This Nonprovisional application claims priority under 35 U.S.C. §119(a) on Patent Application No. 2010-57946 filed in Japan on 15 Mar. 2010 and Patent Application No. 2010-144766 filed in Japan on 25 Jun. 2010, the entire contents of which are hereby incorporated by reference.
(1) Field of the Invention
The present invention relates to an image forming apparatus, in particular relating to an image forming apparatus such as an electrostatic copier, laser printer, facsimile machine or the like that includes a developing device using a dual-component developer containing a toner and a magnetic carrier and forms images using toner based on electrophotography.
(2) Description of the Prior Art
Conventionally, image forming apparatuses based on electrophotography such as copiers, printers, facsimile machines and the like have been known. The image forming apparatus using electrophotography is constructed so as to form an image by forming an electrostatic latent image on the surface of a photoreceptor, e.g., photoreceptor drum, supplying toner to the photoreceptor drum from a developing device to develop the electrostatic latent image, transferring the toner image formed on photoreceptor drum by development to a sheet of paper etc., and fixing the toner image onto the sheet by means of a fixing device.
Recently, in the image forming apparatuses supporting full-color and/or high-quality images, a dual-component developer (which will be referred to hereinbelow simply as “developer”), which presents excellent charge performance stability, is often used.
This developer consists of a toner and a carrier, which are agitated in the developing device and frictionally rubbed with each other to thereby produce appropriately electrified toner.
The electrified toner in the developing device is supplied to a dual-component developer supporting member, e.g., the surface of a developing roller. The toner thus supplied to the developing roller is moved by electrostatic attraction to the electrostatic latent image formed on the photoreceptor drum. Hereby, a toner image based on the electrostatic latent image is formed on the photoreceptor drum.
Further, recently, image forming apparatuses are demanded to be made compact and operate at high speeds, hence it has become necessary to electrify the developer quickly and sufficiently and also convey the developer quickly and smoothly.
For this purpose, in order to disperse supplied toner promptly into the developer and provide the toner with an appropriate amount of charge, a circulating type developing device has been adopted in some image forming apparatuses.
This circulating type developing device includes: a developer conveying passage in which the developer is circulatively conveyed; a screw auger (developer conveying member) for conveying the developer while agitating the developer in the developer conveying passage; a toner supply port for leading toner from a toner container into the developer conveying passage; and a toner concentration detecting sensor for detecting the toner concentration in the developer. In this arrangement, when the toner concentration in the developer is lower than a predetermined level, a toner supply command is given to the toner cartridge so that toner is supplied to the developer conveying passage and the supplied toner is conveyed whilst being agitated (see Patent Document 1).
In order to keep toner concentration stable by toner supply, a configuration has been proposed with which high-precision toner concentration detection is made possible from the state in which the toner to be supplied is left in the toner tank to the toner empty state, by switching the level of the input signal to be input to the toner concentration detecting sensor, based on the output signal from the toner concentration detecting sensor for detecting toner concentration in the developer (see Patent Document 2).
In the aforementioned circulating type developing device using the dual-component developer, if toner to be supplied from the toner cartridge to the developing device is used up, the toner concentration in the developer gradually decreases. Since the occurrence of carrier phenomena (carrier adherence) to the photoreceptor drum increases with the decrease of toner concentration, it is necessary to perform toner empty detection.
Toner empty detection is to determine (detect) the occurrence of a toner empty state when, for example, the toner concentration of the developer in the developing device, detected by the toner supply detecting sensor does not increase even after a toner supply command was given to the toner cartridge.
However, in the case where no toner is supplied even after a toner supply command was given to the toner cartridge because of toner empty in the toner cartridge, if the toner concentration detecting sensor is located away from the toner supply port through which toner is supplied, detection of toner empty is delayed because the fall of toner concentration detected by the toner concentration detecting sensor is sluggish. As a result, there occurs the problem that the occurrence of carrier adherence becomes more frequent.
The present invention has been devised in view of the above problem, it is therefore an object of the present invention to provide an image forming apparatus that can detect toner empty, i.e., an empty state of toner to be supplied to the developing device, at an exact timing with precision.
The image forming apparatus according to the present invention for solving the above problem is configured as follows:
In accordance with the first aspect of the present invention, an image forming apparatus includes: a developing device; a toner supply device; a toner supply detecting sensor; and, a toner empty determination controller, and is characterized in that the developing device comprises: a developer container for storing a developer including a toner and a magnetic carrier; a developer conveying structure disposed inside the developer container for circulatively conveying the developer whilst agitating; a developing roller for supplying the toner included in the developer to a photoreceptor drum; and, a toner supply port that leads supplied toner into the developer container, the toner supply device supplies the toner into the developing device, the toner supply detecting sensor detects whether the toner has been supplied into the developer container, the toner empty determination controller instructs the toner supply device to supply toner to the developing device when the toner concentration of the developer in the developing device has become lower than a predetermined level, the toner empty determination controller determines that the toner in the toner supply device is used up when no toner supply is detected by the toner supply detecting sensor after the instruction of toner supply by the controller, and, the toner empty determination controller, based on the output result from the toner supply detecting sensor, corrects the toner empty determining threshold based on which toner empty is determined.
The second aspect of the present invention is characterized in that the toner empty determination controller performs the correction, based on, at least, any one of, the average of the differences between the detected values output from the toner supply detecting sensor before and after toner supply at the time of supplying toner, the control voltage correction result of the toner supply detecting sensor at the time of image quality control, and the deviation of the output value of the toner supply detecting sensor, from the reference value.
The third aspect of the present invention is characterized in that the toner empty determination controller performs the correction, based on, at least, any one of, the temperature and humidity environment (temperature/humidity information) under which the image forming apparatus is used, the mean coverage rate information of printout operation, and the life information of the developer.
The fourth aspect of the present invention is characterized in that the toner empty determination controller performs the correction, based on the amount of toner remaining in a replaceable toner storing container.
The fifth aspect of the present invention is characterized in that the toner supply detecting sensor is disposed near the toner supply port in the developer container.
The sixth aspect of the present invention is characterized in that the toner supply detecting sensor detects the magnetic permeability of the developer in the developer container.
The seventh aspect of the present invention is characterized in that the developing device includes: a first conveying passage and a second conveying passage that are sectioned by a partitioning wall and arranged to communicate with each other at both ends of the partitioning wall; and, a first conveying member and a second conveying member that are arranged as the developer conveying structure in the first conveying passage and second conveying passage, respectively, agitate and circulatively convey the developer in the first conveying passage and in the second conveying passage, in opposite directions to each other, the developing device supplies the developer inside the second conveying passage to the photoreceptor drum by means of the developing roller, the toner supply port is disposed over the first conveying passage, and, the toner supply detecting sensor is disposed at the bottom of the first conveying passage under the toner supply port.
The eighth aspect of the present invention is characterized in that the first conveying member is a screw auger having a rotary shaft and a helical blade, and the helical blade is formed so that the inclined angle relative to the axial direction of the rotary shaft (the angle formed between the rotary shaft and the outer peripheral edge of the helical blade when the rotary shaft is viewed along the axis) is specified to fall within the range of 30 degrees to 60 degrees.
The ninth aspect of the present invention resides in the image forming apparatus further including a dot counter for counting dots of data corresponding to image data to be transmitted to the exposure device (e.g., a laser scanner unit) for forming an electrostatic latent image on the photoreceptor drum surface, wherein the toner empty determination controller instructs the toner supply device to supply toner to the developing device based on the count of the dots of data from the dot counter.
For example, when the number of dots of data counted by the dot counter is small, the toner empty determination controller may instruct the toner supply device to supply a small amount of toner to the developing device. When a large number of dots of data are counted, the controller may instruct the toner supply device to supply a large amount of toner to the developing device. It is preferable that the amount of toner to be supplied has been specified in advance in relation with the condition of dots of data.
According to the first aspect of the present invention, for example, it is possible to absorb occasional fluctuation of the difference (ΔTCS) between the output values from the toner supply detecting sensor before and after toner supply at the time of supplying toner by the toner supply device, depending on the condition of the developer, it is hence possible to perform detection of toner empty at a more exact timing with a higher precision.
According to the second aspect of the present invention, since it is possible to set (modify) the toner empty determining threshold in accordance with the sensor sensitivity of the toner supply detecting sensor that varies depending on the condition of the developer, it is possible to perform detection of toner empty at a more exact timing with a higher precision.
According to the third aspect of the present invention, since it is possible to set (modify) the toner empty determining threshold in accordance with the sensor sensitivity of the toner supply detecting sensor that varies depending on the condition of the developer, it is possible to perform detection of toner empty at a more exact timing with a higher precision.
According to the fourth aspect of the present invention, it is possible to perform detection of toner empty at a more exact timing with a higher precision.
According to the fifth aspect of the present invention, since the toner supply detecting sensor detects presence or absence of toner supply immediately after giving a toner supply command to the toner supply device, it is possible to detect toner empty at once and hence prevent the occurrence of carrier adherence due to a decrease in toner concentration when toner in the toner supply device is used up.
According to the sixth aspect of the present invention, it is possible to easily detect the effect of toner supply by detecting change in toner concentration.
According to the seventh aspect of the present invention, the effect of toner supply can be detected with precision. Specifically, since the pressure on the developer becomes maximum at the bottom of the first conveying passage, voids are unlikely to form inside the developer. Accordingly it is possible to precisely detect the effect of toner supply with the toner supply detecting sensor.
According to the eighth aspect of the present invention, since the force for agitating the developer in the rotational direction of the first conveying member can be enhanced so that “floating toner”, the phenomenon of the added toner being conveyed floating over the developer, is unlikely to occur, it is possible for the toner supply detecting sensor to precisely detect the effect of toner supply.
According to the ninth aspect of the present invention, since it is possible to perform toner supply in a more exact manner compared to toner concentration control based on the toner concentration detected by the toner concentration detecting sensor, it is possible to perform toner concentration control and detection of toner empty, more precisely.
Now, the embodied mode for carrying out the present invention will be described with reference to the drawings.
Image forming apparatus 100 of the present embodiment forms an image with toners based on electrophotography, including: as shown in
This image forming apparatus 100 forms a multi-color or monochrome image on a predetermined sheet (recording paper, recording medium) in accordance with image data transmitted from the outside. Here, image forming apparatus 100 may also include a scanner or the like on the top thereof.
To begin with, the overall configuration of image forming apparatus 100 will be described.
As shown in
Accordingly, image forming apparatus 100 includes, as shown in
Here, the symbols a to d are used so that ‘a’ represents the components for forming black images, ‘b’ the components for forming cyan images, ‘c’ the components for forming magenta images and ‘d’ the components for forming yellow images. Image forming apparatus 100 includes exposure unit 1, fixing unit 12, a sheet conveyor system S and a paper feed tray 10 and a paper output tray 15.
Charger 5 electrifies the photoreceptor drum 3 surface at a predetermined potential.
As charger 5, other than the contact roller-type charger shown in
Exposure unit 1 is a laser scanning unit (LSU) including a laser emitter and reflection mirrors as shown in
Developing device 2 visualizes (develops) the electrostatic latent image formed on photoreceptor drum 3 with toner of BK, C, M or Y. Arranged over developing devices 2 (2a, 2b, 2c and 2d) are toner transport mechanisms 102 (102a, 102b, 102c and 102d), toner supply devices 22 (22a, 22b, 22c and 22d) and developing vessels (developer containers) 111 (111a, 111b, 111c and 111d).
Toner supply device 22 is arranged on the upper side of developing vessel 111 and stores unused toner (powdery toner). This unused toner is supplied from toner supply device 22 to developing vessel 111 by means of toner transport mechanism 102.
Cleaner unit 4 removes and collects the toner remaining on the photoreceptor drum 3 surface after development and image transfer steps.
Arranged over photoreceptor drums 3 is an intermediate transfer belt unit 8. Intermediate transfer belt unit 8 includes intermediate transfer rollers 6 (6a, 6b, 6c and 6d), an intermediate transfer belt 7, an intermediate transfer belt drive roller 71, an intermediate transfer belt driven roller 72, an intermediate transfer belt tensioning mechanism 73 and an intermediate transfer belt cleaning unit 9.
Intermediate transfer rollers 6, intermediate transfer belt drive roller 71, intermediate transfer belt driven roller 72 and intermediate transfer belt tensioning mechanism 73 support and tension intermediate transfer belt 7 to circulatively drive intermediate transfer belt 7 in the direction of an arrow B in
Intermediate transfer rollers 6 are rotatably supported at intermediate transfer roller fitting portions in intermediate transfer belt tensioning mechanism 73. Applied to each intermediate transfer roller 6 is a transfer bias for transferring the toner image from photoreceptor drum 3 to intermediate transfer belt 7.
Intermediate transfer belt 7 is arranged so as to be in contact with each photoreceptor drum 3. The toner images of different color components formed on photoreceptor drums 3 are successively transferred one over another to intermediate transfer belt 7 so as to form a full-color toner image (multi-color toner image). This intermediate transfer belt 7 is formed of an endless film of about 100 to 150 μm thick, for instance.
Transfer of the toner image from photoreceptor drum 3 to intermediate transfer belt 7 is effected by intermediate transfer roller 6 which is put in contact with the interior side of intermediate transfer belt 7. A high-voltage transfer bias (a high voltage of a polarity (+) opposite to the polarity (−) of the electrostatic charge on the toner) is applied to each intermediate transfer roller 6 in order to transfer the toner image.
Intermediate transfer roller 6 is composed of a shaft formed of metal (e.g., stainless steel) having a diameter of 8 to 10 mm and a conductive elastic material (e.g., EPDM, foamed urethane, etc.,) coated on the shaft surface. Use of this conductive elastic material enables intermediate transfer roller 6 to uniformly apply high voltage to intermediate transfer belt 7. Though in the present embodiment, roller-shaped elements (intermediate transfer rollers 6) are used as the transfer electrodes, brushes etc. can also be used in place.
The electrostatic latent image formed on each of photoreceptor drums 3 is developed as described above with the toner associated with its color component into a visual toner image. These toner images are laminated on intermediate transfer belt 7, laying one image over another. The thus formed lamination of toner images is conveyed by rotation of intermediate transfer belt 7 to the contact position (transfer position) between the conveyed paper and intermediate transfer belt 7, and is transferred to the paper by a transfer roller 11 arranged at that position. In this case, intermediate transfer belt 7 and transfer roller 11 are pressed against each other forming a predetermined nip while a voltage for transferring the toner image to the paper is applied to transfer roller 11. This voltage is a high voltage of a polarity (+) opposite to the polarity (−) of the electrostatic charge on the toner.
In order to keep the aforementioned nip constant, either transfer roller 11 or intermediate transfer belt drive roller 71 is formed of a hard material such as metal or the like while the other is formed of a soft material such as an elastic roller or the like (elastic rubber roller, foamed resin roller etc.).
Of the toner adhering to intermediate transfer belt 7 as the belt comes into contact with photoreceptor drums 3, the toner which has not been transferred from intermediate transfer belt 7 to the paper during transfer of the toner image and remains on intermediate transfer belt 7 would cause contamination of color toners at the next operation, hence is removed and collected by intermediate transfer belt cleaning unit 9.
Intermediate transfer belt cleaning unit 9 includes a cleaning blade (cleaning member) that is put in contact with intermediate transfer belt 7. Intermediate transfer belt 7 is supported from its interior side by intermediate transfer belt driven roller 72, at the area where this cleaning blade is put in contact with intermediate transfer belt 7.
Paper feed tray 10 is to stack sheets (e.g., recording paper) to be used for image forming and is disposed under the image forming portion and exposure unit 1. On the other hand, paper output tray 15 disposed at the top of image forming apparatus 100 stacks printed sheets facedown.
Image forming apparatus 100 also includes sheet conveyor system S for guiding sheets from paper feed tray 10 and from a manual feed tray 20 to paper output tray 15 by way of the transfer portion and fixing unit 12. Here, the transfer portion is located between intermediate transfer belt drive roller 71 and transfer roller 11.
Arranged along sheet conveyor system S are pickup rollers 16 (16a, 16b), a registration roller 14, the transfer portion, fixing unit 12 and feed rollers 25 (25a to 25h) and the like.
Feed rollers 25 are a plurality of small-diametric rollers arranged along sheet conveyor system S to promote and assist sheet conveyance. Pickup roller 16a is a roller disposed at the end of paper feed tray 10 for picking up and supplying the paper one sheet at a time from paper feed tray 10 to sheet conveyor system S. Pickup roller 16b is a roller disposed at the vicinity of manual feed tray 20 for picking up and supplying the paper, one sheet at a time, from manual feed tray 20 to sheet conveyor system S. Registration roller 14 temporarily suspends the sheet being conveyed on sheet conveyor system S and delivers the sheet to the transfer portion at such timing that the front end of the sheet meets the front end of the toner image on intermediate transfer belt 7.
Fixing unit 12 includes a heat roller 81, a pressing roller 82 and the like. These heat roller 81 and pressing roller 82 rotate while nipping the sheet therebetween. Heat roller 81 is controlled by a controller 32 (
Heat roller 81 fuses, mixes and presses the lamination of color toner images transferred on the sheet by thermally pressing the sheet with pressing roller 82 so as to thermally fix the toner onto the sheet. The sheet with a multi-color toner image (a single color toner image) fixed thereon is conveyed by plural feed rollers 25 to the inversion paper discharge path of sheet conveyor system S and discharged onto paper output tray 15 in an inverted position (with the multi-color toner image placed facedown).
Next, the operation of sheet conveyance by sheet conveyor system S will be described.
As shown in
In the case of one-sided printing, the sheet conveyed from paper feed tray 10 is conveyed by feed roller 25a in sheet conveyor system S to registration roller 14 and delivered to the transfer portion (the contact position between transfer roller 11 and intermediate transfer belt 7) by registration roller 14 at such timing that the front end of the sheet meets the front end of the image area including a lamination of toner images on intermediate transfer belt 7. At the transfer portion, the toner image is transferred onto the sheet. Then, this toner image is fixed onto the sheet by fixing unit 12. Thereafter, the sheet passes through a feed roller 25b to be discharged by a paper output roller 25c onto paper output tray 15.
Also, the sheet conveyed from manual feed tray 20 is conveyed by plural feed rollers 25 (25f, 25e and 25d) to registration roller 14. From this point, the sheet is conveyed and discharged to paper output tray 15 through the same path as that of the sheet fed from the aforementioned paper feed tray 10.
On the other hand, in the case of dual-sided printing, the sheet having been printed on the first side and passed through fixing unit 12 as described above is nipped at its rear end by paper discharge roller 25c. Then the paper discharge roller 25c is rotated in reverse so that the sheet is guided to feed rollers 25g and 25h, and conveyed again through registration roller 14 so that the sheet is printed on its rear side and then discharged to paper output tray 15.
Arranged near manual feed tray 20 is a hygrothermo sensor 90 so as to detect the temperature and humidity environment under which image forming apparatus 100 is used.
Next, the configuration of toner supply device 22 will be specifically described.
As shown in
Toner storing container 121 is a container part that has a substantially semicylindrical configuration with a hollow interior, supports toner agitator 125 and toner discharger 122 in a rotatable manner and stores toner. As shown in
Toner agitator 125 is a plate-like part that rotates about a rotary axis 125a as shown in
Toner discharger 122 dispenses the toner in toner storing container 121 from toner discharge port 123 to developing vessel 111, and is formed of a screw auger having a toner conveyor blade 122a and a toner discharger rotary shaft 122b and a toner discharger rotating gear 122c, as shown in
Provided between toner discharger 122 and toner agitator 125 is a toner discharger partitioning wall 124. This wall makes it possible to keep and hold the toner scooped by toner agitator 125 in an appropriate amount around toner discharger 122.
As shown in
Toner storing container 121 has a configuration that allows easy attachment and removal. At the time of toner empty, image forming apparatus 100 stops the printing job and displays a message, or turns on a lamp for recommendation of replacement of the toner container. When toner storing container 121 is replaced by a new one by the user, the printing job becomes able to be restarted and the message or the lamp for toner container replacement goes out. Toner storing container 121 has an IC memory chip MC (
IC chip memory MC is attached to and removed from image forming apparatus 100 together with toner storing container 121 by the user. When the aforementioned toner discharger drive motor 126 (
Image forming apparatus 100 of the present embodiment includes: as shown in
Controller 32 also functions as a toner empty determinater 130 (see
In image forming apparatus 100, toner supply detecting sensor 119 is arranged near toner supply port 115a and the toner empty determining threshold can be varied based on the output result from toner supply detecting sensor 119.
To begin with, developing device 2 will be described with reference to the drawings.
As shown in
As shown in
Developing vessel 111 is a container for holding a dual-component developer that contains a toner and a carrier (which will be simply referred to hereinbelow as “developer”). Developing vessel 111 includes developing roller 114, first conveying member 112, second conveying member 113 and the like. Here, the carrier of the present embodiment is a magnetic carrier presenting magnetism.
Arranged on the top of developing vessel 111 is removable developing vessel cover 115, as shown in
Arranged between first conveying member 112 and second conveying member 113 in developing vessel 111 is partitioning plate 117, as shown in
Partitioning plate 117 is arranged so that its ends, with respect to the axial direction of first and second conveying members 112 and 113, are spaced from respective interior wall surfaces of developing vessel 111 (
First conveying member 112 and second conveying member 113 are arranged so that their axes are parallel to each other with their peripheral sides opposing each other across partitioning plate 117, and are rotated in opposite directions. That is, as shown in
As shown in
As shown in the sectional view of
Specifically, when the inclined angle θ of the helical blade of first conveying member 112 is equal to or greater than 30 degrees and equal to or smaller than 60 degrees, the force of first conveying member 112 for agitating the developer in the rotational direction is so strong that the so-called “floating toner” phenomenon, the phenomenon of the supplied toner being conveyed floating over the developer, is unlikely to occur. Accordingly, it is possible for toner supply detecting sensor 119 to detect toner concentration of the developer with precision even after toner supply.
On the other hand, when the inclined angle θ of the helical blade is less than 30 degrees, the speed of the developer being conveyed by first conveying member 112 is low so that the developer is abraded quickly. When the inclined angle θ of the helical blade exceeds 60 degrees, the speed of the developer being conveyed by first conveying member 112 becomes so high that the floating toner phenomenon is prone to occur.
Developing roller 114 (
The developer conveyed by developing roller 114 comes in contact with photoreceptor drum 3 in the area where the distance between developing roller 114 and photoreceptor drum 3 becomes minimum. This contact area is called a developing nip portion N (
Arranged close to the surface of developing roller 114 is a doctor blade (layer thickness limiting blade) 116.
Doctor blade 116 is a rectangular plate-shaped member that is extended parallel to the axial direction of developing roller 114, disposed vertically below developing roller 114 and supported along its longitudinal side by developing vessel 111 so that its opposite longitudinal side is spaced from the developing roller 114 surface. This doctor blade 116 may be made of stainless steel, or may be formed of aluminum, synthetic resin or the like.
Concerning the attachment of toner supply detecting sensor 119, with regard to the horizontal direction (developer conveying direction), the sensor is attached at a position near and on the downstream side of toner supply port 115a with respect to the developer conveying direction (the direction of arrow X) while with regard to the vertical direction, the sensor is attached on the base of developing vessel 111 vertically below first conveying member 112, as shown in
Toner supply detecting sensor 119 is electrically connected to controller 32 (
The magnetic permeability detecting sensor is connected to an unillustrated power supply. This power supply applies to the magnetic permeability detecting sensor the drive voltage for driving the magnetic permeability detecting sensor and the control voltage for outputting the detected result of toner concentration to the control device. Application of voltage to the magnetic permeability detecting sensor from the power supply is controlled by the control device. The magnetic permeability detecting sensor is a sensor of a type that receives application of a control voltage and outputs the detected result of toner concentration as an output voltage. Basically, the sensor is sensitive in the middle range of the output voltage, so that the applied control voltage is adjusted so as to produce an output voltage around that range. Magnetic permeability detecting sensors of this kind are found on the market, examples including TS-L, TS-A and TS-K (all of these are trade names of products of TDK Corporation).
Now, conveyance of the developer in the developing vessel of developing device 2 will be described.
As shown in
In developing vessel 111, first conveying member 112 and second conveying member 113 are rotationally driven by toner discharger drive motor 126 (
On the other hand, in second conveying passage Q, the developer is agitated and conveyed in the direction of arrow Y by second conveying member 113 to reach second communicating path b. Then, the developer reaching second communicating path b is conveyed through second communicating path b to first conveying passage P.
That is, first conveying member 112 and second conveying member 113 agitate the developer while conveying it in opposite directions.
In this way, the developer is circulatively moving in developing vessel 111 along first conveying passage P, first communicating path a, second conveying passage Q and second communicating path b, in this mentioning order. In this arrangement, the developer is carried and drawn up by the surface of rotating developing roller 114 while being conveyed in second conveying passage Q, and the toner in the drawn up developer is continuously consumed as transferring to photoreceptor drum 3.
In order to compensate for this consumption of toner, unused toner is supplied from toner supply port 115a to the first conveying passage P. The thus supplied toner is agitated and mixed in first conveying passage P with the previously existing developer.
Next, the toner concentration control method (process) and toner empty determinater 130 in image forming apparatus 100 will be described in a detailed manner.
The toner concentration control method may use a general method. For example, a control method using a toner concentration detecting sensor, a control method based on patch image density, a control method based on dot counting, and the like can be considered. Of these, the control method based on dot counting is preferable.
As shown in
Controller 32 for making toner concentration control instructs toner supply device 22 to supply toner to developing device 2 in accordance with the count of dots of data from dot counting unit 35.
If toner supply detecting sensor 119 does not detect any effect of toner supply after the toner supply command, control unit 32 determines that no toner has been supplied from toner supply device 22 to developing device 2, or that no toner remains in toner supply device 22 (toner empty).
Now, the control system of image forming apparatus 100 will be described based on a block diagram.
As shown in
In image forming apparatus 100, toner concentration control is mainly carried out by means of dot counting unit 35, control unit 32 and toner discharger drive motor 126, as shown in
Dot counting unit 35 is to detect the total number of pixels of images (electrostatic latent images) formed on photoreceptor drum 3 corresponding to the printed images, and stores the total count of the pixels of the images to be printed and the total count of the images that have been printed heretofore as a dot count value. The thus calculated dot count value is recorded into memory ME (
Control unit 32 determines the amount of toner to be consumed for the current image forming based on the dot count value and controls rotational driving of toner discharger drive motor 126 in accordance with the determined amount of toner.
In this way, toner corresponding to the amount of toner consumed from developing device 2 (developing vessel 111) is supplied from toner supply device 22 into developing device 2 (developing vessel 111).
In image forming apparatus 100, toner empty determiner 130 is mainly configured of toner supply detecting sensor 119 and control unit 32, as shown in
Control unit (toner empty determination controller) 32 includes: as shown in
In the present embodiment, the toner concentration of the developer in developing vessel 111 is continuously monitored by toner supply detecting sensor 119, and if toner supply detecting sensor 119 has not detected any effect of toner supply even after a toner supply command was given from control unit 32 to toner supply device 22, control unit (toner empty determination controller) 32 determines the status of toner to be that of empty.
Next, toner supply to developing device 2 in image forming apparatus 100 of will be described.
Toner supply to developing device 2 in image forming apparatus 100 is performed from toner supply device 22 to developing device 2 by control unit 32, which directs toner supply device 22 to supply toner to developing device 2 when the toner concentration of the developer in developing vessel 111 of developing device 2 has lowered and becomes lower than a predetermined level.
Toner supply into developing vessel 111 is detected by toner supply detecting sensor 119. Since toner supply detecting sensor 119 is disposed on the base in the first conveying passage P under toner supply port 115a, if toner is added to the developer from toner supply port 115a, it is possible to promptly detect change of the magnetic permeability of the developer. That is, it is possible to immediately recognize whether or not toner supply from toner supply device 22 is performed.
Accordingly, if toner supply detecting sensor 119 does not detect any change of the magnetic permeability of the developer even after a toner supply command was given from control unit 32 to toner supply device 22, it is possible to determine that no toner supply from toner supply device 22 has been made. In other words, control unit 32 immediately determines that the toner in toner supply device 22 is used up (toner empty).
According to the present embodiment having the configuration described heretofore, since toner supply detecting sensor 119 is disposed in the vicinity of toner supply port 115a of developing device 2 and on the bottom of first conveying passage P under toner supply port 115a, it is possible to promptly detect a change of the magnetic permeability when toner is supplied from toner supply device 22.
Accordingly, in a case where toner supply detecting sensor 119 has detected no change in magnetic permeability when the toner concentration of the developer inside developing device 2 had become lower than the predetermined level and the toner concentration controller directed toner supply device 22 to supply toner, control unit 32 immediately determines that the toner in toner supply device 22 is used up (toner empty). As a result, it is possible to prevent the occurrence of carrier adherence to photoreceptor drum 3 due to a decrease in toner concentration when a toner image is formed on photoreceptor drum 3.
Further, since first conveying member 112 is constructed so that the inclined angle θ of the helical blade falls within the range from 30 degrees to 60 degrees, the force of agitating the developer in the rotational direction of first conveying member 112 becomes strong so that the so-called “floating toner” phenomenon, the phenomenon of the added toner being conveyed floating over the developer, is unlikely to occur. Accordingly, it is possible for toner supply detecting sensor 119 to detect change in magnetic permeability of the developer with precision even after toner supply to developing device 2.
Next, how to determine the toner empty timing of toner supply device 22 will be specifically described with reference to the drawings.
In image forming apparatus 100, the toner empty timing of toner supply device 22 is determined based on the change in magnetic permeability detected by toner supply detecting sensor 119 before and after a toner supply at the timing of supplying toner from toner supply device 22 and the toner empty determining threshold that is corrected based on the change in magnetic permeability and other factors.
Specifically, the output value from toner supply detecting sensor 119 is continuously monitored as its average in one cycle of first helical conveying blade 112a, as shown in
Then, immediately after a command (toner supply signal) is given to toner discharger drive motor 126 so as to cause discharger 122 of toner supply device 22 to rotate, the average output value from toner supply detecting sensor 119 is sampled for a predetermined period of time T0.
In
The maximum and minimum values of the sampling data by toner supply detecting sensor 119 in sampling time T0 are denoted as B and A, respectively, and the difference Δ(B−A) (which will be called “ΔTCS” hereinbelow) between the sensor output values before and after a toner supply is calculated.
That is, since there is a time lag from the start of toner supply based on the generation of the toner supply signal up to detection of toner supply by toner supply detecting sensor 119, the maximum value B is a sensor output value before a toner supply and the minimum value A is a sensor output value after the toner supply. Accordingly, it is necessary to select such a sampling time T0 as to be able to detect both the maximum value B and the minimum value A, taking the time lag into consideration.
Every time toner discharger drive motor 126 starts operating, ΔTCS is calculated and stored based on the varying output values from toner supply detecting sensor 119 before and after the toner supply, and the average of the latest M ΔTCS values is calculated (which will be referred to hereinbelow as “the first moving average”.
Further, in the present embodiment, the toner empty determining threshold is varied based on the result of image quality control (process control), the average of the latest N ΔTCS values (which will be referred to hereinbelow as “the second moving average”, and other factors, as shown in
Times T1, T2 and T3 in
When the first moving average becomes lower than the toner empty determining threshold (in the state at time T4), the supplied amount of toner is determined to reach a sufficiently low level so that a toner empty determination is made.
Now, the method of modifying the toner empty determining threshold will be described specifically.
In the present embodiment, tables given in
As shown in
In order to implement correcting functions 131 to 137, control unit 32 uses the table for setting the default values of the thresholds for toner empty determination and table for their correction, as shown in
In the tables shown in
To begin with, the default value (initial set value) of the toner empty determining threshold for toner supply device 22 of each color is set at 10 for all of BK (black), C (cyan), M (magenta) and Y (yellow).
The toner empty determining threshold is corrected in accordance with the table of
Specifically, as shown in
That is, in order to modify the toner empty determining threshold for each color, a corrective value in accordance with the second moving average as the average of N (N>M) ΔTCSs is acquired from the table shown in
Specifically, it is determined that the sensor sensitivity of toner supply detecting sensor 119 has become low when the second moving average is small, and the toner empty determining threshold is made smaller. On the other hand, it is determined that the sensor sensitivity of toner supply detecting sensor 119 has become high when the second moving average is large, and the toner empty determining threshold is made greater.
Here, in the present embodiment, M for calculation for the first moving average is designated at 10 and N for calculation for the second moving average is designated at 30. In order to deal with occasional fluctuation of ΔTCS depending on the condition of the developer and perform correct detection of empty timing, N is designated to be greater than M (N>M). However, the present invention should not be limited to the above numbers. Further, though it is preferable that N>M, it goes without saying that it is possible to designate N equal to M so as to improve processing efficiency.
Also, based on the table shown in
Specifically, as shown in
That is, the control voltage is adjusted so as to restore the sensor output value from toner supply detecting sensor 119 to the reference value (128), at the time of image quality control (process control) in image forming apparatus 100. Then, the corrective value for the toner empty determining threshold in accordance with the corrective value for the control voltage at the time of image quality control (the amount of correction of the control voltage) is acquired from the table shown in
In this case, when the control voltage at the time of image quality control is corrected to the positive side, it is determined that the sensor sensitivity has become low due to increase in toner concentration, and the toner empty determining threshold is made smaller. On the contrary, when the control voltage at the time of image quality control is corrected to the negative side, it is determined that the sensor sensitivity has become high due to decrease in toner concentration, and the toner empty determining threshold is made greater.
Also, based on the table shown in
Specifically, as shown in
That is, the TCS variation is calculated by subtracting the TCS reference value (128) from the TCS maximum (the B value in the drawing) when ΔTCS, the difference before and after toner supply at the time of supplying toner in image forming apparatus 100, is calculated. Then, the corrective value for the toner empty determining threshold in accordance with the TCS variation at the time of toner supply is acquired from the table shown in
When the TCS variation is negative, it is determined that the sensor sensitivity has become low due to increase in toner concentration, and the toner empty determining threshold is made smaller. On the contrary, when the TCS variation is positive, it is determined that the sensor sensitivity has become high due to decrease in toner concentration, and the toner empty determining threshold is made greater.
Here, the aforementioned TCS reference value, 128 is also taken based on the standard that 3.3 V, the maximum output value from toner supply detecting sensor 119 is set at 256. However, the present invention should not be limited to this.
Further, image forming apparatus 100 calculates the ambient area class in accordance with the temperature and humidity data detected by hygrothermo sensor 90, based on the table shown in
Specifically, as shown in
Correction based on the above ambient area class is performed taking into account that when the ambient area class is “equal to or greater than 6”, i.e., under a high-temperature and high-humidity environment, the fluidity of the developer lowers so that it takes long time for the supplied toner to reach toner supply detecting sensor 119 and ΔTCS tends to be smaller compared to that under a low-temperature low-humidity environment.
Image forming apparatus 100 also calculates the mean coverage rate information from the dot count of printout operation for the last L pages. The toner empty determining threshold is modified in accordance with the mean coverage rate information of printout operation, based on the table shown in
Specifically, as shown in
Correction based on the above mean coverage rate information is performed taking into account that when the mean coverage rate of the last L pages of printout is “equal to or lower than 6.0”, i.e., during a low-coverage printing job, the toner in the developer is unlikely to be replaced so that the fluidity of the developer lowers and ΔTCS tends to be smaller compared to that during a high-coverage printing job.
Further, the toner empty determining threshold is modified in accordance with the developer life information, based on the table shown in
Specifically, as shown in
The above correction is performed by taking into account that when the developer life exceeds “50K”, or in the second half of the developer life, the fluidity of the developer lowers due to separation of the coated resin from the surface of the carrier in the developer or due to fusion and adherence of toner to the carrier surface, so that ΔTCS tends to be low compared to that in the first half of the developer life.
Also, based on the table shown in
Specifically, as shown in
That is, image forming apparatus 100 calculates the amount of residual toner from the total rotation time of toner discharger drive motor 126 stored in IC memory chip MC (
Further, for the toner empty determining threshold for each color in image forming apparatus 100, the corrective value to the toner empty determining threshold is restricted by the upper and lower limits, based on the table shown in
Specifically, as shown in
That is, in the present embodiment, in order to prevent over-correction of the toner empty determining threshold, the sum of: (1) the corrective value in accordance with the change of the sensor sensitivity of toner supply detecting sensor 119; (2) the corrective value in accordance with the amount of correction of the control voltage at the time of image quality control; (3) the corrective value in accordance with the variation of the output value from toner supply detecting sensor 119; (4) the corrective value in accordance with the temperature and humidity environment; (5) the corrective value in accordance with the mean coverage rate information of printout operation; (6) the corrective value in accordance with the developer life information; and (7) the corrective value in accordance with the amount of residual toner, as the tonal corrective value, is restricted by the upper and lower limits.
In the present embodiment, based on the values of the tables stated above, the toner empty determining threshold is calculated by the following calculation formula (a);
The toner empty determining threshold=the default value+(1)+(2)+(3)+(4)+(5)+(6)+(7) (a).
With the above arrangement, when the first moving average (the average of the last M ΔTCSs) detected by toner supply detecting sensor 119 becomes lower than the toner empty determining threshold, the occurrence of toner empty is determined.
In the above way, changing the toner empty determining threshold in accordance with the change of the sensor sensitivity of toner supply detecting sensor 119 depending on the condition of the developer, the amount of correction of the control voltage at the time of image quality control, the variation of the output value from toner supply detecting sensor 119, the temperature and humidity environment, the mean coverage rate information of printout operation, the developer life information and the amount of toner remaining in the toner storing container, makes it possible to deal with occasional fluctuation of ΔTCS depending on the condition of the developer and perform exact detection of a toner empty timing.
As a result, it is possible to perform stable toner supply without causing too early indication of toner empty despite a large amount of toner remaining or without causing shortage of toner due to too late toner empty detection, it is hence possible to provide an image forming apparatus that can stably produce high-quality images.
Further, in order to change the toner empty determining threshold in accordance with the average of the differential outputs of the toner supply detecting sensor, the control voltage for adjusting and restoring the output value from the toner supply detecting sensor to the reference value, the variation of the reference output value from toner supply detecting sensor 119, the temperature and humidity environment, the mean coverage rate information of printout operation, the developer life information and the amount of toner remaining in the toner storing container, individual associated tables are used, so that it is possible to perform correction processes easily, based on the output from the toner supply detecting sensor and the like.
Moreover, since the amount of correction to the toner empty determining threshold is limited by the upper and lower limits, it is possible to prevent over-correction of the toner empty determining threshold and achieve stable toner empty determination without causing a large error.
Though, in the present embodiment, in order to correct (modify) the toner empty determining threshold, the corrective values (1) to (7), shown in
The above embodiment was described taking an example in which the image forming apparatus of the present invention is applied to image forming apparatus 100 shown in
Having described heretofore, the present invention is not limited to the above embodiment, various changes can be made within the scope of the appended claims. That is, any embodied mode obtained by combination of technical means modified as appropriate without departing from the spirit and scope of the present invention should be included in the technical art of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2010-057946 | Mar 2010 | JP | national |
2010-144766 | Jun 2010 | JP | national |