This application claims priority from Japanese Patent Application No. 2008-279844 filed on Oct. 30, 2008. The entire content of this priority application is incorporated herein by reference.
The present invention relates to an image forming apparatus and, in particular, reduction of deterioration of a conveying belt thereof.
In order to perform suitable image forming operation, an art for a conventional image forming apparatus to supply current to a conveying belt with a cleaning roller and detect the resistance of the conveying belt is known. Furthermore, because the conveying belt can be damaged or deteriorated if a voltage applying unit supplies too much current to the conveying belt, an art to detect the current (the resistance) flowing through the conveying belt and control the current is also known.
However, with an image forming apparatus using the art, the conveying belt has a portion charged by a transfer bias applied thereto, and detection of the current can be performed at the charged portion. Then, a current generated by the charge can be contained in the detected current, and the accuracy in detection of the current can be lower.
Therefore, there is a need for an image forming apparatus that has higher accuracy in detection of the current flowing through a carrier such as the conveying belt.
An aspect of the present invention is an image forming apparatus including: a carrier configured to carry developer; a voltage applying unit configured to apply a voltage to the carrier so that a carrier current flows from the voltage applying unit through the carrier; and a current detecting unit configured to detect the carrier current. The current detecting unit detects the carrier current at an uncharged portion of the carrier.
A first illustrative aspect according to the present invention will be described with reference to
1. Schematic Configuration of Printer
As illustrated in
The printer 1 includes a casing 2 and a sheet supply tray 4 disposed in a bottom portion in the casing 2 such that a plurality of sheets 3 (recording media; specifically, paper sheets) can be stacked therein. A sheet supply roller 5 is disposed above the front end of the sheet supply tray 4. As the sheet supply roller 5 rotates, a sheet 3 stacked uppermost in the sheet supply tray 4 is sent out toward a registration roller 6. The registration roller 6 corrects skew of the sheet 3 and, thereafter, conveys the sheet 3 onto a belt unit 11.
The belt unit 11 has two support rollers 12A, 12B and a loop conveying belt 13 (a carrier) stretched between the support rollers 12A, 12B. The conveying belt 13 (hereinafter referred to simply as the belt) is made of resin such as polycarbonate and has a mirror finished surface. The rear support roller 12B rotates and circulates the belt 13 so that the belt 13 conveys the sheet 3 carrying thereon backwardly (toward the right hand in
Furthermore, a cleaning unit 16 (a voltage applying unit, a cleaning unit, and a charge removing unit) is disposed below the belt unit 11. The cleaning unit 16 collects the toner T, paper powder, etc. that are clinging to the outer surface of the belt 13. The cleaning unit 16 has a cleaning roller 51, a cleaning shaft 53, and a backup roller 55. The cleaning roller 51 has a shaft 51A extending in the widthwise direction of the belt 13 and a foamed material such as silicon around the circumference of the shaft 51A. The backup roller 55 is made of metal and is disposed in a manner opposed to the cleaning roller 51 across the belt 13. The backup roller 55 is grounded (in particular, via a resistor R5 (see
The cleaning roller 51 contacts the belt 13 while rotates in a manner moving at the contacting portion in a direction opposite from the direction in which the belt 13 moves. Then, when a first cleaning voltage BCLN1 of, for example, −1200 V (a voltage having the polarity opposite from the polarity of the toner T) is applied to the cleaning roller 51, the toner T clinging to the belt 13 is electrically adsorbed to the cleaning roller 51. The surface of the belt 13 is thus cleaned.
Furthermore, the cleaning shaft 53 is a metal and is in contact with the cleaning roller 51. When a second cleaning voltage BCLN2 of, for example, −1600V (having an absolute value larger than the absolute value of the first cleaning voltage BCLN1) is applied to the cleaning shaft 53, the toner T clinging to the cleaning roller 51 is electrically adsorbed to the cleaning shaft 53. The toner T is thus collected.
Four exposure units 17 and the four process units 19 are arranged in tandem (in the right-left direction in
Each of the process units 19 includes a toner chamber 23 and, below the toner chamber 23, a supply roller 24, a developer roller 25, etc. The toner chambers 23 store the toner T in the respective colors. Toner T released from the toner chambers 23 is supplied to the respective developer rollers 25 by rotation of the respective supply rollers 24. Then, the toner T is positively charged by friction between the supply rollers 24 and the developer rollers 25.
Furthermore, each of the process units 19 has the photosensitive body 28 and a charger 29 of a scorotron type. The photosensitive body 28 has a surface covered by a photosensitive layer having a positive charge property. At a time of image forming operation, the photosensitive bodies 28 rotate, and, accompanying this, the surfaces of the photosensitive bodies 28 are uniformly and positively charged. Thereafter, the positively charged portions are exposed by the exposure units 17. Electrolatent images are thus formed on the surfaces of the photosensitive bodies 28.
Next, the toner T carried on the developer rollers 25 and positively charged is supplied to the electrolatent images on the surfaces of the photosensitive bodies 28 under developer biases. Thereafter, while the sheet 3 is passing transfer positions between the photosensitive bodies 28 and the transfer rollers 14, the toner images carried on the surfaces of the photosensitive bodies 28 are transferred onto the sheet 3 one by one with negative transfer voltages TR applied to the transfer rollers 14. The sheet 3 carrying the toner images transferred thereon is, next, conveyed to a fixing unit 31. The toner images are fused there. Thereafter, the sheet 3 is conveyed upwardly and is ejected onto the casing 2.
Furthermore, a high-voltage control unit 15 is disposed below, for example, the conveying belt 13.
2. Configuration of High-Voltage Control Unit
The high-voltage control unit 15 generates the voltages to be applied to the electric loads included in the printer 1. The electric loads include the transfer rollers 14, the developer rollers 25, the chargers 29, the cleaning unit 16, etc.
As illustrated in
The high-voltage circuit 63 of this illustrative aspect is, for example, a two-output circuit adopting a shunt system. The high-voltage circuit 63 generates the first cleaning voltage BCLN1 and the second cleaning voltage BCLN2 and outputs them. The high-voltage circuit 63 mainly has a high-voltage generating circuit 67 and a shunt circuit 69.
The high-voltage generating circuit 67 is a power circuit that generates the second cleaning voltage BCLN2 to be applied to the cleaning shaft 53. The high-voltage generating circuit 67 has a PWM (Pulse Width Modulation)-signal smoothing circuit 71, a transformer driving circuit 73, a voltage step-up and smoothing rectifier circuit 75, etc. The PWM-signal smoothing circuit 71 receives a PWM signal S1 from a PWM port 65A of the control circuit 65 and smoothes it. The transformer driving circuit 73 is controlled by the smoothed PWM signal S1. The transformer driving circuit 73 has a self-excitation winding 73A and, corresponding to the smoothed PWM signal S1, supplies the excited current to a primary winding 77A of the voltage step-up and smoothing rectifier circuit 75.
The voltage step-up and smoothing rectifier circuit 75 has a transformer 77, a diode 79, a smoothing capacitor 81, etc. An end of a secondary winding 77B of the transformer 77 is connected to the cleaning shaft 53 via the diode 79 and via a second output terminal TB2. In addition, the smoothing capacitor 81 and a discharge resistance 83 are connected in parallel with each other to the secondary winding 77B. With this configuration, the excited voltage in the primary winding 77A is stepped up and rectified in the voltage step-up and smoothing rectifier circuit 75 and is applied to the cleaning shaft 53 as the second cleaning voltage BCLN2.
Furthermore, the high-voltage generating circuit 67 has feedback resistances R1, R2 for detecting the second cleaning voltage BCLN2, and a detection signal S2 corresponding to this divided voltage is supplied to an A/D port 65B of the control circuit 65. The control circuit 65 executes constant voltage control by suitably changing the duty ratio of the PWM signal S1 on a basis of the detection signal S2 so that the second cleaning voltage BCLN2 is at an objected level. Note that the feedback resistance R2 is connected to a positive potential line (of +5 [V] in this illustrative aspect) so that a negative voltage is not applied to the A/D port 65B.
Note that the high voltages such as the transfer voltages TR to be applied to the transfer rollers 14 are also generated with a configuration similar to the high-voltage generating circuit 67.
The shunt circuit 69 generates the first cleaning voltage BCLN1 to be applied to the cleaning roller 51 on a basis of the second cleaning voltage BCLN2. The shunt circuit 69 mainly has a current control circuit 91 and a photocoupler 93.
The current control circuit 91 has a transistor 95 as a current regulating element. A first output terminal TB1 is electrically connected to the cleaning roller 51, and the transistor 95 is connected between the first output terminal TB1 and the second output terminal TB2. Corresponding to an on-state current of the photocoupler 93, the on-state resistance of the transistor 95 is varied, and the first cleaning voltage BCLN1 is varied. Specifically, corresponding to a PWM signal S4 outputted from a PWM port 65C of the control circuit 65, the base potential of the transistor 95 is changed.
Furthermore, the first output terminal TB1 is provided with feedback resistances R3, R4 for detecting the first cleaning voltage BCLN1, and a detection signal S3 corresponding to this divided voltage is supplied to an A/D port 65D of the control circuit 65. Note that the feedback resistance R4 is, similar to the resistance R2, connected to the positive potential line (of +5 [V] in this illustrative aspect). The control circuit 65 executes constant voltage control by suitably changing the duty ratio of the PWM signal S4 on a basis of the detection signal S3 so that the first cleaning voltage BCLN1 is at an objected level.
Furthermore, a current detection resistance R5 (a current detecting unit) is provided between the backup roller 55 and the ground, and a detection signal S5 corresponding to the terminal voltage of the current detection resistance R5 is supplied to an A/D port 65E of the control circuit 65. The control circuit 65 detects a belt current Ib and an inflow current Ir using the current detection resistance R5. The belt current Ib flows through the belt 13 while the first cleaning voltage BCLN1 is being applied to the belt 13. The inflow current Ir flows from the belt 13 to the cleaning unit 16 while the first cleaning voltage BCLN1 is not being applied to the belt 13. That is, the belt current Ib and the inflow current Ir are calculated from the value of the current detection resistance R5 and the detection signal S5 (the voltage value), which are already known, by Ohm's law. Note that the direction of the inflow current Ir depends on the polarity of the charge carried on the belt 13 and is not necessarily limited to the direction illustrated by the arrow in
3. Belt-Current Detection Process
Next, the belt-current detection process of the first illustrative aspect will be described with reference to
Note that detection of the belt current Ib in the first illustrative aspect is performed after the transfer rollers 14 terminate applying the transfer voltages TR and, further, after a predetermined time elapses. That is, in the first illustrative aspect, the determination whether the opposed portion of the belt 13 to the cleaning roller 51 (the cleaning unit) is an uncharged portion is made on a basis of whether the predetermined time has elapsed after applying of the transfer voltages is terminated. Measurement of time in this case is, for example, performed using a timer (not illustrated) provided in the control circuit 65.
When the printer 1 has received a print instruction, the control circuit 65, first, in step S110 in
Next, in step S130, the control circuit 65 applies the transfer voltages TR to the respective transfer rollers 14 at predetermined timings. Suppose here that the belt-cleaning voltages BCLN1, BCLN2 are applied at a time point t0 in
That is, corresponding to movement of the conveying belt 13 and during the transfer period to transfer the toner T of each color to the sheet 3, the transfer voltages TR_K, TR_Y, TR_M, TR_C are applied to the conveying belt 13. Accordingly, the charged portion of the conveying belt 13 can be unbroadened. As a result of this, the conveying belt 13 can have a broader area where the belt current Ib is detectable. Furthermore, the charge removing time can be shorter.
Note that the charged state of the belt 13 at a time point t2 in
Note that it is hereinafter considered such that, in a case where a voltage is applied to the belt 13, the belt 13 is equal to a capacitor, so that the belt 13 is charged (electrified) by charging with the applied voltage, while charge is removed from the belt 13 by discharging with the voltage applied thereto. That is, it is considered that the belt 13 is charged (electrified) by charging and that charge is removed from the belt 13 by discharging.
Next, in step S140, accompanying passage of the sheet 3 under the photosensitive body 28C, exposure is terminated, and applying of the high voltages such as the charging voltages and the developing biases are stopped. That is, printing is terminated. Next, in step S150, the control circuit 65 (the determining unit) determines whether the certain time K1 (the predetermined time) has elapsed. Note here that the certain time K1 is, as illustrated in
If it is determined in step S150 that the certain time K1 has not elapsed yet, the determination of the step S150 is repeated. The charged state of the belt 13 at a time point t4 is illustrated in
On the other hand, if it is determined in the step S150 that the certain time K1 has elapsed, the process goes to step S160 so that the control circuit 65 (the current detecting unit) detects the belt current Ib. In this case, because the first cleaning voltage BCLN1 can be utilized as it is as a current detection voltage, the control circuit 65 simply receives the detection signal S5 (the voltage value) by the current detection resistor R5 and, on a basis of the resistance value of the current detection resistor R5 and the detection signal S5, detects (calculates) the belt current Ib.
Next, in step S170, rotation of the photosensitive bodies 28 and the belt 13 are stopped, and this process is terminated.
As above, in the first illustrative aspect, the belt current Ib is detected when the certain time K1 has elapsed from the time point where applying of the voltage TR_C is stopped (the time point t3 in
Note that detection of the belt current Ib is executed not necessarily while the first cleaning voltage BCLN1 is being applied for print processing (during image forming operation). For example, the certain time may be, as illustrated in
Next, a belt-current detection process of a second illustrative aspect will be described with reference to
The belt-current detection process illustrated in
In step S210 in
Next, in step 230, the control circuit 65 (the determining unit) determines whether the measured inflow current Ir is equal to or less than a predetermined value Ith. If the inflow current is determined to be neither equal to nor less than the predetermined value Ith, the process returns to the step S220 so that the process of measuring the inflow current of the step S220 is repeated. Note that the predetermined value Ith is decided in advance by experiments etc. as a value that does not affect the accuracy in detection of the belt current Ib.
On the other hand, if the inflow current Ir is determined to be equal to or less than the predetermined value Ith in the step S230, the process goes to step S240 so that the control circuit 65 starts applying the belt cleaning voltages BCLN. Then, in step S250, the control circuit 65 waits for a predetermined time (e.g. 200 ms) until the belt cleaning voltages BCLN rise up to a stabilized state. Next, in step S260, the control circuit 65 detects the belt current Ib in a same manner as in the step S160 in
As above, in the second illustrative aspect, the determination whether the opposed portion of the belt 13 to the cleaning roller 51 is the uncharged portion is made simply on the basis of whether the inflow current Ir from the belt 13 into the cleaning unit 16 is equal to or less than the predetermined value Ith. Therefore, the inflow current Ir can be detected independently of the print processing. That is, in comparison with the first illustrative aspect, time can be spared for detecting the inflow current Ir. Therefore, detection of the inflow current Ir of the second illustrative aspect should be executed at the time when the printer 1 is powered on or is returned from the sleep mode, when the likelihood that the belt 13 is charged is less.
Note that, in a case where the inflow current Ir is detected after termination of the print processing, detection of the inflow current Ir equal to or less than the predetermined value Ith enables the belt current Ib to be detected as soon as the cleaning roller 51 and the uncharged portion of the belt 13 are opposed to each other after the charged portion of the belt 13 passes the cleaning roller 51.
A charge removing unit may be further included in the first illustrative aspect or in the second illustrative aspect. The charge removing unit removes (discharges) charge from the charged portion of the belt 13 by the transfer rollers 14 (the transfer units) etc. so that the portion becomes the uncharged portion of the belt 13. With the charge removing unit, the current detectable portion of the belt 13 can still be broadened.
For example, the charge removing unit may be configured by the cleaning roller 51 so that the cleaning roller 51 applies a predetermined voltage to the belt 13. In this case, the cleaning roller 51 should remove charge from a charged portion of the belt 13 while applying the cleaning voltage thereto. Then, charge can be suitably removed from the belt 13 without providing any new charge removing unit. Furthermore, the cleaning roller 51 can perform cleaning and removing of charge. That is, where the toner T is positively charged, adsorption of the toner T from the belt 13 and adsorption (discharging) of the positive charge on the outer surface of the belt 13 can be performed using the negative cleaning voltages BCLN1 at the same time during a predetermined period.
Furthermore, as illustrated in
Note that the determination whether the charge-removed portion (the uncharged portion) of the belt 13 has reached to be opposed to the cleaning roller 51 may be performed on a basis of, for example, similar to the first illustrative aspect, elapse of a predetermined time or, similar to the second illustrative aspect, by detecting the inflow current Ir.
The present invention is not limited to the illustrative aspects described above with reference to the drawings; for example, the following illustrative aspects are also within the scope of the present invention.
(1) In the above-described illustrative aspect, the present invention is adopted to the image forming apparatus of the transfer belt type, and the conveying belt 13 is illustratively used as the carrier. The present invention is not limited to this. For example, the present invention may be adopted to an image forming apparatus of an intermediate transfer type. In this case, an intermediate transfer belt and the applying unit can be used as the carrier and the transfer unit, respectively. Then, because the influence of charge of the intermediate transfer belt can be eliminated, the accuracy in detection of the current flowing through the intermediate transfer belt can be improved. That is, it is only necessary for the carrier to carry developer, and the present invention can be adopted in a case where detection of the current flowing through the carrier is required.
(2) In the above-described illustrative aspect, the transfer rollers 14 and the cleaning unit 16 use the negative transfer voltages and the negative cleaning voltage. In a case where, for example, the toner T has a negative charge property, it is required for the transfer rollers 14 and the cleaning unit 16 to use positive transfer voltages and cleaning voltage. The present invention can be adopted also to such a configuration.
(3) The printer 1 of the above illustrative aspects is a multi-color printer having the toner T in a plurality of colors. The printer may be a single-color (e.g. monochromatic) printer. Furthermore, while the printer 1 includes the exposure units 17 that expose the photosensitive bodies 28 under control of light emission of a plurality of light-emitting elements, the printer may be a laser printer that performs exposure using laser beam. That is, it is only necessary for the image forming apparatus to be an electrophotographic one.
Number | Date | Country | Kind |
---|---|---|---|
2008-279844 | Oct 2008 | JP | national |