Exemplary embodiments of the present invention are explained in detail below with reference to the accompanying drawings.
The image forming apparatus according to the embodiment is a tandem-type color image forming apparatus with a scanner. The image forming apparatus includes an apparatus body 1, an image forming unit 2, a sheet feeding unit 20, and an image reading device 30. The image forming unit 2 is housed in the apparatus body 1 at the center of the apparatus body 1. The sheet feeding unit 20 is located below the image forming unit 2 and feeds sheets on each of which an image is to be formed by the image forming unit 2. The image reading device 30 is located above the image forming unit 2 and serves as the scanner.
The image forming unit 2 includes a plurality of photoreceptors 3a, 3b, 3c and 3d that are drum-shaped and each serve as an image carrier. Images of different colors are formed on the photoreceptors 3a to 3d. In the image forming apparatus shown in
The image forming unit 2 also includes, around the photoreceptors 3, chargers 7, an optical scanning unit (laser scanning unit) 8, developing units 9, transferring units 10, and cleaning units 11. The chargers 7 charges surfaces of the photoreceptors 3. The optical scanning unit 8 applies a laser beam based on information on an image to each of the surfaces of the photoreceptors 3. The developing units 9 each visualize a latent image formed by irradiation on the surface of a corresponding one of the photoreceptors 3. The transferring units 10 each face a corresponding one of the photoreceptors 3 with the intermediate transfer belt 4 in between. The cleaning units 11 each remove and collect residual toner on the surface of a corresponding one of the photoreceptors 3 after the latent image is transferred onto the intermediate transfer belt 4.
To form an image, first, the photoreceptor 3 is driven to rotate clockwise in
To form a color image, the above operation is performed on each of the photoreceptors 3 to form yellow, cyan, magenta, and black toner images on the photoreceptors 3a to 3d. The color toner images are sequentially transferred to the intermediate transfer belt 4 and overlap thereon. The image forming unit 2 further includes a secondary transfer roller 12 opposing a supporting roller 6 with the intermediate transfer belt 4 in between.
The sheet feeding unit 20 includes a sheet tray 21, a sheet feeding roller 22, a friction pad 23, and a re-transferring path 24. The sheet tray 21 serves as a sheet housing unit for stacking sheets S such as transfer paper sheets or resin films. The sheet feeding roller 22 feeds the stacked sheets S from the sheet tray 21 one by one. The friction pad 23 serves as a separation unit that separates a plurality of overlapping sheets S fed from the sheet tray 21. The re-transferring path 24 is used for duplex printing. As shown in
The sheet S fed by the sheet feeding unit 20 is transferred towards resist rollers 13, and the edge of the sheet touches the resist rollers 13 at rest so that the sheet S can be in an adjusted position. Thereafter, the resist rollers 13 restart rotating to send the sheet S to a secondary transfer unit including the secondary transfer roller 12 such that the color toner image formed on the intermediate transfer belt 4 and the sheet S overlap appropriately at the secondary transfer unit.
The sheet S on which the toner image is transferred by the secondary transfer unit is transferred to a fixing unit 14, and the fixing unit 14 fixes the unfixed toner image. Thereafter, the sheet S is discharged to a sheet stacking unit 40 above the apparatus body 1. After the transfer of the toner image, a belt cleaner 15 removes the residual toner on the surface of the intermediate transfer belt 4.
The image reading device 30 is described below with reference to
On the upper surface of the image reading device 30, a slit glass (a first reading position) 72 and a contact glass (a second reading position) 73 are provided. Below the slit glass 72 and the contact glass 73, an exposing lamp 74 and a first mirror 75 that serve as an image reading unit are provided. To read an original sheet on the contact glass 73, the exposing lamp 74 and the first mirror 75 move from left to right in
On the image reading device 30, an auto document feeder (hereinafter, “ADF”) 76 is provided. The ADF 76 includes a reflection plate 77 that serves as reference white for white balance when the surface of an original sheet on the contact glass 73 is read, and that presses the original sheet against the contact glass 73. The ADF 76 is pivotally attached to the image reading device 30 with hinges 78 so as to open and close with respect to the image reading device 30.
On the ADF 76, a sheet table 79 for placing a sheet stack 0 of a plurality of original sheets is provided. After the sheet stack 0 is fed by an introducing roller 80 configured to be in contact with and separate from the sheet stack 0, the original sheets of the sheet stack 0 are separated one by one by a separation belt 81 and a separation-preventing roller 82. The separation belt 81 presses and contacts the separation-preventing roller 82 at a certain angle θ.
The separation belt 81 extends around a driving roller 85 and a driven roller 86. The driven roller 86 is biased by a spring 90, and thus, a certain tensile force is applied to the separation belt 81. A one-way clutch 91 that rotates the driving roller 85 clockwise in
The separated original sheet is reversed by a first transferring roller 93 and a driven roller 94 that the first transferring roller 93 drives, and transferred along a reversing path 95 to the slit glass 72.
The original sheet is transferred by the first transferring roller 93 and the driven roller 94 to the slit glass 72 while being held by them, and transferred to a sheet-discharging path 100 by a reversed sheet guide 99 such that the original sheet is lifted up. Above the slit glass 72 is arranged a reflection guide plate 101 that serves as reference white for white balance when an image is read from an original sheet on the slit glass 72.
After being transferred to the sheet-discharging path 100, the original sheet is transferred by a second transferring roller (driving member) 102 and a driven roller (transferring member) 103 that the second transferring roller 102 drives while being held by them. The original sheet is then held by a sheet-discharging roller 104 and a driven roller 105 that the sheet-discharging roller 104 drives, and discharged to the outside and an exterior cover 107. A pressing plate 108 is provided on the reflection plate 77 that covers the contact glass 73 when the ADF 76 is closed. The pressing plate 108 presses an original sheet on the contact glass 73 against the contact glass 73.
The operation of the ADF 76 is explained below. The sheet stack 0 is placed on the sheet table 79 such that surfaces of the original sheets, each having an image, face upward. Once a start button is pressed, a pressing plate 84 presses the sheet stack O against the introducing roller 80 so that the introducing roller 80 transfers the sheet stack O to the separation belt 81. The separation belt 81 and the separation-preventing roller 82 separate the top original sheet from other original sheets. The separated original sheet is then transferred to the slit glass 72 through the first transferring roller 93 and the driven roller 94 along the reversing path 95. The image on the surface of the original sheet is read by the exposing lamp 74, the first mirror 75, and the like. After the image is read, the original sheet is transferred on the sheet-discharging path 100 by the second transferring roller 102 and the driven roller 103, and discharged to the exterior cover 107 by the sheet-discharging roller 104 and the driven roller 105.
The image reading device 30 is supported above the apparatus body 1 by a supporting unit 50, described below, located between them. A control panel 16 for controlling the image reading device 30 and the image forming unit 2 is provided on one side of the image forming apparatus and this side is regarded as the front side of the image forming apparatus. Original sheets are transferred and scanned from left to right viewed from the front side of the image forming apparatus. From the front side of the image forming apparatus, a user operates the image reading device 30, in other words, the user sets the original sheets or removes the read original sheets. The sheets S are discharged from the front side to the back side of the image forming apparatus, in other words, to the sheet stacking unit 40.
Above the apparatus body 1, an upper frame 18 is provided as an upper frame member. The upper frame 18 supports an upper cover that serves as a sheet stacking surface 41 of the sheet stacking unit 40. The supporting unit 50, including two supporting members 51 and 52 provided along left and right edges of the upper frame 18, supports the image reading device 30 on the upper frame 18. Because no supporting member is provided near the back edge of the upper frame 18, even a long sheet with a length longer than the front-to-back length of the sheet stacking surface 41 can be kept on the sheet stacking surface 41 in a way that a part of the long sheet hangs out of the sheet stacking surface 41 to the back side. The image reading device 30 positioned above the sheet stacking unit 40 leads to less light thrown on the sheet stacking surface 41. In the image forming apparatus according to the embodiment, however, more light can be thrown on the sheet stacking surface 41 because no supporting member is provided to the back edge.
The upper frame 18 supports the optical scanning unit 8 that is positioned below the upper frame 18 and that is a part of the image forming unit 2. The upper frame 18 is swingable upward on hinges 17 on the back edge of the image forming apparatus so as to open and close. By the operation on the front side of the image forming apparatus, the upper frame 18 and the ADF 76 pivot about a pivot axis provided on the back side of the image forming apparatus to open and close.
Lock levers 60 described below that serve as a locking unit lock the upper frame 18 to the apparatus body 1. Once the lock levers 60 unlock the upper frame 18 from the apparatus body 1, the upper frame 18 can be opened along with the upper frame 18, the optical scanning unit 8 below the upper frame 18, the image reading device 30, and the supporting members 51 and 52 that support the image reading device 30 as shown in
When the upper frame 18 is opened, the back edge of the sheet stacking surface 41 faces downward. In other words, if the sheets S are stacked and left on the sheet stacking surface 41 and the upper frame 18 is mistakenly opened, the sheets S fall off the back edge of the sheet-stacking surface 41. The sheet S can be prevented from falling off by providing the supporting unit 50 to the back edge of the upper frame 18. However, a long sheet touches the supporting unit 50 on the back edge of the upper frame 18, and the sheets S cannot be stacked properly.
To stack the sheets S properly on the sheet stacking surface 41, an operation unit 61 that releases the lock levers 60 to allow the upper frame 18 to swing is provided on the sheet stacking surface 41 in a position where the stacked sheets S cover the operation unit 61. The lock levers 60 each have the operation unit 61 on one end and a lock claw 62 on the other end. The lock claw 62 is engaged with a projection 64 of the apparatus body 1. The lock lever 60 pivots on a pin 63. The operation unit 61 is plate-shaped and extends along the sheet stacking surface 41. A recess portion 44 is formed on the sheet stacking surface 41 that is fan-shaped and allows a user to operate the operation unit 61. To open the upper frame 18, the user inserts the hand from the recess portion 44 and upholds the operation unit 61 so that the lock levers 60 pivot on the pins 63 clockwise and the lock claws 62 are disengaged from the projections 64. Thereafter, the operation unit 61 is upheld more so that the upper frame 18 swings on the hinges 17 in the same direction in which the ADF 76 swings.
Because the operation unit 61 is positioned on the sheet stacking surface 41 on which the sheets S are stacked, the user notices the presence of the sheets S when opening the upper frame 18. In this manner, the upper frame 18 can be prevented from being opened when the sheets S are stacked on the sheet stacking surface 41.
In the image forming apparatus that includes the image reading device 30 positioned above the sheet stacking unit 40, compared with the case where the image reading device 30 is not positioned above the sheet stacking unit 40, a user cannot see easily the sheet stacking unit 40 and take easily the sheets S from the sheet stacking unit 40. To solve the above inconvenience, as shown in
The accessibility to the sheets S is explained below.
A cutout portion 43 having a surface lower than the sheet stacking surface 41 is formed in an upper-right portion of the sheet stacking unit 40 to improve the accessibility to the sheets S on the sheet stacking surface 41. The right portion of the cutout portion 43 has a surface that slopes upward towards the upstream in a direction in which a sheet is discharged from the image forming unit 2. In addition to the opening portion 42, the cutout portion 43 allows a user whose hands are large to take easily the sheets S from a side of the image forming apparatus. Although the cutout portion 43 of the embodiment is formed on the upper-right portion, the cutout portion 43 can be formed on an upper-left portion to obtain the same effect.
As shown in
The recess portion 44 allows the user to easily hold the operation unit 61, and provides a space such that the user can insert fingers into the space to take the sheets S. Because each sheet S is discharged in a way that the center line of the sheet matches a reference center line, the recess portion 44 is formed to be symmetrical with respect to the reference center line. Because the width of the recess portion 44 is larger than that of each sheet to be used in the image forming apparatus, the user can insert the fingers into the recess portion 44 to pick up a discharged sheet S in a size of, for example, a post card from the sheet stacking surface 41.
The lock levers 60 are explained in detail.
On the sheet stacking surface 41, the operation unit 61 is arranged on a portion whose surface slopes such that the sheet stacking surface 41 receives discharged sheets S. The operation unit 61 has an upper surface not higher than that of the sheet stacking surface 41. Hence, when the discharged sheet S slides down on the sloping surface, the trailing edges of the sheets S are prevented from touching the operation unit 61 and from being stacked in different positions. To achieve the same effect, alternatively, the operation unit 61 can be provided to a portion of the sheet stacking surface 41 on the downstream side, in the direction in which the sheet S is discharged, of the portion where the trailing edge of the sheet s arrives. For an image forming apparatus in which the sheet S falls on the sheet stacking surface 41 by self weight, the operation unit 61 can be provided near a discharging port from which the sheet S is discharged.
As shown in
The image forming unit 2 and the image reading device 30 (the ADF 76) are arranged such that the direction in which the sheet S is discharged from the image forming unit (from the front side to the back side of the image forming apparatus) is perpendicular to the sub-scanning direction (the direction in which an original sheet is transferred) of the image reading device 30. As shown in
As shown in
As shown in
In the image forming apparatus according to the embodiment, a user can take easily the sheets S from the sheet stacking unit 40 and operates easily the ADF 76 from the front side. Furthermore, the user can perform the operations such as fixing of paper jam and the maintenance and the replacement of the units inside the apparatus body 1 from the front side. For this reason, even if a user cannot access the back, right, and left sides of the image forming apparatus because of a location in which the image forming apparatus is installed, the user can use image forming apparatus sufficiently and the maintenance thereof can be sufficiently performed as well.
According to an aspect of the present invention, the sheets can be prevented from falling off the image forming apparatus. Moreover, the operation unit can be seen well. Furthermore, sheets can be stacked appropriately. Thus, the operability of the image forming apparatus improves.
Although the invention has been described with respect to a specific embodiment for a complete and clear disclosure, the appended claims are not to be thus limited but are to be construed as embodying all modifications and alternative constructions that may occur to one skilled in the art that fairly fall within the basic teaching herein set forth.
Number | Date | Country | Kind |
---|---|---|---|
2006-149546 | May 2006 | JP | national |
2007-036220 | Feb 2007 | JP | national |