrically charging an electrophotographic photosensitive member, a corona charger has been widely used. However, in the case where a high moving speed of the photosensitive member with speed-up of an image output is intended to be realized or a photosensitive member large in electrostatic capacity is charged, such as a problem of “charging non-uniformity” that a surface potential of the photosensitive member becomes non-uniform due to an insufficient charging performance of the corona charger generates in some cases.
When the charging non-uniformity generates, in some cases, an image defect such as “image density non-uniformity” or “graininess” due to a variation in image dot generates. As a countermeasure to achieve uniformity of the surface potential of the photosensitive member, a technique as described below has been proposed.
Japanese Laid-Open Patent Application (JP-A) Sho 62-194267 proposes that two corona chargers are arranged along a movement direction of a photosensitive member to meet speed-up of image output.
In this conventional method, the surface potential of the photosensitive member is adjusted to a target potential by adjusting a voltage applied to an upstream corona charger so that a current flowing through a grid electrode of a downstream corona charger is a predetermined value. In the case of such a method, in the case where the voltage applied to a discharging electrode of the downstream corona charger fluctuates or the like and thus a current supplied to the discharging electrode fluctuates, the charging non-uniformity of the photosensitive member generates in some cases.
A principal object of the present invention is to suppress charging non-uniformity of a photosensitive member.
According to an aspect of the present invention, there is provided an image forming apparatus comprising: a rotatable photosensitive member; a first corona charger for electrically charging the photosensitive member; a second corona charger, provided downstream of the first corona charger with respect to a rotational direction of the photosensitive member, for electrically charging a surface of the photosensitive member to a first potential set in advance in superposition on a charged surface of the photosensitive member charged by the first corona charger; image forming means for forming an image on the photosensitive member charged by the first corona charger and the second corona charger; voltage applying means for applying voltages to the first corona charger and the second corona charger; detecting means, provided downstream of the second corona charger with respect to the rotational direction of the photosensitive member, for detecting a surface potential of the photosensitive member; and control means for controlling the voltages applied to the first corona charger and the second corona charger, wherein the control means determines a condition of the voltages applied to the first corona charger and the second corona charger during image formation, by setting a first voltage condition for the first corona charger so that the surface potential of the photosensitive member is a second potential lower in absolute value than the first potential in a state in which the first corona charger operates, and said second corona charger does not operates, and then by setting a second voltage condition for said second corona charger so that the surface potential of said photosensitive member is the first potential in a state in which the first corona charger operates under the first voltage condition, and the second corona charger operates.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
In
In
An image forming apparatus according to the present invention will be described specifically with reference to the drawings.
The image forming apparatus 100 includes a photosensitive drum 1 which is a drum-shaped (cylindrical) electrophotographic photosensitive member. The photosensitive drum 1 is rotated in an arrow R1 direction in
The transfer device 7 includes a transfer belt 8 which is a recording material feeding member formed with a rotatable endless belt provided opposed to the photosensitive drum 1. The transfer belt 8 is supported by a driving roller 71 and a follower roller 72 which are a plurality of supporting rollers, and a driving force is transmitted by the driving roller 71 which is rotationally driven, so that the transfer belt 8 is rotated (circulated and moved) in an arrow R2 direction in
In a side downstream of the transfer portion e with respect to a feeding direction of a recording material P, a fixing device 50 of a heat pressing type as a fixing means is provided.
During image formation, an outer peripheral surface of the rotating photosensitive drum 1 is electrically charged uniformly to a predetermined potential of a predetermined polarity (negative in this embodiment) by the charging device 3. At this time, to the charging device 3, predetermined voltages are applied from charging voltage sources S1, S2, s3, S4, S5 (
The surface of the photosensitive drum 1 subjected to the charging process is subjected to scanning exposure to laser light depending on image information. As a result, an electrostatic latent image (electrostatic image) depending on the image information is formed on the photosensitive drum 1. With respect to the rotational direction of the photosensitive drum 1, an exposure position on the photosensitive drum 1 by the exposure device 10 is an image exposure portion (image exposure position) b.
The electrostatic latent image formed on the photosensitive drum 1 is developed (visualized) with a toner as a developer by the developing device 6. The developing device 6 includes a developing roller 61 as a developer carrying member. The developing roller 61 carries and feeds the toner accommodated in a developing container 62, and supplies the toner to the photosensitive drum 1 depending on the electrostatic latent image. In this embodiment, a toner image is formed by image portion exposure and reverse development. That is, on an image portion lowered in absolute value of a potential by being subjected to the light exposure after the photosensitive drum 1 is uniformly charged, the toner charged to the same polarity as a charge polarity of the photosensitive drum 1 is deposited. During development, to the developing roller 61, a predetermined developing voltage (developing bias) is applied from an unshown developing voltage source. With respect to the rotational direction, a position on the photosensitive drum 1 opposing the developing roller 61 is a developing portion (developing position) d where the toner is supplied from the developing roller 61.
The toner image formed on the photosensitive drum 1 is electrostatically transferred at the transfer portion e onto the recording material P such as recording paper which is carried on the transfer belt 8 and which is nipped and fed by the photosensitive drum 1 and the transfer belt 8. At this time, to the transfer roller 9, from an unshown transfer voltage source, a transfer voltage (transfer bias) which is a DC voltage of an opposite polarity to a (normal) charge polarity of the toner during the development is applied. With respect to the rotational direction of the photosensitive drum 1, a position of contact of the photosensitive drum 1 with the transfer belt 8 is the transfer portion (transfer position) e where the toner image transfer is made.
The recording material P on which the toner image is transferred is separated from the transfer belt 8 and then is fed to the fixing device 50. The fixing device 50 feeds the recording material P while heating and pressing the recording material P, so that the toner image is fixed on the recording material P. Thereafter, the recording material P is discharged to an outside of an apparatus main assembly of the image forming apparatus 100.
The toner (transfer residual toner) remaining on the photosensitive drum 1 after a transfer step is removed and collected from the photosensitive drum 1 by the cleaning device 2. The cleaning device includes a cleaning blade 21 as a cleaning member provided in contact with the photosensitive drum 1 and includes a collecting container 22 in which the toner scraped off from the rotating photosensitive drum 1 by the cleaning blade 21 is collected. With respect to the rotational direction of the photosensitive drum 1, a position of contact of the photosensitive drum 1 with the cleaning blade 21 is a cleaning portion (cleaning position) f.
The photosensitive drum 1 subjected to cleaning by the cleaning device 2 is irradiated with light (charge-removing light) by the light charge-removing device 4 to remove residual electric charges. Thereafter, the photosensitive drum 1 is electrically charged again by the charging device 3. With respect to the rotational direction of the photosensitive drum 1, a position where the photosensitive drum 1 is exposed to the light by the light charge-removing device 4 is a charge-removing portion (charge-removing position) g.
The potential sensor 5 detects a surface potential of the photosensitive drum 1 in a charging voltage adjusting operation described specifically later. The potential sensor 5 is disposed opposed to the surface of the photosensitive drum 1 so as to be capable of detecting the surface potential of the photosensitive drum 1 in an image formable region (region where the toner image can be formed) with respect to a longitudinal direction of the photosensitive drum 1. In this embodiment, the potential sensor 5 detects the surface potential of the photosensitive drum 1 between the charging portion a (particularly, the downstream charging portion a2) and the developing portion d (specifically, between the image exposure portion b and the developing portion d) with respect to the rotational direction of the photosensitive drum 1. With respect to the rotational direction of the photosensitive drum 1, a position where the surface potential of the photosensitive drum 1 is detected by the potential sensor 5 is a potential detecting portion (potential detecting position) c.
In this embodiment, a wavelength of the image exposure light by the exposure device 10 is 675 nm. Further, in this embodiment, an exposure amount of the surface of the photosensitive drum 1 by the exposure device 10 is variable in a range of 0.1-0.5 μJ/cm2, and a predetermined exposed portion potential can be formed by adjusting the exposure amount depending on a developing condition.
In this embodiment, a wavelength of the charge-removing light by the light charge-removing device 4 is 635 nm. In this embodiment, as a light source for the light charge-removing device 4, an LED chip array was used. An exposure amount of the surface of the photosensitive drum 1 by the light charge-removing device 4 is adjustable in a range of 1.0-7.0 μJ/cm2. In this embodiment, the exposure amount was set at 4.0 μJ/cm2.
The photosensitive drum 1 is supported rotatably by the apparatus main assembly of the image forming apparatus 100. The photosensitive drum 1 is a cylindrical photosensitive member constituted by an electroconductive support of aluminum or the like and a photoconductive layer formed on an outer peripheral surface of the support. The photosensitive drum 1 is rotationally driven in an arrow R1 direction in
In this embodiment, the charge polarity of the photosensitive drum 1 is negative. In this embodiment, the photosensitive drum 1 is an amorphous silicon photosensitive member of 84 mm in outer diameter. In this embodiment, the photosensitive layer is 40 μm in thickness and 10 in dielectric constant. In this embodiment, the photosensitive drum 1 is 700 mm/s in peripheral speed. The photosensitive drum 1 may also be another photosensitive member such as an OPC (organic photoconductor).
Each of the discharge wires 31a, 32a is constituted by an electroconductive wire disposed in a linear shape along a longitudinal direction (rotational axis direction) of the photosensitive drum 1. Each of the grid electrodes 31b, 32b is constituted by an electroconductive flat plate-like member which as a plurality of openings and which is disposed along the longitudinal direction of the photosensitive drum 1 between the associated discharge wire 31a or 32a and the photosensitive drum 1. Each of the shield electrodes 31c, 32c are formed to surround the discharge wires 31a, 32a, respectively, and is constituted by an electroconductive substantially box-like member provided with an opening where the associated grid electrode 31b or 32b is disposed in an opposing side to the photosensitive drum 1. Between the upstream charger 31 and the downstream charger 32, an insulating member 33 for preventing generation of leakage when different biases are applied to the upstream shield electrode 31c and the downstream shield electrode 32c. In this embodiment, as the insulating member 33, an insulating plate constituted by an electrically insulating material of about 2 mm in thickness T (with respect to a tangential direction of the develop 1 in
The charging device 3 is 42 mm in width W (with respect to the tangential direction of the photosensitive drum 1 in
As each of the discharge wires 31a, 32a, a discharge wire which was constituted by a tungsten wire subjected to oxidation and which was 60 μm in wire diameter (outer diameter) and was used in an electrophotographic image forming apparatus in general was used.
The grid electrodes 31b, 32b have the plate-like shape. As shown in
The upstream grid electrode 31b is 90% in aperture (ratio), and the downstream grid electrode 32b is 80% in aperture (ratio). Each of the grid electrodes 31b, 32b is a mesh-shaped grid electrode subjected to etching. As each of the grid electrodes 31b, 32b, a grid electrode which was constituted by an SUS (stainless steel) plate and which has a surface layer formed as an anti-corrosive layer such as a nickel-plated layer and was used in general for electrophotography, was used. Incidentally, there is no need that the apertures of the grid electrodes 31b, 32b of the upstream charger 31 and the downstream charger 32, respectively, are different from each other, and commonality of the guide electrodes may be achieved between the plurality of chargers by using the grid electrodes having the same aperture.
As shown in
The upstream shield electrode 31c and the downstream shield electrode 32c are connected with the upstream grid electrode 31b and the downstream grid electrode 32b, respectively. In this way, in this embodiment, in the upstream charger 31 and the downstream charger 32, the shield electrodes 31c, 32c and the grid electrodes 31b, 32b have the same potential. However, each of the shield electrodes 31c, 32c may also be electrically grounded by being connected to, e.g., the ground electrode of the apparatus main assembly of the image forming apparatus 100 without being made equipotential to the associated grid electrode 31b or 32b. The only requirement is that the voltages applied to the upstream charger 31 and the downstream charger 32 are independently controllable and that in the upstream charger 31 and the downstream charger 32, the voltages applied to the discharge wires 31a, 32a and the grid electrodes 31b, 32b are independently controllable.
The CPU 200 effects processing described later on the basis of pieces of information from the sheet number counter 300, the timer 400, the environment sensor 500 and the storing portion 600, and provides an instruction to the high-voltage output controller 800, thus controlling the voltage sources S1, S2, S4, S5.
In this embodiment, the DC voltages applied to the discharge wire 31a, 32a are subjected to constant-current control, and are changeable in a range of 0 to −3200 μA. In this embodiment, the DC voltage applied to the grid electrodes 31b, 32 are subjected to constant-voltage control, and are changeable in a range of 0 to −1200 V.
In this embodiment, the voltages applied to the plurality of chargers 31 and 32 of the charging device 3 can be independently controlled. In addition, in this embodiment, such a charging voltage-adjusting operation that the surface potentials formed on the photosensitive drum 1 by independently controlling the voltages applied to the chargers of the charging device 3 in the order of the upstream charger 31 and the downstream charger 32 are successively superposed (synthesized) is performed. As a result, a final desired surface potential (charge potential, dark-portion potential) of the photosensitive drum 1 is controlled. That is, in this embodiment, in the charging voltage-adjusting operation, first, the voltage applied to the upstream charger 31 is independently controlled to electrically charge the photosensitive drum 1, so that a predetermined surface potential is formed on the photosensitive drum 1. Then, in a state in which a voltage controlled so as to form the predetermined surface potential is applied to the upstream charger 31, the voltage applied to the downstream charger 32 is independently controlled to further charge the photosensitive drum 1. As a result, the surface potential formed by the downstream charger 32 is superposed on (synthesized with) the surface potential formed by the upstream charger 31, so that the final desired surface potential of the photosensitive drum 1 is formed.
In the following description, parameters as to the charging process by the upstream charger 31 are represented by adding a suffix “(U)”, and parameters as to the charging process by the downstream charger 32 are represented by adding a suffix “(D)”. Further, parameters at the potential detecting portion c are represented by adding a suffix “sens”, and parameters at the developing portion d are represented by adding a suffix “dev”. Further, with respect to magnitude relationships of the voltages, the currents and the potentials, they will be described in terms of absolute values. For example, “−400 V or more” refers to, e.g., the case of “−500 V”.
First, the charging process by the upstream charger 31 will be described. The upstream charger 31 charges the photosensitive drum 1 under application of an upstream discharge current (DC current) Ip(U) from the upstream discharge voltage source S1 to the discharge wire 31a in a state in which a predetermined upstream grid voltage Vg(U) is applied from the upstream grid voltage source S4 to the upstream grid electrode 31b.
In this embodiment, a dark decay amount of the surface potential of the photosensitive drum 1 is about 50 V between the potential detecting portion c and the developing portion d.
In this embodiment, the voltage applied to the upstream charger 31 is adjusted so that a surface potential Vd(U)sens of the photosensitive drum 1 at the potential detecting portion c is −450 V (and a surface potential Vd(U)dev of the photosensitive drum 1 at the developing portion d is −400 V) while adjusting the upstream discharge current Ip(U) in a variable change manner.
Next, the charging process by the downstream charger 32 will be described. Adjustment of the voltage applied to the downstream charger 32 is made in a state in which the above-described charging process by the upstream charger 31 is continued. The downstream charger 32 charges the photosensitive drum 1 under application of a downstream discharge current (DC current) Ip(S) from the downstream discharge voltage source S2 to the downstream discharge wire 32a in a state in which a predetermined downstream grid voltage Vg(S) is applied from the downstream grid voltage source S5 to the downstream grid electrode 32b.
From
Next, referring to (a) of
From (a) of
In this embodiment, in consideration of a lowering in downstream discharge current Ip(S), the downstream discharge current Ip(S) is made not more than −1600 μA, and the surface potential Vd(S)dev of the photosensitive drum 1 at the developing portion d is made −500 V which is a target potential. For that purpose. in this embodiment, from a result of (a) of
The reason why the surface potential of the photosensitive drum 1 by the upstream charger 31 is made not more than the downstream grid voltage Vg(S) at the developing portion d is as follows. That is, when the surface potential larger than the downstream grid voltage Vg(S) is supplied to the downstream charger 32, the convergence property of the surface potential of the photosensitive drum 1 with respect to the downstream grid voltage Vg(S) lowers. As a result, the surface potential formed on the photosensitive drum 1 by the downstream charger 31 passes through the downstream charger 32 in that state, so that a charging non-uniformity eliminating performance by the downstream charger 32 lowers. The surface potential Vd(U)der of the photosensitive drum 1 at the developing portion d after the photosensitive drum 1 is charged by the upstream charger 31 is made not more than the downstream grid voltage Vg(S), so that the convergence property of the surface potential of the photosensitive drum 1 with respect to the downstream grid voltage Vg(S) was good.
In this embodiment, from the result of (a) of
In this embodiment, a dark decay amount of the surface potential of the photosensitive drum 1 is about 50 V from the potential detecting portion c to the developing portion d as described above. In this embodiment, a dark decay amount of the surface potential of the photosensitive drum 1 is about 50 V from the downstream charging portion a2 to the potential detecting portion c. For that reason, when the target potential of the photosensitive drum 1 at the developing portion d after the charging process of the photosensitive drum 1 by the upstream charger 31 is −400 V, the surface potential of the photosensitive drum 1 is −450 V at the potential detecting portion c and is −500 V at the downstream charging portion a2. Accordingly, the surface potential formed on the photosensitive drum 1 by the upstream charger 31 is set at −400 V at the developing portion d and thus also the surface potential of the photosensitive drum 1 at the downstream charging portion a2 can be made not more than −600 V. However, as described above, when the surface potential formed on the photosensitive drum 1 by the upstream charger 31 is small, the downstream discharge current Ip(S) necessary to converge the surface potential of the photosensitive drum 1 at the target potential increases. For that reason, a difference between the downstream grid voltage Vg(S) and the surface potential Vd(U) formed on the photosensitive drum 1 by the upstream charger 31 may preferably be 200 V or less. That is, |Vg(S)|−|VD(U)|≦|200(V)| may preferably be satisfied. Specifically, a preferred result can be obtained by making the difference, between the downstream grid voltage Vg(S) and the surface potential Vd(U)dev of the photosensitive drum 1 at the developing portion d after the charging process by the upstream charger 31, not more than 200 V. In general, this difference is smaller at the second charging portion a2.
Next, referring to (b) of
From (b) of
In this embodiment, a relationship between the slope α and graininess of an output image is studied, s that a range in which the slope α is 5 V/100 μA or less is a proper range. This slope α is an index indication the convergence property of the surface potential of the photosensitive drum 1 with respect to the downstream grid voltage Vg(S). A smaller value of the slope α shows that the surface potential of the photosensitive drum 1 move converges at the downstream grid voltage Vg(S) and thus a uniform surface potential with no charging non-uniformity can be formed.
As shown in (b) of
As described above, in this embodiment, the surface potential is formed on the photosensitive drum 1 by the upstream charger 31 and then the surface potential is formed by the downstream charger 32 superposedly on (synthetically with) the surface potential formed by the upstream charger 31, so that the photosensitive drum surface potential is controlled to a desired surface potential on the photosensitive drum 1. By using this method, it becomes possible to form a uniform surface potential of the photosensitive drum 1 with no charging non-uniformity.
In this embodiment, the target value of the slope α was 5 V/100 μA or less, and the target value of the surface potential of the photosensitive drum 1 at the developing portion d after the charging process by the downstream charger 32 was −500 V. In this case, the potential difference between the downstream grid voltage Vg(S) and the surface potential Vd(U)dev (at the developing portion d) formed on the photosensitive drum 1 by the upstream charger 31 was set at 200 V. However, the present invention is not limited to the potential difference in the above-described setting, but the potential difference may also be appropriately adjusted depending on the dark decay which is a charging characteristic and a discharging characteristic of the chargers.
A procedure of an adjusting operation of the charging voltage in this embodiment will be described with reference to
Here, “during the non-image formation” refers to a period other than during image formation in which formation (formation of the electrostatic latent image, formation of the toner image and transfer of the toner image) of the image formed on the recording material P and then outputted is made. Examples of “during the non-image formation” include during a pre-multi-rotation step which is a preparatory operation during power on of the image forming apparatus 100 or during restoration from a sleep state of the image forming apparatus 100; during a pre-rotation step which is a preparatory operation from input of image formation start instruction until the image is actually formed; during a sheet interval corresponding to an interval between consecutive two recording materials P in a job for continuously form images on a plurality of recording materials (in a series of operations for forming the image on a single recording material P or plurality of recording materials P by single image formation start instruction); and during a post-rotation step which is a post-operation (preparatory operation) after the image is formed.
In this embodiment, the CPU 200 is capable of obtaining pieces of information including a result of counting of image output sheet number by a sheet number counter 300, a measurement result of an elapsed time by a timer 400, and a detection result of at least one of a temperature and a humidity by an environment sensor 500. Then, on the basis of at least one of these pieces of information, the CPU 200 is capable of discriminating a timing of execution of the charging voltage adjusting operation. For example, in the case where the image output sheet number from the time of preceding execution reaches a predetermined image output sheet number, the charging voltage adjusting operation ca be executed in a subsequent pre-rotation step. In the case where the image output sheet number reaches the predetermined image output sheet number during the execution of the job, the charging voltage adjusting operation may also be executed during the sheet interval. In place of or in addition to the image output sheet number, on the basis of an elapsed time from the preceding execution, the charging voltage adjusting operation may also be executed. Further, in place of or in addition to the image output sheet number or the elapsed time, in the case where at least one of ambient temperature and ambient humidity changes to exceed a predetermined threshold, the charging voltage adjusting operation may also be performed.
First, with reference to
When the timing is a timing when the charging voltage adjusting operation is executed (S101), the CPU 200 causes the photosensitive drum 1 to start rotational drive and also causes the light charge-removing device to start exposure of the photosensitive drum 1 to light (S102). Then, after the rotation of the photosensitive drum 1 reaches steady-state rotation, an upstream grid voltage is applied from the upstream grid voltage source S4 to the upstream grid electrode 31b (S103). Thereafter, the CPU 200 causes the upstream discharge voltage source S1 to apply the upstream discharge current to the upstream discharge wire 31a (S104). Then, the CPU 200 causes the potential sensor 5 to measure the surface potential formed on the photosensitive drum 1 by the upstream charger 31 and then causes the storing portion 600 to store a measured surface potential (S105). Then, the CPU 200 discriminates whether or not the measured surface potential of the photosensitive drum 1 is not less than −450 V (second potential) which is a target value at the potential detecting portion c for detecting the surface potential formed on the photosensitive drum 1 by the upstream charger 31 (S106). Here, a relationship between the first potential and the second potential is such that they have the same polarity and that an absolute value of the second potential is less than an absolute value of the first potential.
In the case where the CPU 200 discriminates that the surface potential of the photosensitive drum 1 is smaller than −450 V in S106, the CPU 200 increases the upstream discharge current by −200 μA (S107), and then repeats processing of S105 and S106. On the other hand, in the case where the CPU 200 discriminates that the surface potential of the photosensitive drum is not less than −450 V in S106, the CPU 200 adjusts the upstream discharge current Ip(U) applied from the upstream discharge voltage source S1 to the upstream discharge wire 31a in the following manner (S108). That is, on the basis of the relationship (as shown in
First, with reference to
In a state in which the charging process of the photosensitive drum 1 by the upstream charger 31 is continued under a charging condition adjusted as described above, the CPU 200 causes the downstream charger 32 to start the charging process of the photosensitive drum 1 (S110). Then, an downstream grid voltage is applied from the downstream grid voltage source S6 to the downstream grid electrode 32b (S111). Thereafter, the CPU 200 causes the downstream discharge voltage source S2 to apply the upstream discharge current to the downstream discharge wire 32a (S112). Then, the CPU 200 causes the potential sensor 5 to measure the surface potential formed on the photosensitive drum 1 by the upstream charger 31 and then causes the storing portion 600 to store a measured surface potential (S113). Then, the CPU 200 discriminates whether or not the measured surface potential of the photosensitive drum 1 is within a range of −550±10 V (first potential) which is a target value at the potential detecting portion c for detecting the surface potential formed on the photosensitive drum 1 by the downstream charger 32 (S114).
In the case where the CPU 200 discriminates that the surface potential of the photosensitive drum 1 is smaller than the above range in S114, the CPU 200 increases the downstream discharge current by −200 μA (S115), and then repeats processing of S113 and S114. In this embodiment, the downstream discharge current is started to be applied from a sufficiently small value and therefore is successively increased so that the surface potential of the photosensitive drum 1 is caused to converge within the range of −550±10 V which is the target value. However, the present invention is not limited thereto, but in the case where the CPU 200 discriminates that the surface potential of the photosensitive drum 1 is larger than the above range, such a processing that the downstream discharge current is decreased by a predetermined value may also be performed. On the other hand, in the case where the CPU 200 discriminates that the surface potential of the photosensitive drum 1 reaches the above range in S114, the CPU 200 determines the downstream discharge current Ip(S) as a value at that time and ends the adjustment of the downstream discharge current Ip(S) (S116).
Thereafter, the CPU 200 turns off the voltage sources S1, S2, S4 and S5 and also turns off the rotational drive of the photosensitive drum 1 and the light exposure by the light charge-removing device 4, so that the charging voltage adjusting operation is ended (S118).
By the above-described procedure, the adjustment to the charging condition for charging the photosensitive drum 1 to the target surface potential can be made.
As described above, the image forming apparatus 100 includes the voltage applying means S1, S2, S4, S5 for applying the charging voltage for electrically charging the photosensitive drum 1 to the plurality of corona chargers 31 and 32 of the charging device 3. The image forming apparatus 100 further includes the control means 200 for independently controlling the charging voltages applied from the voltage applying means S1, S2, S4, S5 to the plurality of corona chargers 31 and 32. The control means 200 executes the adjusting operation for adjusting the charging voltages applied to the plurality of corona chargers 31 and 32 by the voltage applying means S1, S2, S4, S5. In the adjusting operation, the control means 200 performs the following operation. First, the control means adjusts the charging voltage applied to the upstream corona charger by the voltage applying means so that the surface potential formed on the photosensitive member by the charging process by the corona charger, of the adjacent two corona chargers of the plurality of corona chargers, disposed in an upstream side with respect to the rotational direction of the photosensitive member. Thereafter, the charging voltage applied to the downstream corona charger so that the surface potential formed superposedly on the surface potential, formed on the upstream corona charger, by the charging process by the downstream corona charger of the above-described adjacent two corona chargers becomes the predetermined target value. Such an operation that the voltages applied to the upstream corona charger and the downstream corona charger are adjusted is successively performed from the upstreammost corona charger to the downstreammost corona charger of the plurality of corona chargers with respect to the rotational direction of the photosensitive member.
As described above, in this embodiment, even in the case where the moving speed of the photosensitive drum 1 is increased or the photosensitive drum 1 having a relatively large electrostatic capacity is used, the photosensitive drum 1 can be charged uniformly to the target surface potential by the plurality of corona chargers 31 and 32. In this embodiment, the voltages applied to the plurality of corona chargers 31 and 32 can be independently controlled. Then, in this embodiment, such an adjusting operation of the charging voltage that the surface potentials formed on the photosensitive drum 1 by independently controlling the voltages successively applied to the plurality of corona chargers in the order from the upstream side to the downstream side in the superposition (synthesis) manner is performed. As a result, the voltages applied to the corona chargers 31 and 32 are independently set, so that a final surface potential of the photosensitive drum 1 can be controlled to a desired potential. Particularly, in this embodiment, the surface potential formed on the photosensitive drum 1 is sufficiently increased within a good range of convergence property to the downstream grid voltage. In this embodiment, of the final target potentials of the photosensitive drum 1, the surface potential formed on the photosensitive drum 1 by the upstream charger 31 is larger than the surface potential formed superposedly by the downstream charger 32. As a result, even when the voltage applied to (the current supplied to) the downstream charger 32 is relatively small, it is possible to decrease degree of a fluctuation in surface potential of the photosensitive drum 1 relative to a fluctuation in current supplied to the downstream charger 32. As described above, according to this embodiment, the voltages applied to the respective controls 31 and 32 can be controlled independently to proper voltages at which the charging non-uniformity of the photosensitive drum 1 is easily suppressed. Therefore, according to this embodiment, in the constitution in which the photosensitive drum 1 is charged by the plurality of controls 31 and 32, even in the case where the currents supplied to the corona chargers 31 and 32 fluctuate, the charging non-uniformity of the photosensitive member can be suppressed.
Another embodiment of the present invention will be described Basic constitution and operation of an image forming apparatus in this embodiment are the same as those in Embodiment 1. Accordingly, in the image forming apparatus in this embodiment, elements having functions or constitutions identical or corresponding to those for the image forming apparatus in Embodiment 1 are represented by the same reference numerals or symbols and will be omitted from detailed description.
1. Summary of this Embodiment
In Embodiment 1, the upstream grid voltage and the downstream grid voltage were fixed, and the surface potential was controlled by independently adjusting the upstream discharge current and the downstream discharge current. As a result, the adjustment to the charging condition for charging the photosensitive drum 1 uniformly to the target surface potential can be made. However, in the case where there is a variation in charging characteristic of the photosensitive drum 1 to a certain extent or more or in the case where the gap between the discharge wire and the grid electrode fluctuated due to a tolerance or the like to a certain extent or more, it would be considered that it is difficult to adjust the surface potential of the photosensitive drum 1 to the target potential.
In this embodiment, the upstream grid voltage and the downstream grid voltage are variably adjusted, so that the surface potential of the photosensitive drum 1 is controlled. Further, in this embodiment, in order to make the slope α shown in (b) of
First, the charging process by the upstream charger 31 will be described. The predetermined upstream discharge current Ip(U) is applied from the upstream discharge voltage source S1 to the discharge wire 31a, and the upstream charger 31 charges the photosensitive drum 1 under application of the upstream grid voltage Vg(U) from the upstream grid voltage source S4 to the upstream grid electrode 31b.
As shown in
In this embodiment, the voltage applied to the upstream charger 31 is adjusted so that a surface potential Vd(U)sens of the photosensitive drum 1 at the potential detecting portion c is −500 V (and a surface potential Vd(U)dev of the photosensitive drum 1 at the developing portion d is −450 V) while adjusting the upstream grid voltage Vg(U) in a variable change manner.
Next, the charging process by the downstream charger 32 will be described. Adjustment of the voltage applied to the downstream charger 32 is made in a state in which the above-described charging process by the upstream charger 31 is continued. The predetermined downstream discharge current (DC current) Ip(S) is applied from the downstream discharge voltage source S2 to the downstream discharge wire 32a, and the downstream charger 32 charges the photosensitive drum 1 under application of the downstream grid voltage Vg(S) from the downstream grid voltage source S5 to the downstream grid electrode 32b.
In
In
A procedure of an adjusting operation of the charging voltage in this embodiment will be described with reference to
First, with reference to
When the timing is a timing when the charging voltage adjusting operation is executed (S201), the CPU 200 causes the photosensitive drum 1 to start rotational drive and also causes the light charge-removing device to start exposure of the photosensitive drum 1 to light (S202). Then, after the rotation of the photosensitive drum 1 reaches steady-state rotation, an upstream grid voltage is applied from the upstream grid voltage source S4 to the upstream grid electrode 31b (S203). Thereafter, the CPU 200 causes the upstream discharge voltage source S1 to apply the upstream discharge current to the upstream discharge wire 31a (S204). Then, the CPU 200 causes the potential sensor 5 to measure the surface potential formed on the photosensitive drum 1 by the upstream charger 31 and then causes the storing portion 600 to store a measured surface potential (S205). Then, the CPU 200 discriminates whether or not the measured surface potential of the photosensitive drum 1 is not less than −50 V which is a target value at the potential detecting portion c for detecting the surface potential formed on the photosensitive drum 1 by the upstream charger 31 (S206).
In the case where the CPU 200 discriminates that the surface potential of the photosensitive drum 1 is smaller than −500 V in S106, the CPU 200 increases the upstream grid voltage by −100 V (S207), and then repeats processing of S205 and S206. On the other hand, in the case where the CPU 200 discriminates that the surface potential of the photosensitive drum is not less than −500 V in S206, the CPU 200 adjusts the upstream grid voltage Vg(U) applied from the upstream grid voltage source S4 to the upstream grid electrode 31b in the following manner (S208). That is, on the basis of the relationship (as shown in
First, with reference to
In a state in which the charging process of the photosensitive drum 1 by the upstream charger 31 is continued under a charging condition adjusted as described above, the CPU 200 causes the downstream charger 32 to start the charging process of the photosensitive drum 1 (S210). Then, an downstream grid voltage is applied from the downstream grid voltage source S6 to the downstream grid electrode 32b (S211). Thereafter, the CPU 200 causes the downstream discharge voltage source S2 to apply the upstream discharge current to the downstream discharge wire 32a (S212). Then, the CPU 200 causes the potential sensor 5 to measure the surface potential formed on the photosensitive drum 1 by the upstream charger 31 and then causes the storing portion 600 to store a measured surface potential (S213). Then, the CPU 200 discriminates whether or not the measured surface potential of the photosensitive drum 1 is within a range of −550±10 V which is a target value at the potential detecting portion c for detecting the surface potential formed on the photosensitive drum 1 by the downstream charger 32 (S214).
In the case where the CPU 200 discriminates that the surface potential of the photosensitive drum 1 is smaller than the above range in S214, the CPU 200 increases the downstream grid voltage by −100 V (S215), and then repeats processing of S213 and S214. In this embodiment, the downstream grid voltage is started to be applied from a sufficiently small value and therefore is successively increased so that the surface potential of the photosensitive drum 1 is caused to converge within the range of −550±10 V which is the target value. However, the present invention is not limited thereto, but in the case where the CPU 200 discriminates that the surface potential of the photosensitive drum 1 is larger than the above range, such a processing that the downstream grid voltage is decreased by a predetermined value may also be performed. On the other hand, in the case where the CPU 200 discriminates that the surface potential of the photosensitive drum 1 reaches the above range in S214, the CPU 200 determines the downstream grid voltage Vg(S) as a value at that time and ends the adjustment of the downstream grid voltage Vg(S) (S216).
Thereafter, the CPU 200 turns off the voltage sources S1, S2, S4 and S5 and also turns off the rotational drive of the photosensitive drum 1 and the light exposure by the light charge-removing device 4, so that the charging voltage adjusting operation is ended (S218).
By the above-described procedure, the charging voltage is controlled to the charging condition for charging the photosensitive drum 1 to the target surface potential can be made.
A further embodiment of the present invention will be described Basic constitution and operation of an image forming apparatus in this embodiment are the same as those in Embodiment 1. Accordingly, in the image forming apparatus in this embodiment, elements having functions or constitutions identical or corresponding to those for the image forming apparatus in Embodiment 1 are represented by the same reference numerals or symbols and will be omitted from detailed description.
In Embodiments 1 and 2, the charging device 3 had the constitution in which the charging process of the photosensitive drum 1 was performed by the two corona chargers for which the applied voltages are independently controllable. In this embodiment, a charging device 3 has a constitution in which the charging process of the photosensitive drum 1 is performed by three corona chargers for which applied voltages are independently controllable. As a result, even in the case where the moving speed of the photosensitive drum 1 is further increased, the charging performance of the charging device 3 is enhanced, so that it becomes possible to obtain a uniform surface potential of the photosensitive drum 1.
The discharge wires 301a, 302a, 303a, the grid electrodes 301b, 302b, 303b, and the shield electrodes 301c, 302c, 303c have the same constitutions as those in the charging devices 3 in Embodiments 1 and 2. Further, in this embodiment, insulating members 304a and 304b are provided between the upstream charger 301 and the intermediary charger 302 and between the intermediary charger 302 and the downstream charger 303, respectively. The insulating members 304a, 304b have the same constitution as that in the charging devices 3 in Embodiments 1 and 2.
As shown in
By employing the above-described constitution, even in the case where the peripheral speed of the photosensitive drum 1 is 1000 mm/s, the charging device 3 in this embodiment is capable of uniformly charging the photosensitive drum 1.
As shown in
The upstream shield electrode 301c, the intermediary shield electrode 302c, and the downstream shield electrode 303c are connected with the upstream grid electrode 301b, the intermediary grid electrode 302b and the downstream grid electrode 303b, respectively. In this way, in this embodiment, in the chargers 301, 302 and 303, the shield electrodes 301c, 302c, 303c and the grid electrodes 301b, 302b, 303b have the same potential. However, similarly as described in Embodiment 1, the present invention is not limited thereto.
A control mode of the charging voltage in this embodiment is similar to that in Embodiment 1 shown in
The type of control of the voltage applied to the charging device 3 in this embodiment may be either of the type in which the discharge current is controlled similarly as in Embodiment 1 and the type in which the grid voltage is controlled similarly as in Embodiment 2.
The charging device 3 in this embodiment includes the three corona chargers, and therefore in the adjusting operation of the charging voltage, the number of times of execution of an operation for independently adjusting the voltages applied to the respective corona chargers is increased by once compared with those in Embodiments 1 and 2.
An outline of the adjusting operation of the charging voltage in this embodiment will be described using a schematic model view of
In this embodiment, as shown by (a), (2), (3) in
As described above, by increasing the number of the chargers of the charging device 3, even in the case where the moving speed of the photosensitive drum 1 is further increased, the photosensitive drum 1 can be uniformly charged to the target surface potential.
The present invention was described above based on specific embodiments, but the present invention is not limited to the above-described embodiments.
For example, in the embodiments described above, the charging device was constituted by including the plurality of scorotron chargers as the plurality of chargers. However, in the case where the type in which the discharge current is controlled similarly as in Embodiment 1, of the plurality of chargers of the charging device, the chargers other than the downstreammost charger may be a scorotron charger or a corotron charger.
In the above-described embodiments, with respect to the number of the corona chargers provided in the charging device, the cases of two and three were described, but the number of the controls may also be four or more. Also in this case, similarly as in the above-described embodiments, the voltages applied to the respective corona chargers may only be required to be adjusted so that the formed surface potentials are target values thereof while successively forming the surface potentials in the superposition (synthesis) manner in the order from the upstream corona charger toward the downstream corona charger.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2014-245425 filed on Dec. 3, 2014, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2014-245425 | Dec 2014 | JP | national |