Embodiments described herein relate generally to an image forming apparatus such as a copier, a printer and an MFP (Multi-Function Peripheral).
Conventionally, in an image forming apparatus such as an MFP and the like, a toner image on a photoconductive drum is transferred to a transfer belt. The toner image transferred to the transfer belt is then transferred to an image receiving medium (paper) by a transfer roller. The transfer belt is rotated through the rotation of a driving roller. The driving roller is arranged opposite to the transfer roller.
When the sheet passes through the space between the driving roller and the transfer roller, transfer voltage is applied to the sheet so that the toner image on the transfer belt can be transferred to the paper.
A conduction path is arranged in the transfer roller to apply the transfer voltage (also referred to as bias). The conduction path may include a leaf spring in contact with a metal shaft of the transfer roller. Alternatively, there is an example in which a leaf spring is in contact with a conduction section assembled to the metal shaft. The leaf spring is electrically connected to a high-voltage path or to ground.
When arranging the transfer roller on a sheet conveyance path, it is necessary to make the jam processing (sheet jam releasing) easier. Thus, a transfer unit including the transfer roller is arranged in such a manner that the transfer unit can be opened and separated from the main body of the image forming apparatus. Consequently, the conduction path of the transfer roller is arranged at the side of the opened part. The conduction path at the side of the opened part is electrically connected to the main body, and so it is necessary to arrange the conduction path near the fulcrum of the opened part.
However, conduction paths of other electrical components are also arranged near the fulcrum, and so lots of conduction paths crowd the fulcrum region. As a result, the space needed to guarantee the creepage distance is increased for the paths needed to apply the transfer bias. Further, when the leaf spring is grounded, it is necessary to arrange a ground line, which leads to an increase in the number of the electrical components.
In accordance with one embodiment, an image forming apparatus comprises an image forming section configured to form an image on an image carrier, a transfer roller configured to transfer the image formed on the image carrier to an image receiving medium, a support body configured to support the image carrier in a main body opposite to the transfer roller, a holding member arranged in the support body to hold two end parts of the transfer roller and having a conductive member that makes electrical contact with the transfer roller when the transfer roller is mounted in the holding member, and a power supply section configured to apply transfer bias to the image carrier and to the transfer roller through the conductive member.
Hereinafter, the image forming apparatus according to the embodiment is described in detail with reference to the accompanying drawings. The same components in each figure are applied with the same reference numerals.
A document table 12 is arranged on a main body 11 of the MFP 10. An automatic document feeder (ADF) 13 is arranged on the document table 12 in an openable manner. A glass 14, which is a document reading window, is fixed below the ADF 13 . A tray 15 for placing the document is arranged in the ADF 13. Further, an operation panel 16 is arranged at the upper portion of the main body 11. The operation panel 16 includes various operation keys 17 and a touch panel type display section 18.
A scanner section 20 serving as an image reading device is arranged below the document table 12 of the MFP 10. The scanner section 20 scans the surface of the document conveyed by the ADF 13 or the surface of the document placed on the document table 12 to read the document. The scanner section 20 includes a first carriage 21 and a second carriage 22.
The first carriage 21, provided with a light source 23 for irradiating the document surface at the inside thereof, irradiates the document with the light from the light source 23. The light source 23 is, for example, an LED. The light source 23 extends in a horizontal scanning direction (depth direction of the sheet surface). The light reflected by the document is reflected by mirrors arranged in the first carriage 21 and the second carriage 22 and is guided to a CCD (Charge Coupled Device) line sensor 25 through a lens 24.
The CCD line sensor 25 is an image sensor. The light reflected from the document is photoelectrically converted by the CCD line sensor 25 and an electric signal is output from the CCD line sensor 25. The electric signal output from the CCD line sensor 25 is processed and converted into a digital signal. The digital signal is subjected to image processing to generate image data.
When reading the document fed by the ADF 13, the scanner section 20 fixes the first carriage 21 at a position relative to the glass 14 (below the ADF 13). The second carriage 22 is also located at a position nearby the first carriage 21. When reading the document placed on the document table 12, the scanner section 20 moves the first carriage 21 and the second carriage 22 in a vertical scanning direction parallel to the document table 12 to read the document placed on the document table 12.
The horizontal scanning direction is orthogonal to the moving direction of the first carriage 21. The horizontal scanning direction is equivalent to the arrangement direction of the CCD line sensor 25. The vertical scanning direction is orthogonal to the horizontal scanning direction.
A printer section 30 is arranged inside the main body 11 of the MFP 10. The printer section 30 includes a photoconductive drum, laser and the like. The printer section 30 processes the image data read by the scanner section 20 or the image data created by a PC (Personal Computer) and the like to form an image on the image receiving medium. In the following description, sheet S is described as the image receiving medium.
The printer section 30 includes an endless transfer belt 31 serving as an image carrier. Below the transfer belt 31 is arranged an image forming section 301 which scans and exposes the surface of a photoconductive drum 32 with laser beams from a laser 41. An electrostatic latent image is formed on the photoconductive drum 32 through the exposure processing. The laser 41 emits laser light based on the image data read by the scanner section 20. An electrostatic charger 33, a developing device 34, a primary transfer roller 35, a cleaner 36, a blade 37 and the like are arranged around the photoconductive drum 32.
The electrostatic charger 33 fully charges the surface of the photoconductive drum 32 uniformly. The developing device 34 includes a mixer and a developing roller. The mixer stirs developing agent. Developing bias is applied to the developing roller to supply the toner serving as two-component developing agent including toner and carrier for the photoconductive drum 32.
The toner image on the photoconductive drum 32 is transferred to the transfer belt 31 by the primary transfer roller 35. The cleaner 36 removes the toner left on the surface of the photoconductive drum 32 with the blade 37. The toner image transferred to the transfer belt 31 is transferred to the sheet S by the secondary transfer roller 38.
The transfer belt 31 is tensioned by a driving roller 39 and a driven roller 40 and moved through the rotation of the driving roller 39. The driving roller 39 is arranged opposite to the secondary transfer roller 38. The sheet S is conveyed to pass through the space between the driving roller 39 and the secondary transfer roller 38. When the sheet S passes through the space between the driving roller 39 and the secondary transfer roller 38, secondary transfer voltage is applied to the sheet S through the secondary transfer roller 38. In this way, the toner image on the transfer belt 31 is secondarily transferred to the sheet S.
The toner image transferred to the sheet S is fixed on the sheet S by a fixing device 42. The fixing device 42 includes a fixing roller and a pressing roller. The sheet S is passed through the space between the fixing roller and the pressing roller to heat and press the sheet S, in this way, the toner image is fixed on the sheet S.
When forming a color image, the printer section 30 includes a plurality of image forming sections 301, that is, yellow (Y) , magenta (M) , cyan (C) and black (K) image forming sections 301. The plurality of image forming sections 301 are arranged below the transfer belt 31 in a direction from the upstream side to the downstream side. The plurality of image forming sections 301 is structurally identical to each other; therefore, only one image forming section 301 is shown in
A plurality of cassettes 43 and 44 is arranged at the lower portion of the main body 11 to store sheets of various sizes. The number of the cassettes is not limited to two. A conveyance roller 45 is arranged on a conveyance path from the cassettes 43 and 44 to the secondary transfer roller 38. The conveyance roller 45 conveys the sheet S picked up from each of the cassettes 43 and 44 to the printer section 30. The sheet S on which the toner image is fixed by the fixing device 42 is discharged to a sheet discharge section 47 by a discharge roller 46. For convenience, the secondary transfer roller 38 is simply referred to as transfer roller 38 in the following description.
The open section 50 can be drawn out along rails 52 and 53. When the open section 50 is drawn out, the transfer belt 31 arranged inside the main body 11 is exposed. A supporting section 54 is arranged in the open section 50 to support the transfer unit 51. The transfer roller 38 is arranged in the transfer unit 51. When the open section 50 is drawn out, the transfer belt 31 and the transfer roller 38 are separated from each other.
If a jam occurs, an operator draws out the open section 50 to separate the transfer roller 38 from the transfer belt 31. When the transfer belt 31 and the transfer roller 38 are separated from each other, the sheet conveyance path is exposed. Thus, the sheet causing the jam can be removed easily.
In
A high-voltage substrate with which one end of a cable 61 is connected is arranged inside the transfer belt 31. The other end of the cable 61 is connected with a power supply terminal 62. Thus, voltage is supplied to the high-voltage substrate from the power supply terminal 62 through the cable 61. Further, transfer bias is applied to a bearing 63 of the driving roller 39 from a voltage source arranged in the high-voltage substrate.
Two ends of the driving roller 39 are supported by support bodies 64 and 65 arranged in the main body 11. A holding member 66 is arranged at the end parts of the support bodies 64 and 65 at the sides of the transfer roller 38. The holding member 66 positions and fixes the bearing 56 of the transfer roller 38. The holding member 66, which is a U-shaped arm, holds the bearing 56 with the front end part of the arm. In the following description, the holding member 66 is referred to as holding arm 66.
As the method of applying transfer bias, voltage is applied to the bearing of the driving roller 39 and the rotation shaft 381 of the transfer roller 38 is grounded. Alternatively, voltage is applied to the rotation shaft 381 of the transfer roller 38 and the bearing of the driving roller 39 is grounded.
A conductive member 70 (shown in
As shown in
As shown in
As shown in
The holding arm 66 for positioning is made of nonconductive material such as plastic and the like. When supplying power to the transfer roller 38, the conductive member 70 is electrically connected with the high-voltage substrate in the transfer belt 31. When grounding the transfer roller 38, the transfer roller 38 is electrically connected with the conduction path (ground) in the transfer belt 31 through the conductive member 70.
In either of the configurations shown in
As stated above, in the present embodiment, the conductive member 70 includes a linear spring arranged in the holding arm 66 used for positioning the transfer roller 38. The transfer roller 38 is grounded through the conductive member 70. Alternatively, power may be supplied to the transfer roller 38 through the conductive member 70. That is, the conductive member 70 may function as ground or an electrical contact for power supply.
Thus, the conduction path of the transfer roller 38 arranged at the side of the open section 50 can be achieved through the conductive member 70 electrically connected to the main body 11. In this way, the complex wiring for electrical connection is not needed. Further, the conductive member 70 that includes a conductive spring can be in tight contact with the transfer roller 38.
When the open section 50 is opened for jam processing or maintenance processing, the transfer roller 38 is separated from the holding arm 66, and so the electrical connection between the transfer roller 38 and the conductive member 70 is cut off. Thus, the trouble caused by the electrical wiring is avoided.
Moreover, the bearing 56 at the end parts of the transfer roller 38 is connected with the rotation shaft 381 through a conductive bearing 57, and is in contact with the conductive member 70 at the two ends of the transfer roller 38. Further, the conductive member 70 is in contact with the bearing 56 of the transfer roller 38 at the center position of the holding arm 66, thus, a stable electrical connection can be achieved.
Though the holding arm 66 for positioning the transfer roller 38 is arranged at two end parts of the transfer roller 38, the conductive member 70 may be arranged at one end or both ends of the transfer roller 38.
In accordance with the image forming apparatus according to the embodiment described above, the conduction path of the transfer unit 51 can be aggregated at the side of the main body 11. Thus, there is no need to arrange a cable and the like for applying transfer bias to the transfer unit 51, which can simplify the electrical connections. Further, the conductive components are not deformed when replacing the transfer roller 38 to thereby reduce faults.
Furthermore, the present invention is not limited to the embodiment described above, and various applications can be implemented. For example, although it is described herein that the transfer unit 51 is drawn out along the rails 52 and 53 and opened and separated from the main body 11, it is not limited to this. The upper portion of the transfer unit 51 may be rotated around a fulcrum arranged at the lower portion of the transfer unit 51 to open the transfer unit 51. In addition, the shape of the conductive member 70 is not limited to the shape shown in the figures.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the invention. Indeed, the novel embodiments described herein may be embodied in a variety of other forms ; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the invention. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the invention.
This application is a continuation of U.S. patent application Ser. No. 14/624,445, filed on Feb. 17, 2015, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 14624445 | Feb 2015 | US |
Child | 15046747 | US |