Referring now to the drawings, preferred embodiments of the invention are described. Throughout the drawings, same or corresponding parts are identified with same reference numerals.
The first embodiment of the invention is described with referring to the drawings.
(Communication Unit and Image Processing Unit)
The external I/F processing unit 140 tares in image data from a reader unit 1 by way of image memory unit 130, and sends image data to external computer or external facsimile machine by way of network or telephone line. Furthermore, image data sent from external computer or external facsimile machine by way of network or telephone line is outputted to the printer unit by way of image memory unit 130 (and image processing unit 170; to form an image.
The external I/F processing unit 140 comprises a core unit 506, a facsimile unit 501, a hard disk 502 for saving communication image data of facsimile unit 501, a computer interface unit 503 for connecting with an external computer 190, a format unit 504, and an image memory unit 505.
The facsimile unit 501 is connected to a public telephone line by way of a modem (not shown), and receives facsimile communication data from the public telephone line, and transmits facsimile communication data to the public telephone line. The facsimile unit 501 realizes the facsimile functions of sending facsimile machine at a specified time, or sending image data according to the inquiry by using a specified password from, a partner, by mating use of facsimile images stored in the hard disk 502.
Accordingly, once the image is sent from the reader unit 1 to the facsimile unit 501 by way of image memory unit 130, and image is stored in the hard disk 502 for facsimile machine, and the facsimile data can be transmitted without using the reader unit 1 and image memory 130 in the facsimile function.
The computer interface unit 503 is an interface unit for communicating data with external computer 190, and includes a local area network (LAN), serial I/F, SCSI-I/F, centro-I/F for printer data input and output, and others. By way of this computer interface unit 503, the state of image forming unit 2 and reader unit 1 is noticed to external computer 190. Or by an instruction from external computer 190, the image read out by the reader unit 1 is transferred to the external computer 190.
The computer interface unit 503 receives print image data from external computer 190. At this time, since the print image data noticed from the external computer 190 is described in dedicated printer code, and in the formatter unit 504 the noticed data code is converted into raster image so that an image can be formed in the image forming unit 2. The converted raster image is developed into the image memory unit 505 by the formatter unit 504. On the other hand, when transmitting image data to the external computer 190 by way of the computer interface unit 503, the formatter unit 504 processes the print image data sent from the image memory unit 130 by converting the concentration in the image memory unit 505, and converts into an image format that can be recognized in the external computer 190.
The image memory unit 505 is used as the memory for developing raster image data of the formatter 504, and is also used when sending the image data from the reader unit 1 into the external computer 190 (network scanner function).
That is, when the image from the reader unit 1 is sent to the external computer 190 by way of computer interface unit 503, the image data sent from the image memory unit 130 is once developed in the image memory unit 505, and is converted into a data format to be sent to the external computer 190, and is sent out to the external computer 190 from the computer interface unit 503.
The core unit 506 controls and manages respective data transfer among facsimile unit 501, computer interface unit 503, formatter unit 504, image memory unit 505, and image memory unit 130. Accordingly, even if a plurality of image output units are connected to the external I/F processing unit 140, or even if there is only one image transfer path to the image memory unit 130, dedicated control or priority control can be executed under the management of the core unit 506, and the image output is properly performed.
When printing the accumulated images, first, the image data is sent from the image memory unit 130 to the γ correction unit in the image processing unit 170. In the γ correction unit, on every output corresponding to the preset value of concentration, the original concentration data is converted into concentration data corresponding to the desired output concentration on the basis of the lookup table (LUT) in consideration with the property of the printer.
The exposure controller 110 controls the emission timing of laser 21 on the photosensitive drum 23 of respective colors, and forms an electrostatic latent image of image data.
(Main Body Controller Unit)
The CPU 120 sequentially controls input and output by way of input and output port 123 according to the contents of the control program of the ROM 121, and executes the image forming process.
An operation unit 124 is connected to the CPU 120, and the CPU 120 controls the display means and key input means of operation unit 124. The user manipulates the key input means, and instructs an image forming operation mode or a display changeover to the CPU 120, and the CPU 120 displays the operation state of the image forming apparatus and operation mode determined by key input, to the display means of the operation unit 124.
Next, the image forming apparatus of the invention is described below.
(Sheet Feeding Unit)
As shown in
Thereafter, the first sheet material is fed by the pickup roller 32 driven by rotation. Driving of pickup roller 32 is transmitted from conveyance roller 33 by way of the timing belt.
The picked sheet material is gripped and conveyed by conveyance roller 33 and retard roller 34. The conveyance roller 33 receives rotation and driving in the sheet material conveying direction, and the retard roller 34 is rotatably driven in the reverse direction to the conveying direction by way of torque limiter (not shown).
The leading end side of the first sheet material is only one between a pair of rollers, and the torque limiter is overcome by the frictional force of sheet material and roller, and the retard roller 34 rotates in the conveying direction. Next, when sheet materials are overlaid, and reach the gripping portions of both rollers, the frictional force of first sheet material and second sheet material are overcome by the torque limiter, and the retard roller 34 rotates reversely to the conveying direction, and only the uppermost sheet material is separated and supplied in advance. Even if a plurality of sheet materials is picked up at the same time, only the uppermost sheet material is separated and supplied in advance in similar operation.
By such a sheet feeding operation, stacked sheet materials can be supplied one by one.
(Convey Unit)
The sheet material is supplied by the sheet feeding unit 3, and its leading end is once stopped by a resist roller 20, and is supplied again together with the image formed by the image forming unit 2, and an image is transferred in the transfer unit. Rotary drive of resist roller 20 is executed by stepping motor (not shown), and it is controlled by controller of the main body.
(Image Forming Unit)
Corresponding with the image information from the exposure controller, a laser emitting unit (not shown) included in the laser scanner unit 11 emits laser light. By scanning in the generator direction of photosensitive drum 23 by rotation of polygon mirror (not shown), a latent image is formed on a drum surface previously charged by charger 24, the latent image is developed by a developing machine 25 provided around the photosensitive member drum 23, and a toner image is transferred on the sheet material at the nip portion of the transfer roller 28 in which electric field is applied. The toner remained on the drum surface after transfer of image is removed by a cleaning device 27.
In this embodiment, a printer forming a monochromatic image is presented, but the invention is similarly applicable to a printer for forming a color image by using a plurality of colors,
(Fixing Unit)
The sheet material S on which a toner image is transferred in the image forming unit 2 is sent into a fixing device 4, in which heat and pressure are applied when passing through fixing roller 4a and pressure roller 4b, and the toner image is fused on the sheet material 3, and is discharged out of the image forming apparatus main body 10 by means of a discharge roller 41P. The discharged sheet material S′ is sequentially stacked up on discharge tray 41 as sheet material stacking portion.
The fixing roller is controlled to, for example, about 180° C., and the temperature of the sheet material right after discharge from the image forming apparatus main body 10 is about 90° C., Since the heat of the sheet material is discharged before next sheet material is stacked up, the inside of the stacked sheet materials S′ is kept at about 60° C. Basically, in the case of paper, since the insulating effect is high, it takes time until the temperature of the block of the stacked sheet materials S′ is lowered. Therefore, after discharge, VOC is generated from the sheet materials S′, and it is required to remove it.
The invention, therefore, as shown in
In the first embodiment the fan 51 and active carbon filter 52 are designed to discharge the purified air in the image forming apparatus main body 10 to outside from the image forming apparatus main body 10. That is, above the fixing unit, the fan 51 is provided for sucking the atmosphere containing the VOC of sheet materials stacked up on the discharge tray 41. The fan 51 is located above the discharge tray 41 as shown in
In the shown example, the active carbon filter 52 is disposed at the suction side front face of the fan, and air is sucked through the active carbon filter 52. By passing through the active carbon filter 52, the VOC is adsorbed and removed, and purified air is discharged outside of the apparatus from the louver 55 opened in the upper surface of the image forming apparatus main body 10 through a duct 54. In the diagram, the arrow shows the flow of air. Direction of discharge is not limited to the upper part, but the air may be discharged, for example, backward.
As shown in
Next, the other embodiments of the invention are described below. In the following explanation, only different points from the first embodiment are described, and duplicate explanation of same parts is omitted.
The sheet material discharged from the image forming apparatus main body 10 passes through the sheet material inverting device 6 and stacker 7, and is discharged into discharge trays 71A, 71B. The sheet material inverting device 6 turns the sheet material surface to the other side depending on the operation by the user, and when discharging the sheet face up, it passes through the conveying path 61, and when discharging the sheet face down, the sheet material is switched back by the inverting path 62, and face and back are inverted. The path is changed over by a command of the main body controller, and a deflection guide (not shown) is operated by a solenoid.
The stacker 7 increased in capacity can accommodate a large capacity in discharge trays 71A, 71B in upper and lower stages, and like the inverting path, a deflection guide (not shown) of the stacker main body 71 is operated by the main body controller, and the discharge trays can be changed over. For example, by changing over at every job, or by changing over by the output from the personal computer or by facsimile machine or other input source, the setting can be changed freely according to the preference of the user.
As same mentioned above, the sheet material discharged from the main body is nigh in temperature, and VOC is mixedly remained in the path of the sheet material inverting device 6 or stacker main body 71 or in the atmosphere near the sheet materials stacked up on the discharge trays 71A, 71B after sheet discharge. Since the discharge unit is at a longer distance than in the above example, the temperature at the time of stacking is lower, but since the stacking capacity is large, a greater insulating effect is needed and it takes time until the temperature is lowered, and all effects of temperature decline cannot be accepted by the total amount of VOC.
Accordingly, the air near the discharge trays 71A, 71B is sucked and purified, and also the air in the post-processing apparatus, that is, sheet material inverting device 6 and stacker main body 71 are sucked and purified. In this modified example the position in width direction of at least one part of the louver 73 is in the width direction of the sheet materials S′ stacked up on the discharge tray 71A.
In this modified example, as same in the foregoing embodiment, the fan 51 and active carbon filter 52 are provided in the image forming apparatus main body 10, and sheet material inverting device 6 and stacker main body 71 are provided with passages for inducting the air in the sheet material inverting device 6 and stacker main body 71 and the air near the discharge trays 71A, 71B into the image forming apparatus main body 10.
In this modified example, as shown in
If the passage is too long and the suction force is not enough by the fan 51 alone, an auxiliary fan 72 may be provided in the post-processing apparatus as means for assisting the fan. In this embodiment, it is provided above the discharge trays 71A, 71B of the stacker main body 71, and the atmosphere near the sheet discharge unit is sucked, and sent into the image forming apparatus main body 10. An active carbon filter 73 is also provided at the front surface of the auxiliary fan 72. If the tightness of closure of each unit of sheet material inverting device 6 and stacker main body 71 is high, it is not necessary to consider the ratio of performance between fan 51 and auxiliary fan 72, but raising of the tightness of closure is actually difficult because the conveying path has to be succeeded.
At this time, in the case of (airflow of fan 51)<(airflow of auxiliary fan 72), air containing VOC gushes out from the gaps in the junction of the apparatus. In this embodiment, therefore, the airflow of the fan 51 at the image forming apparatus main body 10 side is set larger than the airflow of the auxiliary fan 72. In the embodiment, the voltage supplied to the fans is adjusted by using the same fans so that (airflow of fan 51)>(airflow of auxiliary fan 72).
Of course, the airflow may be adjusted by changing the performance of the fan. By the same fans and same voltage, the passage resistance can be varied by changing the mesh opening or thickness of the active carbon filter 52 and active carbon filter 73, and same effects are obtained,
In the second modified example, fan 51 and active carbon filter 52 are provided respectively in the stacker main body 71 and sheet material inverting device for composing the post-processing apparatus.
The air near the discharge trays 71A, 71B and in the stacker main body 71 is sucked and purified by the fan 51 and active carbon filter 52 provided in the stacker-main body 71, and discharged outside. The air in the sheet material inverting device 6 is sucked and purified by the fan 51 and active carbon filter 52 provided in the sheet material inverting device 6, and discharged outside.
In the first and second modified examples, the sheet material inverting device 6 and stacker 7 are exemplified as post-processing apparatuses, but the invention may be similarly applied to other post-processing apparatus, such as puncher, folding machine, binder, and finisher.
Different from the first embodiment, the air containing ozone in the image forming apparatus main body 10 and the air containing the VOC in the sheet discharge unit are sucked by the same fan 51 by way of active carbon filter 52, and thereby the VOC is oxidized and decomposed by ozone. Thus, the VOC removal efficiency is enhanced, and the apparatus is simplified and the cost is reduced.
As in this third modified example, by installing the active carbon filter 52 above and near the fixing device 4, the VOC can be removed efficiently by waste heat of the fixing device 4 and activation of molecular motion by heat.
In the fourth modified example, a hood 56 is provided as flow straightening means for straightening and sucking efficiently when sucking the atmosphere without diffusing the air containing VOC in the atmosphere of the sheet discharge unit.
The embodiment of the invention is thus specifically described below, but the invention is not limited to the foregoing embodiment and its modified examples alone, but may be changed and modified in various forms on the basis of the technical concept of the invention. For example, in the embodiment, active carbon is used in the filter as purifying means, but filter using oxidation catalyst may also be used. Or such filters may be combined. As sucking means, the fan is used, but compressor or other pump may be used instead of fan.
An image forming apparatus according to the second embodiment of the invention is described with referring to
The color copying machine shown in
The document reading unit 850 reads the document and obtains electronic data, and is composed of first mirror unit 850a, second mirror unit 850b, lens 850c, CCD 851, and platen 850e.
The printer unit 860 for printing the obtained electronic data is composed of the following members: sheet feeder 840 and image forming unit above it; heat-fixing device 836 composed of heating roller 836b, pressure roller 836c, and casing cover 836a; first suction fans 863a, 863b as first suction means for forming air curtains 866a, 866b in the space above discharge trays 845a, 845b formed in pair with air feed fans 846a, 846b as air feed means; second section fan 864 as second suction means for sucking cooling air from the space outside of apparatus; discharge fan 855 for guiding the air supplied from first suction fans 863a, 863b and second suction fan into heat-fixing device 836 by way of first duct and third duct composed of ducts not shown, and discharging outside of apparatus; filter 865 as removal means for removing gas components such as VOC gas and dust contained in the sucked air; discharge trays 845a, 845b as stacking means for stacking up the sheets on which images are formed; and discharge roller pair 862a, 862b as discharge means for discharging sheets into discharge trays.
The image forming unit further includes a photosensitive drum 830 to be rotated by a drive mechanism not shown. The photosensitive drum 830 is surrounded by a rotary developing section 834 including magenta development unit 834d, cyan development unit 834c, yellow development unit 334b, and black development unit 834a. It further includes intermediate transfer belt 835, belt cleaner 835a, cleaner 831, charging roller 832, and optical scanning device 806 for emitting laser beam to photosensitive drum 830. An image forming unit is constituted with these members.
Operation of color copying machine having such configuration is explained. The operator for copying the original document by this color copying machine first puts the original on the document tray 852a, and starts the operation of color copying machine by pressing the start key not shown provided in the document reading unit 850. The color copying machine starts operation, and sends the document to the top surface of the platen 850e, and the entire surface is scanned by the first mirror unit 850a moving from left to right in
The printer unit 860 first rotates the rotary developing section 834, and sets the magenta development unit 834d opposite to the photosensitive drum 830. The photosensitive drum 830 and intermediate transfer belt 835 are rotatably driven at constant peripheral speed by drive source not shown. The photosensitive drum 830 is uniformly charged on the surface by the charging roller 832, and receives laser beam 806a from an optical scanning device 806, and forms an electrostatic latent image for magenta color on its surface. This electrostatic latent image is developed as magenta toner image as magenta toner is migrated from the magenta development unit 834d, and transferred onto the intermediate transfer belt 835. The magenta toner remained on the photosensitive drum 830, not being transferred to the intermediate transfer belt 835, is cleaned by the cleaner 331.
Thus, after magenta development, the rotary developing section 834 rotates and sets the cyan development unit 834c opposite to the photosensitive drum 830. In the same procedure as in the magenta toner image, a cyan toner image is formed on the photosensitive drum 830, and is transferred on the intermediate transfer belt 835 to be overlaid on the magenta toner image. Similarly, the yellow development unit 834b and black development unit 834a are sequentially set opposite to the photosensitive drum 830, and the color toners are overlaid on the previously transferred toner images, and transferred on the intermediate transfer belt 835.
The four color images of magenta, cyan, yellow, and black thus overlaid and transferred on the intermediate transfer belt 835 are transferred in batch on the sheet sent from the sheet feeder 840 at the transfer unit 835b. The toners remained on the intermediate transfer belt 835 after transfer of toner images are scraped off by the belt cleaner 835a.
In this manner, after the color image is transferred on the sheet, the printer unit 360 heat-fixes the toner image on the sheet by the heat-fixing device 836. The sheet on which the image is heat-fixed is discharged onto the discharge trays 845a, 845b by discharge roller pair 862a, 862b, and the operation is completed.
The color copying machine can reproduce a full color copy by the aforementioned operation, and is packaged in a compact design. The problem in this case is processing of VOC gas generated from the heat-fixing device 836. Since the color copying machine has both printing function and copying function, and is used often by the user, the number of output copies have been increased. As a result, the amount of VOC gas generated from the output sheets 867a, 867b stacked up on the discharge trays 845a, 845b may exceed an ignorable level. The VOC gas generated from the output sheets 867a, 867b (the sheets and the toners transferred on the sheets) reaches the maximum amount right after heating by the neat-fixing device 836. Further, after output on the discharge trays 845a, 845b, VOC gas is generated continuously until the temperature decreases below a specified point. The amount of VOC gas generated from output sheets 867a, 867b depends on the number of output copies, and the generation amount increases as the number of output copies increases.
Accordingly, the color copying machine according to the embodiment is designed to remove not only the VOC gas generated from, the VOC source such as heat-fixing device 836 inside the apparatus, but also the VOC gas generated from output sheets 867a, 867b on the discharge trays 845a, 845b. The VOC gas removing mechanism of the color copying machine according to the embodiment is explained below.
Air feed fans 846a, 846b, and first suction fans 863a, 863b continue to operate for a specified time after output sheets 867a, 867b are discharged on discharge trays 845a, 845b. The operating time of the fans is the duration until the VOC gas is not generated from the time of output sheets 867a, 867b becoming less than specified temperature. Specifically, the first suction fans 863a, 863b continue to operate from the time of start of discharge of sheets onto discharge trays 845a, 845b until the specified time has passed from the end of discharge.
During operation of air feed fans 846a, 846b, and first suction fans 863a, 863b, air curtains 866a, 866b are formed as airflows above the discharge trays 845a, 845b. The air curtains 866a, 866b work to guide the VOC gas generated from, the output sheets 867a, 367b (the gas temperature is higher than room temperature, and the gas rises and is drawn into the air curtain) into the apparatus main body. The air containing the VOC gas is guided to the surrounding of the heat-fixing device 836 and cools the heat-fixing device 836, and sucked into the discharge fan 855 together with the VOC gas generated from the heat-fixing device 836, and the VOC gas is removed by the filter 865. The filter 865 composes a VOC removing unit for removing VOC.
A filter is often used as removing means for removing VOC.
In this embodiment, the filter 865 is used as VOC removing means, but not limited to this, various methods are possible and selected depending on the feature of each method. For example, aside from the filter, the VOC removing means may be realized by photocatalyst device, ozone cleaning device, and other various means. The photocatalyst device decomposes the VOC gas by photocatalyst which is activated by irradiation with ultraviolet ray, and is not so high in removing performance, but is longer in life as compared with the filter. The ozone cleaning device is to decompose VOC gas by oxidation action of ozone generated from, discharge device, and is long in life as same in a photocatalyst device.
Operation of first suction fans 863a, 863b is limited to a specified time as stated above, which is because the air temperature around discharge trays 845a, 845b is higher than room temperature, and therefore it is not suited to cooling of heat-fixing device 836. It is also because the air curtains 866a, 866a, if maintained all the time, may have effects on moisture content of output sheets 867a, 867b, possibly having adverse effects such as curling of sheet. Accordingly, the color copying machine of the invention has the second suction fan 864 for sucking air from outside of the apparatus. The air sucked by the second suction fan 864 is guided into the heat-fixing device 836, and cools the heat-fixing device 836. The second suction fan 864 is put in operation when the temperature of the casing cover 836a of the heat-fixing device 836 exceeds a predetermined temperature, and compensates for shortage of cooling effect by the first suction fans 863a, 863b. The temperature of the casing cover 836a of the heat-fixing device 836 may be measured by installing sensor or other temperature detecting means, or by predicting from the operation time of the heat-fixing device 836.
Thus, according to the embodiment, air is sucked in from the surrounding space of output sheets 867a, 867b on the discharge trays 845a, 845b, and the air is guided into the filter 865 for removing VOC gas and dust. Therefore, if VOC gas is generated from the output sheets 867a, 867b on the discharge trays 845a, 845b, the VOC gas can be collected by the first suction fans 863a, 863b, and can be removed securely.
The first suction fans 863a, 863b operate only for a specified time after discharge of output sheets 867a, 867b until the output sheets 867a, 867b are cooled to a temperature low enough not to dissipate VOC gas. Accordingly, the output sheets 867a, 867b are not cooled and dried excessively to cause curling or other adverse effects.
The air sucked by the first suction fans 863a, 863b passes through the surrounding space of the heat-fixing device 836, and hence the VOC gas generated from the heat-fixing device 836 can also be removed securely.
Aside from the first suction fans 863a, 663b for sucking the air in the surrounding space of output sheets 867a, 867b on discharge trays 845a, 845b, the second suction fan 864 is provided for sucking air outside of the apparatus. Accordingly, a flow rate of air enough to cool the heat-fixing device 836 can be assured.
The second suction fan 864 is put in operation when the temperature of the heat-fixing device 836 exceeds a predetermined temperature, and compensates for shortage of cooling effect by the first suction fans 863a, 863b, and can cool the heat-fixing device 836 securely.
By forming air curtains 866a, 366b on the discharge trays 845a, 845b, the VOC gas generated from the output sheets 867a, 867b on the discharge trays 845a, 845b can be captured efficiently.
In this embodiment, the air curtains 866a, 866b are formed by combination of air feed fans 846a, 846b and first suction fans 863a, 863b, but the configuration is not limited to this example alone. For example, without using air feed fans 846a, 846b, the airflow may be generated in the space above the discharge trays 845a, 845b by the first suction fans 863a, 863b only. By eliminating the air feed fans 846a, 846b, the operation noise is reduced, and it is effective if the discharge trays are projecting to the outer side of the apparatus.
In the embodiment, the first suction fans 863a, 863b are provided in the lower one part of discharge roller pair 862a, 862b, but the configuration is not limited to this example. For example, by eliminating the suction fans in the lower one part of the discharge roller pair, only suction ports may be provided at the positions of the suction fans. In this case, discharge fan is used as first suction means for sucking the air from the surrounding space of output sheets 867a, 867b on discharge trays 845a, 845b. Thus without using the suction fans 863a, 863b, the operation noise is reduced, and by reinforcing the discharge fan 855, the air curtains 866a, 866b may be maintained sufficiently.
In the above embodiment, the air sucked by the first suction fans 863a, 863b is guided into the filter 865 by way of the surrounding space of the heat-fixing device 836, and a air passage by duct not shown is exemplified. The air passage includes the first air passage for guiding the air sucked from the first suction fans 863a, 863b into the heat-fixing device 836, and the second air passage for guiding the air passing through the beat-fixing device 836 into the filter 865, but the invention is not limited only to these configurations. Not limited to ducts, for example, an air passage may be formed by forming ribs in the apparatus, or constituent parts may be arranged in the apparatus to form an air passage. When the path is nearly straight from the discharge trays 845a, 845b to the filter 865 by way of the heat-fixing device 836, the sucked air can be guided into the filter 865 without forming ducts or air passages.
Referring now to
The printer shown in
The printer unit 860 includes a cover 870 as a freely opening and closing cover member disposed so as to cover the discharge tray 845, and the first suction fan 863 as first suction means for sucking the air from the space above the discharge tray 845. It also includes a discharge fan 855 for guiding the air supplied from the suction fan 863 into the heat-fixing device 836 by way of the first air passage composed of duct not shown, and discharging outside of the apparatus, and a filter 865 for removing VOC gas contained in the air.
The image forming unit has a photosensitive drum 830 which can be rotated by a drive mechanism not shown. The photosensitive drum 830 is surrounded by a rotary developing section incorporating magenta development unit 834d, cyan development unit 834c, yellow development unit 834b, and black development unit 834a. It further includes intermediate transfer belt 835, belt cleaner 835a, cleaner 831, charging roller 832, and optical scanning device 806 for emitting laser beam to photosensitive drum 830. These members are combined to constitute an image forming unit.
Operation of color printer having such configuration is explained. The printer 860 selects necessary color toners from magenta, yellow, cyan and black, on the basis of color information of electronic data, and transfers on the sheet sent from the sheet feeder 840, and forms a color image. Supposing to use all four colors, the transfer process is specifically described below.
The printer 860 first rotates the rotary developing section 884, and sets the magenta development unit 854d opposite to the photosensitive drum 830. The photosensitive drum 830 and intermediate transfer belt 835 are rotatably driven at constant peripheral speed by drive source not shown. The photosensitive drum 830 is uniformly charged on the surface by the charging roller 832, and receives laser beam 806a from an optical scanning device 805, and forms an electrostatic latent image for magenta color on its surface. This electrostatic latent image is developed as magenta toner image as magenta toner is migrated from the magenta development unit 834d, and transferred onto the intermediate transfer belt 835. The magenta toner remained on the photosensitive drum 830, not being transferred to the intermediate transfer belt 835, is cleaned by the cleaner 831.
Thus, after completion of magenta development, the rotary developing section 834 rotates and sets the cyan development unit 834c opposite to the photosensitive drum 830. In the same procedure as in the magenta toner image, a cyan toner image is formed on the photosensitive drum 830, and is transferred on the intermediate transfer belt 835 to be overlaid on the magenta toner image. Similarly, the yellow development unit 834b and black development unit 834a are sequentially set opposite to the photosensitive drum 830, and the respective color toners are overlaid on the existing toner images, and transferred on the intermediate transfer belt 835.
The four color images of magenta, cyan, yellow, and black thus overlaid and transferred on the intermediate transfer belt 835 are transferred in batch on the sheet sent from the sheet feeder 840 at the transfer unit 835b. The toners remained on the intermediate transfer belt 835 after transfer of toner images are scraped off by the belt cleaner 835a.
In this manner, after the color image is transferred on the sheet, the printer 860 heat-fixes the toner image on the sheet by the heat-fixing device 836. The sheet on which the image is heat-fixed is discharged onto the discharge tray 845 by discharge roller pair 862, and the operation is completed.
The color printer herein has a problem of processing of VOC gas generated from the heat-fixing device 836. Besides, since the color printer is used often by the user, if the number of output copies is very large, and as a result, the amount of VOC gas generated from the output sheets 867 stacked up on the discharge tray 845 may also exceed an ignorable level. The VOC gas generated from the output sheets (the sheets and the toners transferred on the sheets) reaches the maximum amount right after heating by the heat-fixing device 836. Further, after output onto the discharge tray 845, VOC gas is generated continuously until the temperature decreases below a specified point. The amount of VOC gas generated from output sheets depends on the number of output copies, and the generation amount increases as the number of output copies increases.
Accordingly, the color printer of the embodiment is designed to remove not only the VOC gas generated from the VOC source such as neat-fixing device 836 in the apparatus, but also the VOC gas generated from output sheets 867 on the discharge tray 845. The VOC gas removing mechanism of the color printer of the embodiment is explained below.
A cover 870 covering the space above the discharge tray 845 including the upper one part of the discharge tray 845 has an air suction port 871, and by the operation of the suction fan 863, the external air is guided into a nearly closed space formed in the cover 870. The size of air suction port 871 is not specified, and may be, for example, a gap between the cover and the casing of the apparatus main body. Mot limited too suction port, the second suction fan (second suction means; of the second embodiment may be provided.
In the nearly closed space formed by the cover 870, a temperature sensor 873 is provided as temperature detecting means near the stacking position of output sheet 867, and the temperature near the output sheet 867 is detected.
The suction fan 863 continues to operate for a specified time after discharge of output sheet 867. The operating time of the fan is the duration until VOC gas is not generated from the time of the output sheet 867 becomes lower than specified temperature. In this embodiment, the operation time of the fan is determined appropriately depending on the temperature detecting signal from the temperature sensor 873 and the type of paper of output sheet.
The VOC gas generated from the output sheet 867 is guided into the apparatus main body. The air containing the VOC gas passes through the first air passage of duct not shown, and is guided into the surrounding of the heat-fixing device 836, and cools the heat-fixing device 836. Further, the air passes through the second air passage of duct not shown, and is sucked into a fixing fan 855 together with the VOC gas generated from the heat-fixing device 836, and the VOC gas is removed by the filter 865.
In the embodiment, a filter 865 is used as VOC removing means for removing VOC gas contained in the sucked air. This filter 865 is a so-called honeycomb filter, and is a most common type (see
In this embodiment, the filter 865 is used as VOC removing means, but not limited to this, various methods are possible and selected depending on the feature of each method. Aside from the filter, the VOC removing means may be realized by photocatalyst device, ozone cleaning device, and various means. The photocatalyst device decomposes the VOC gas by photocatalyst which is activated by irradiation with ultraviolet ray, and is not so high in removing performance, but is longer in life as compared with the filter. The ozone cleaning device is to decompose VOC gas by oxidation action of ozone generated from discharge device, and is long in life as same photocatalyst device. These VOC removing means may be used instead of the filter 865.
The structure of the cover 870 for covering the surrounding space of sheet on discharge tray 845 is explained with referring to
As described above, according to the embodiment, the surrounding space of output sheet 867 on discharge tray 845 is nearly closed by cover 870, and the air in the space is sucked by the suction fan 863, and is guided into the filter 865. Therefore, if VOC gas is generated from the output sheet 867 on the discharge tray 845, this VOC gas is nearly closed by the cover 870 and is prevented from dissipating, and is collected by the first suction fan 863, and can be removed securely by the filter 865.
After discharge of output sheet 867, the suction fan 863 operates only for a predetermined time until the temperature of output sheet 867 is cooled low enough not to dissipate VOC gas. It is hence free from curling or adverse effects due to excessive cooling or drying of output sheet 867.
The air sucked by the suction fan 863 passes through the surrounding space of the heat-fixing device 836, and hence securely removes the VOC gas generated from the heat-fixing device 886.
Since the space above the discharge tray 845 is covered with the cover 870 and is nearly closed, the VOC gas generated from the output sheet 867 on the discharge tray 845 can be captured efficiently.
As same in the second embodiment, aside frost the first suction fan 863 for sucking the air in the surrounding space of the output sheet 867 on the discharge tray 845, the second suction fan (second suction means) may be provided for sucking the air outside of the apparatus. According to this configuration, enough flow rate of air for cooling the heat-fixing device 836 is assured. The second suction fan is put in operation when the temperature of the heat-fixing device 836 exceeds a predetermined temperature, and compensates for shortage of cooling effect by the first suction fan 863, so that the heat-fixing device 836 can be cooled securely.
Referring to
The color copying machine shown in
The document reading unit 850 obtains electronic data by reading the document, and is composed of the first mirror unit 850a, the second mirror unit 850b, a lens 850c, a CCD 851, and a platen 850e.
Operation of document reading unit 850 is as follows. The user for copying the original by the color copying machine first places the original on the top of the platen 850e, and presses the start key not shown provided in the document reading unit 850 to put the color copying machine in operation. The color copying machine starts its operation, and scans the entire surface of the top of the platen 850e by the first mirror unit 850a moving from left to right in
A characteristic portion of the embodiment is explained with referring to
In this configuration, in the embodiment, same effects as in the second embodiment are obtained.
In the embodiment, part 470b of the cover 470, which can be freely opened and closed, is provided in the copying machine main body, but the invention is not limited to this example alone, and the all cover members, which can be freely opened and closed, may be provided detachably in the copying machine main body.
Referring to
The color copying machine of the embodiment is similar to the fourth embodiment in its schematic configuration, and only a characteristic portion is explained with referring to
The copying machine as the image forming apparatus of the embodiment has the upper one part of the discharge tray 545 covered with one part of the copying machine main body (the lower side of the document reading unit 850). To cover the peripheral space of the sheet 86 on the discharge tray 845, a cover 570 is provided as cover member so as to cover the lateral surface portion of the discharge tray 545. The cover 570 is provided integrally with the discharge tray 545. To take out the output sheets 867 stacked up on the discharge tray 545, the discharge tray 545 integrally provided with the cover 570 is drawn out and accommodated in the copying machine main body.
In the above-described configuration, according to the embodiment, same effects as in the third and fourth embodiments are obtained, and in addition the following effects are also obtained.
That is, according to the embodiment, if the discharge tray 545 is disposed between the document reading unit 850 and printer unit 860, the output sheet on the discharge tray 545 can be taken out by drawing out the discharge tray 545, and the convenience of operation is improved.
The output sheet can be taken out from above the drawn discharge tray, and as compared with the case of drawing out the sheet from among the units 850, 860, the output sheet is not folded or creased by contacting with the lateral surface of the apparatus.
Referring to
The color copying machine of the embodiment is substantially similar to the fifth embodiment in schematic configuration of configuration, and only a characteristic portion is explained with referring to
The color copying machine of the embodiment has a locking mechanism as lock means operating to prevent the cover 570 from being opened from the start to the end of operation of suction fan 863. The locking mechanism is composed of a free projecting pin 699A provided in the color copying machine main body, and a hole 699B formed in the cover 570 in which the pin 699A is fitted. That is, after stopping of the section fan 893, the pin 699A is drawn out from the hole 699B, and the lock is cleared, and the cover 570 can be drawn out from the color copying machine main body. A display means 853 is provided as display means showing the cover 570 is in a closed state during the time of operation of locking mechanism.
Simultaneously, as shown in
In this configuration, according to the embodiment, same effects as in the fifth embodiment are obtained, and additionally, the following effects are also obtained.
That is, according to the embodiment, the output sheet can be taken out after completely removing VOC gas generated from the output sheet.
If the output sheet cannot be taken out, it is warned by the display unit in the operation unit, so that the user can understand the situation.
This application claims priority from Japanese Patent Application No. 2006-58260 filed Feb. 28, 2006, and Japanese Patent Application No. 2006-85851 filed Mar. 27, 2006, which is hereby incorporated by reference, herein.
Number | Date | Country | Kind |
---|---|---|---|
2006-053260 (PAT. | Feb 2006 | JP | national |
2006-085851 (PAT. | Mar 2006 | JP | national |