These and/or other aspects and utilities of the exemplary embodiments of the present general inventive concept will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings, of which:
Reference will now be made in detail to exemplary embodiments of the present general inventive concept, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout. The embodiments are described below to explain the present general inventive concept by referring to the figures.
Referring to
A manual paper feeding tray 5 is hingedly mounted to a front portion of the main body 1, so as to allow a user to promptly load one or more sheets of paper or paper of varying sizes thereon as needed. The paper manually loaded on the opened tray 5 is transferred into the main body 1 through a paper supply slot 3a formed at the paper feeding unit 3.
A printing unit 10 is provided inside the main body 1, so as to form a color image on the paper supplied from the paper feeding unit 3. The printing unit 10 includes an exposure part 12 and a developing part 13, which form a color toner image on a photosensitive drum 11. It is foreseen that the color toner image can be of a single color or a plurality of colors including, but not limited to yellow, magenta, cyan and black and/or combinations thereof. The printing unit 10 further includes a transfer part 14 which transfers the toner image formed on the photosensitive drum 11 to the paper, and a fixing part 15 which heat-pressure fixes the toner image transferred to the paper.
The paper container 20 provides a storage space to store in a feeding direction a plurality of sheets of paper therein, and a knockup plate 22 is provided in the storage space of the paper container 20. One end portion of the knockup plate 22 is pivotably coupled to the paper container 20, and the other end portion of the knockup plate 22 is elastically supported to be biased upward by an elastic member (not shown). Also, the paper container 20 is provided with a pair of opposing width adjusting plates 23 to align the paper loaded in the paper container 20 in a width direction of the paper, which may be perpendicular to the feeding direction. Accordingly, when the paper is loaded in the paper container 20, a front end of the paper is lifted up by the knockup plate 22 and directed toward the paper aligning unit 30. One end of the adjusting plate 23 is movably disposed into the paper container 20, and the other end of the adjusting plate 23 is extended from the one end and disposed to guide the paper through and/or across an opening 22a formed on the knock-up plate 22.
The pickup roller 25 is provided in the main body 1, and is rotated to pick up the paper sheet by sheet at which point the front end of the paper is lifted upward by the knockup plate 22, and to supply the paper to the paper aligning unit 30 in the feeding direction. In order to prevent malfunctions during the paper supply process, it is foreseen that a feed roller (not shown) may be provided between the pickup roller 25 and the paper aligning unit 30 in order to guide the paper to the paper aligning unit 30 in the event that the front end of a sheet of paper does not reach the paper aligning unit 30 within one rotation of the pickup roller 25.
As illustrated in
The paper aligning unit 30 is mounted on a paper print path L1-1 between the pickup roller 25 and the printing unit 10. The paper aligning unit 30 is supported by a bracket 27, and positioned along the paper print path L1-1 and after the knockup plate 22 in the feeding direction of the paper and at the upper portion of the paper container 20, as illustrated in
According to the present general inventive concept, the paper container 20 of the paper feeding unit 3 is provided with a paper supply case 40 for manually supplying the paper. As illustrated in
Similar to the paper container 20, the paper supply case 40 supplies paper loaded on the tray 5 to the paper aligning unit 30 by using a pickup roller 45 and feed rollers 46. It is foreseen that the feed rollers 46 may be selectively mounted in order to smoothly feed the paper as well as to prevent malfunctions during the paper supply process, such as if the front end of a sheet of paper does not reach the paper aligning unit 30 within one rotation of the pickup roller 45. The pickup roller 45 and the feed rollers 46 are sequentially mounted before the paper aligning unit 30 along a paper print path L1-2, as illustrated in
Accordingly, when viewing the paper feeding unit 3 as a whole, the paper aligning unit 30 is disposed between the paper container 20 and the paper supply case 40, the paper container 20 is disposed at the left side of the paper aligning unit 30, and the paper supply case 40 is disposed at the right side of the paper aligning unit 30. When mounting and dismounting the paper feeding unit 3, a user holds the paper supply case 40. Also, the paper supplied through the paper container 20 and the paper supply case 40 passes through the paper aligning unit 30 and is fed to the printing unit 10 of the main body 1 along a paper print path L1.
In order to enable printing on both surfaces of the paper, a two-sided printing unit 50 is provided in the main body 1, which diverts the paper, which has been printed on one surface, back to the printing unit 10.
The two-sided printing unit 50 diverts the paper, which has been printed on one surface, back to the printing unit 10 by reversely feeding the paper using backup rollers 4a provided at the discharging unit 4, as illustrated in
As illustrated in
Hereinafter, operation of the paper feeding unit of the image forming apparatus according to the present general inventive concept structured as above will be described with reference to
When the paper is automatically supplied from the paper container 20, the paper is fed to the main body 1 along the first print path L1-1. The paper stored in the paper container 20 is fed to the paper aligning unit 30 by the knockup plate 22 and the pickup roller 25. In the case that the front end of the paper is misaligned, the shutter 32 is not opened and the paper abuts a paper abutment surface 33 of the shutter 32, as illustrated by P1 in
The paper fed to the resistor rollers 31 is transferred along the paper print path L1. The toner image is formed and transferred to the paper at the developing part 13 and the transfer part 14 of the printing unit 10. The toner image is then heat-pressure fixed to the paper at the fixing part 15. The printed paper is discharged out of the main body 1 through the discharging unit 4.
When the paper is manually supplied from the paper supply case 40, the paper is fed along the second print path L1-2. The paper loaded on the paper supply case 40 is fed to the paper aligning unit 30 by the pickup roller 45 and the feed rollers 46. The second print path L1-2 intersects the first print path L1-1 at paper print path L1, at which point the paper is subject to the same process regardless of whether the paper originated from the first or second print paths L1-1 or L1-2.
When performing the two-sided printing, the paper, which has been printed on one surface by the above printing process, is diverted back to the paper aligning unit 30 along the return path L2. Before the paper, which has been printed on one surface, is discharged externally and onto the discharging unit 4, the paper is transferred to the lower portion of the main body 1 from the backup rollers 4a of the discharging unit 4, along the guide frame 51 forming the return path L2 and the reverse feed rollers 52 and 53. Then, the paper is transferred to the paper supply case 40 along the reverse feed tray 55 provided between the pickup roller 45 and the feed rollers 46 of the paper supply case 40, and fed to the paper aligning unit 30 by the feed rollers 46, at which point the paper enters the paper print path L1, which has been previously described above.
In the above description, it has been explained that the present general inventive concept is applied to a laser printer capable of color print and two-sided print, however, it is foreseen that the present general inventive concept can also be applied to other types of image forming apparatus, such as an ink jet printer, a multi-function printer, a copying machine and the like.
As apparent from the above description, the image forming apparatus of the present general inventive concept can prevent the problem of paper misalignment, which may happen between a separately provided main body and paper containing unit in a conventional image forming apparatus, by integrally providing the paper aligning unit 30 for aligning the paper to be supplied to the printing unit 10 with the paper container 20 of the paper feeding unit 3 as a single unit.
Further, since the paper container 20, the paper supply case 40, and the paper aligning unit 30 are integrally provided within the paper feeding unit 3, which is removable from the main body 1 as a unit, a user is able to easily remove the paper feeding unit 3 in order to inspect the paper aligning unit 30 as well as first and second print paths L1-1 or L1-2, which facilitates maintenance and/or removal of any misaligned papers.
Still further, since the paper container 20, the paper supply case 40, and the paper aligning unit 30 are integrally provided within the paper feeding unit 3, the number of components is reduced, which decreases manufacturing costs, increases ease of use, and thereby increases productivity.
Although embodiments of the present general inventive concept have been illustrated and described, it will be appreciated by those skilled in the art that changes may be made in this embodiment without departing from the principles and spirit of the present general inventive concept, the scope of which is defined in the claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2006-102529 | Oct 2006 | KR | national |