This application is based on and claims priority under 35 USC 119 from Japanese Patent Application No. 2021-054179 filed on Mar. 26, 2021.
The present invention relates to an image forming apparatus.
JP-A-2011-123384 discloses an image forming apparatus including: a brush having plural bristle materials that rotate and come into contact with a surface of an image holder; a removing member that is provided at a position in contact with the plural bristle materials, comes into contact with and separates from the plural bristle materials along with rotation of the brush, and elastically deforms the plural bristle materials by contact and leaves the plural bristle materials elastically deformed to restore by separation so as to remove a developer adhering to the plural bristle materials; and a transport device that is provided below the removing member in a direction of gravity and transports the developer removed by the removing member. A space for allowing the developer to fall toward the conveying device is provided between the conveying device and a contact portion where the plural bristle materials and the removing member start to come into contact with each other.
Aspects of non-limiting embodiments of the present disclosure relate to improving an effect of removing a toner on a cleaning brush as compared with a configuration in which the toner on the cleaning brush is removed by using a removing member having, for example, a round bar shape or a plate shape.
Aspects of certain non-limiting embodiments of the present disclosure address the above advantages and/or other advantages not described above. However, aspects of the non-limiting embodiments are not required to address the advantages described above, and aspects of the non-limiting embodiments of the present disclosure may not address advantages described above.
According to an aspect of the present disclosure, there is provided an image forming apparatus including: a toner transport body that is an endless belt holding a toner image, or is a transfer member transferring the toner image to a recording medium nipped between the endless belt and the transfer member; a cleaning brush that has plural first bristle materials that rotate and come into contact with a surface of the toner transport body, and cleans a toner adhering to the surface of the toner transport body; and a removing brush that has plural second bristle materials in contact with the first bristle material of the cleaning brush and removes the toner adhering to the first bristle material.
Exemplary embodiments of the present disclosure will be described in detail based on the following figures, wherein:
Hereinafter, an example of an exemplary embodiment according to the present invention will be described with reference to the drawings. In the drawings, an arrow H indicates a vertical direction, and an arrow W indicates a horizontal direction and an apparatus width direction.
As illustrated in
The image forming unit 12 includes toner image forming units 20 that form toner images, a transfer device 30 that transfers the toner images formed by the toner image forming units 20 to the recording medium P, and the fixing device 40 that fixes the toner images transferred to the recording medium P to the recording medium P by heating and pressurizing the toner images.
The plural toner image forming units 20 are provided so as to form the toner image for each color. In the present exemplary embodiment, the toner image forming units 20 of a total of four colors of yellow (Y), magenta (M), cyan (C), and black (K) are provided. The toner image forming units 20 of the respective colors are arranged in the order of yellow (Y), magenta (M), cyan (C), and black (K) from an upstream side to a downstream side in a transport direction of an intermediate transfer belt 31 to be described later.
The (Y), (M), (C), and (K) illustrated in
The toner image forming units 20 of the respective colors are basically configured in a similar manner except for a toner to be used. Specifically, as illustrated in
For example, the charging unit 22 negatively charges the surface (a photosensitive layer) of the photoconductor drum 21. On the surface of the photoconductor drum 21 that is negatively charged, a portion irradiated with an exposure light L by the exposure device 23 has a positive polarity, and the electrostatic latent image is formed on the surface of the photoconductor drum 21. Then, a toner triboelectrically charged to a negative polarity in the developing device 24 adheres to the electrostatic latent image having a positive polarity, and the electrostatic latent image is developed. In this way, the toner image is formed on the surface (an outer circumferential surface) of the photoconductor drum 21. The blade 25 is in contact with the surface of the photoconductor drum 21 and scrapes off the toner remaining on the surface of the photoconductor drum 21.
The transfer device 30 primarily transfers the toner images of the photoconductor drums 21 of the respective colors to the intermediate transfer belt 31 in a superimposed manner, and secondarily transfers the superimposed toner images to the recording medium P at the secondary transfer position NT (an example of a nip). Specifically, as illustrated in
As illustrated in
Among the plural rollers 32, a roller 32T illustrated in
As illustrated in
The secondary transfer belt 36 is a belt that transfers the toner image superimposed on the intermediate transfer belt 31 to the recording medium P. As illustrated in
The secondary transfer roller 34 is disposed such that the intermediate transfer belt 31 and the secondary transfer belt 36 are interposed between itself and the facing roller 32B, and the secondary transfer belt 36 and the intermediate transfer belt 31 are in contact with each other with a predetermined load. The secondary transfer position NT is defined between the secondary transfer belt 36 and the intermediate transfer belt 31 that are in contact with each other. The recording medium P is supplied from the container 51 to the secondary transfer position NT at an appropriate time. The secondary transfer belt 36 is rotated in an arrow B direction by the secondary transfer roller 34 being rotationally driven.
In the present exemplary embodiment, when the toner image on the intermediate transfer belt 31 is transferred to the recording medium P, a negative voltage is applied to the facing roller 32B by a power supply unit 39. Accordingly, a potential difference is generated between the facing roller 32B and the secondary transfer roller 34. That is, when the negative voltage is applied to the facing roller 32B, a secondary transfer voltage (a positive voltage) having a polarity opposite to the toner polarity is indirectly applied to the secondary transfer roller 34 forming a counter electrode of the facing roller 32B. Accordingly, a negative toner image is transferred from the intermediate transfer belt 31 to the recording medium P passing through the secondary transfer position NT.
On the other hand, in a case where the toner on the intermediate transfer belt 31 is held on the intermediate transfer belt 31 when the toner passes through the secondary transfer position NT, the positive voltage is applied to the facing roller 32B by the power supply unit 39. Accordingly, a potential difference is generated between the facing roller 32B and the secondary transfer roller 34. That is, when the positive voltage is applied to the facing roller 32B, a non-transfer voltage (the negative voltage) having the same polarity as the toner polarity is indirectly applied to the secondary transfer roller 34 forming the counter electrode of the facing roller 32B. Accordingly, the toner passing through the secondary transfer position NT is subjected to a repulsive force from the secondary transfer roller 34 and is held on the intermediate transfer belt 31.
As illustrated in
The cleaning brush 61 includes a shaft portion 61A made of metal and a brush portion 61B made of a synthetic resin and provided on an entire outer periphery of the shaft portion 61A. In the brush portion 61B, plural first bristle materials 61F extend from the shaft portion 61A in a radial direction (a radially outward direction).
The cleaning brush 61 rotates when the shaft portion 61A is driven to rotate by a rotation driving device 67 that includes a motor, a speed reducer, and the like (not illustrated). As an example, the cleaning brush 61 rotates in the same direction as a rotation direction of the secondary transfer belt 36 (a clockwise direction in
The rotation driving device 67 may also rotate the cleaning brush 61 in a direction opposite to the rotation direction of the secondary transfer belt 36 (a counterclockwise direction in
Further, the cleaning device 60 includes a removing brush 63 that is in contact with the brush portion 61B of the cleaning brush 61 and is formed in, for example, a columnar shape.
The removing brush 63 includes a shaft portion 63A made of metal and a brush portion 63B made of synthetic resin and provided on an entire outer periphery of the shaft portion 63A. The brush portion 63B is provided with plural second bristle materials 63F. In the brush portion 63B of the present exemplary embodiment, the second bristle materials 63F having the same length extend from the shaft portion 63A in a radial direction (a radially outward direction).
The removing brush 63 is arranged such that a part of tip ends of the second bristle material 63F enters an inner portion of the brush portion 61B of the cleaning brush 61, and is configured such that the first bristle material 61F is flicked by the second bristle material 63F when the first bristle material 61F of the cleaning brush 61 and the second bristle material 63F of the removing brush 63 move relative to each other.
It is also possible to make a bending rigidity of the second bristle material 63F higher than that of the first hair material 61F so that the first bristle material 61F is more likely to be flicked than in a case where the bending rigidity of the second bristle material 63F is equal to that of the first bristle material 61F. Although the second bristle material 63F is formed to be shorter than the first bristle material 61F in the present exemplary embodiment, a length of the second bristle material 63F may be appropriately changed as necessary. For example, the second bristle materials 63F having different lengths may be mixed.
In addition, a bristling density of the second bristle material 63F in the removing brush 63 may be made higher than that of the first bristle material 61F in the cleaning brush 61. In this way, the second bristle material 63F of the removing brush 63 may be brought into uniform contact with the first bristle material 61F of the cleaning brush 61, and the toner removing effect may be improved.
The removing brush 63 is rotated when the shaft portion 63A is driven to rotate by a second rotation driving device 68 including a motor, a speed reducer, and the like (not shown).
As an example, the removing brush 63 is configured to rotate in the same direction (a clockwise direction in
The second rotation driving device 68 may also rotate the removing brush 63 in a direction (a counterclockwise direction in
The cleaning device 60 further includes a first power supply unit 65 that applies a positive bias voltage (cleaning voltage) to the shaft portion 61A of the cleaning brush 61, and a second power supply unit 66 that applies a positive bias voltage higher than that of the shaft portion 61A or a negative voltage to the shaft portion 63A of the removing brush 63. The second power supply unit 66 may generate a higher voltage than the first power supply unit 65.
With this configuration, the negatively charged toner on the secondary transfer belt 36 may be electrostatically attracted to the cleaning brush 61. Further, the toner attracted to the cleaning brush 61 may be electrostatically attracted to the removing brush 63.
When a negative voltage is applied to the shaft portion 63A of the removing brush 63, the negative toner moved to the removing brush 63 is subjected to a repulsive electrostatic force. Accordingly, the toner may be removed from the removing brush 63, and the removed toner falls into a receiver 69 (see
As illustrated in
In the transfer device 30, a detection unit (a sensor) 49 for detecting a density detection image (a patch) and a color shift detection image (a patch) is disposed downstream (a left side in
The toners of yellow (Y), magenta (M), cyan (C), and black (K) used in the toner image forming units 20Y, 20M, 20C, and 20K (hereinafter, referred to as 20Y to 20K) each include a pigment and a binder resin.
The toner images formed by the toner image forming units 20Y to 20K include a transferred image to be transferred to the recording medium P and a non-transferred image not to be transferred to the recording medium P. Examples of the non-transferred image include a density detection image (a patch), a color shift detection image (a patch), an image (a band) for consuming a deteriorated developer (a toner), and an image (a band) for supplying toner between the photoconductor drum 21 and the blade 25.
As illustrated in
On the other hand, a patch 420 of each toner image forming unit 20 is transferred to a non-transfer region R2 between the transfer regions R1 by each primary transfer roller 33. The patch 420 transferred to the intermediate transfer belt 31 passes through the secondary transfer position NT alone without passing through the secondary transfer position NT together with the recording medium P.
In the present exemplary embodiment, in a case where the image 320 is transferred from the intermediate transfer belt 31 to the recording medium P, as described above, a positive secondary transfer voltage (a voltage having a polarity opposite to the toner polarity) is applied to the secondary transfer roller 34 via the facing roller 32B. Accordingly, the image 320 passing through the secondary transfer position NT together with the recording medium P is transferred from the intermediate transfer belt 31 to the recording medium P.
On the other hand, when the patch 420 passes through the secondary transfer position NT, the negative non-transfer voltage (a voltage having the same polarity as the toner polarity) is applied to the secondary transfer roller 34 via the facing roller 32B such that the patch 420 on the intermediate transfer belt 31 is held by the intermediate transfer belt 31.
Accordingly, the toner of the patch 420 on the intermediate transfer belt 31 is subjected to a repulsive force from the secondary transfer belt 36 (the secondary transfer roller 34) and is held on the intermediate transfer belt 31. The toner of the patch 420 held on the intermediate transfer belt 31 is transported to the cleaning device 35, and is removed from the intermediate transfer belt 31 by the cleaning device 35.
Here, since the secondary transfer belt 36 and the intermediate transfer belt 31 are in contact with each other with a predetermined load, when the patch 420 is formed on the surface of the intermediate transfer belt 31, a part of the toner of the patch 420 is transferred to the secondary transfer belt 36 even if the toner is subjected to a repulsive electrostatic force.
When the toner of the patch 420 is transferred to the secondary transfer belt 36, the toner adheres to the secondary transfer belt 36 (an example of a transfer member). When the secondary transfer belt 36 rotates, the toner is transported to the cleaning brush 61 and removed by the cleaning brush 61.
Specifically, as described above, when a positive bias voltage is applied to the cleaning brush 61 by the first power supply unit 65, the negative toner transferred to the secondary transfer belt 36 is electrostatically attracted to the cleaning brush 61 and removed from the secondary transfer belt 36.
When a positive bias voltage is applied to the removing brush 63 by the second power supply unit 66, the toner on the cleaning brush 61 is electrostatically attracted to the removing brush 63, and the toner is removed from the cleaning brush 61.
Next, an operation according to the present exemplary embodiment will be described.
When the control unit 70 receives an image forming command (a print command), the control unit 70 operates the toner image forming units 20Y to 20K, the transfer device 30, and the fixing device 40 as described below (see
In the toner image forming units 20Y to 20K, the image 320 (see
As illustrated in
The patches 420 of the respective colors formed on the respective photoconductor drums 21 are sequentially transferred to a random position in the non-transfer regions R2 of the rotating intermediate transfer belt 31 by the respective primary transfer rollers 33.
The image 320 transferred to the intermediate transfer belt 31 is transported to the secondary transfer position NT by the rotation of the intermediate transfer belt 31.
The recording medium P is supplied to the secondary transfer position NT by the transport rollers 52 in accordance with a timing of transporting of the image 320. When the recording medium P and the image 320 (the transfer region R1) pass through the secondary transfer position NT, the secondary transfer voltage (the positive voltage) is applied to the secondary transfer roller 34 via the facing roller 32B. Accordingly, the image 320 is transferred from the intermediate transfer belt 31 to the recording medium P.
The recording medium P to which the image 320 is transferred is transported from the secondary transfer position NT to the fixing device 40 by the transport belts 58, and the image 320 on the recording medium P is fixed to the recording medium P in the fixing device 40.
When the recording medium P does not pass through the secondary transfer position NT and the patch 420 passes through the secondary transfer position NT, the non-transfer voltage (the negative voltage) is applied to the secondary transfer roller 34 via the facing roller 32B. Accordingly, the patch 420 on the intermediate transfer belt 31 is subjected to the repulsive force from the secondary transfer roller 34 (the secondary transfer belt 36) and is held on the intermediate transfer belt 31. Accordingly, the toner of the patch 420 passes through the secondary transfer position NT while being held on the intermediate transfer belt 31, is transported to the cleaning device 35, and is removed from the intermediate transfer belt 31 by the cleaning device 35.
Here, although the non-transfer voltage is applied in this way, since the secondary transfer belt 36 and the intermediate transfer belt 31 are in contact with each other with a predetermined load, a part of the toner of the patch 420 may be transferred to the secondary transfer belt 36 even if the toner is subjected to the repulsive electrostatic force.
In the present exemplary embodiment, the toner that is transferred to the secondary transfer belt 36 is transported to the cleaning device 60 by the rotation of the secondary transfer belt 36. The toner of the image 320 may adhere to the secondary transfer belt 36.
In the cleaning device 60, the first power supply unit 65 applies a first positive voltage to the cleaning brush 61 rotating in a clockwise direction. Accordingly, the negatively charged toner on the secondary transfer belt 36 is electrostatically attracted to the cleaning brush 61 and removed.
Further, in the cleaning device 60, since the removing brush 63 is brought into contact with the rotating cleaning brush 61, it is possible to improve an effect of removing the toner on the cleaning brush 61 as compared with a configuration in which a flicking member that is a metal round bar, or a removing member having, for example, a plate shape is brought into contact with the cleaning brush 61 to remove the toner by flicking the first bristle material 61F. The removing brush 63 not only flicks the first bristle material 61F of the cleaning brush 61 by the second bristle material 63F thereof, but also scrapes out the toner in an inner portion of the brush portion 61B since a tip end portion of the second bristle material 63F enters the inner portion of the brush portion 61B.
Further, in the cleaning device 60 of the present exemplary embodiment, since the removing brush 63 is formed in a columnar shape, the life of the removing brush 63 may be extended as compared with, for example, a case where one portion of a brush provided with plural bristle materials on a plate thereof is brought into contact with the cleaning brush 61.
Further, in the cleaning device 60 of the present exemplary embodiment, since the removing brush 63 is rotated and brought into contact with the cleaning brush 61, a frequency of flicking the first bristle material 61F of the cleaning brush 61 is increased and it is easy to remove the toner from the cleaning brush 61. Since the removing brush 63 is rotated by the second rotation driving device 68, it takes less time and effort than in a case where the removing brush 63 is manually rotated. In addition, by rotating the removing brush 63 of a columnar shape, the entire outer periphery of the brush may be brought into contact with the cleaning brush 61, and the life of the brush portion 63B may be extended as compared with a case where the removing brush 63 is not rotated.
Further, in the present exemplary embodiment, since the removing brush 63 is rotated in the same direction as the cleaning brush 61 and brought into contact with the cleaning brush 61, a relative speed between the first bristle material 61F and the second bristle material 63F at the contact portion of the removing brush 63 and the cleaning brush 61 is increased as compared with the case where the removing brush 63 is rotated in an opposite direction from the cleaning brush 61 and brought into contact with the cleaning brush 61. Therefore, a force with which the removing brush 63 flicks the first bristle material 61F is increased, and the toner on the cleaning brush 61 is easily removed.
In the cleaning device 60 of the present exemplary embodiment, the second power supply unit 66 applies the second voltage having a positive polarity and higher than the first voltage to the removing brush 63. Accordingly, an attraction force for electrostatically attracting the toner attracted to the cleaning brush 61 is generated in the removing brush 63, and the toner is easily removed from the cleaning brush 61 as compared with a case where a bias voltage equivalent to that of the cleaning brush 61 is applied to the removing brush 63. When a voltage is applied to the removing brush 63, the toner may be removed easily than in a case where the voltage is not applied.
In the cleaning device 60 of the present exemplary embodiment, since the toner on the cleaning brush 61 is removed by the removing brush 63 in this manner, it is possible to suppress accumulation of the toner on the cleaning brush 61, and it is possible to maintain cleaning ability of the cleaning brush 61 to clean the secondary transfer belt 36 for a long period of time.
Since the second bristle material 63F of the removing brush 63 enters and passes between the first bristle material 61F and the first bristle material 61F of the cleaning brush 61, it is possible to straighten the first bristle material 61F.
In the case of removing the toner attracted to the removing brush 63, for example, a voltage having the same polarity as the toner is applied to the removing brush 63 in a state where no image is being formed. Accordingly, the toner is electrostatically repelled, and the toner is separated from the removing brush 63. The toner removed from the removing brush 63 falls into the receiver 69 and is recovered.
Although an exemplary embodiment of the present invention has been described above, the present invention is not limited to the above, and in addition to the above, it goes without saying that various modifications can be made within a range that does not deviate from the scope of the present invention.
Although the removing brush 63 of a columnar shape is rotated in a clockwise direction as the cleaning brush 61 in the above-described exemplary embodiment, a rotation direction of the removing brush 63 may be opposite to that of the cleaning brush 61.
Although the removing brush 63 is brought into contact with the cleaning brush 61 while being rotated in the above-described exemplary embodiment, the removing brush 63 may be rotated as necessary, and rotation of the removing brush 63 may be stopped when removal of the toner on the cleaning brush 61 is finished. If it is not necessary to rotate the removing brush 63, the second rotation driving device 68 may not be provided.
Although the removing brush 63 is rotated by the second rotation driving device 68 in the above-described exemplary embodiment, the removing brush 63 may be manually rotated.
Although plural second bristle materials 63F having the same length are provided on the shaft portion 63A in the removing brush 63 of the above-described exemplary embodiment, plural second bristle materials 63F having different lengths may be provided on the shaft portion 63A.
Although in the removing brush 63 of the above-described exemplary embodiment, the second bristle material 63F extends from the shaft portion 63A in a radial direction (a radially outward direction), the second bristle material 63F may extend so as to be inclined with respect to the radial direction (the radially outward direction). For example, the second bristle material 63F may be inclined toward a rotation direction side with respect to the radial direction (the radially outward direction), or may be inclined toward a side opposite to the rotation direction side.
Although the second voltage is applied to the removing brush 63 in the above-described exemplary embodiment, the second voltage may be applied as necessary, and when the toner on the cleaning brush 61 is removed only by bringing the removing brush 63 into contact with the cleaning brush 61, the second voltage may not be applied to the removing brush 63.
Although a shape of the removing brush 63 is a columnar shape in the above-described exemplary embodiment, the shape of the removing brush 63 is not limited to a columnar shape, and as long as the toner on the cleaning brush 61 can be removed, the removing brush 63 may be, for example, a structure in which plural bristle materials are provided on a long plate-shaped member.
Although the cleaning device 60 is used to clean the secondary transfer belt 36 in the above-described exemplary embodiment, the cleaning device 60 may also be used to clean the intermediate transfer belt 31. In this case, as illustrated in
In a case of an image forming apparatus without the secondary transfer belt 36 and having a configuration in which the recording medium P is nipped between the secondary transfer roller 34 and the intermediate transfer belt 31, the secondary transfer roller 34 serves as a toner transport body of the present invention. In this case, although not illustrated, the cleaning device 60 may be provided so as to face the secondary transfer roller 34, and thus the toner adhering to the secondary transfer roller 34 may be cleaned by the cleaning device 60.
Although an example in which the negatively charged toner is cleaned is described in the above-described exemplary embodiment, a positively charged toner may be cleaned by applying a negative voltage to the cleaning brush 61 and the removing brush 63.
When a negatively charged toner and a positively charged toner are mixed and adhere to the secondary transfer belt 36 (or the intermediate transfer belt 31), the cleaning device 60 that removes the negatively charged toner and the cleaning device 60 that removes the positively charged toner may be provided in series along the transport direction.
The foregoing description of the exemplary embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in the art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, thereby enabling others skilled in the art to understand the invention for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2021-054179 | Mar 2021 | JP | national |