An exemplary embodiment for embodying the invention will be described in detail hereinbelow with reference to the drawings.
The image forming unit 102 has: photosensitive drums a to d for forming toner images of four colors of yellow, magenta, cyan, and black; an exposing apparatus 6 for forming electrostatic latent images onto the photosensitive drums by irradiating a laser beam based on image information; and the like. The photosensitive drums a to d are driven by motors (not shown). Although not illustrated, primary charging units, developing units, and transfer charging units are arranged around the photosensitive drums and they are constructed as units called process cartridges 1a to 1d, respectively.
An intermediate transfer belt 2 is rotated in the direction shown by an arrow. By applying a transfer bias to the intermediate transfer belt 2 by transfer charging units 2a to 2d, the toner images of the respective colors on the photosensitive drums are sequentially multiple-transferred onto the intermediate transfer belt 2. Thus, a full-color image is formed on the intermediate transfer belt.
A secondary transfer unit 3 transfers the full-color image sequentially formed on the intermediate transfer belt 2 onto the sheet P. A discharging roller pair 11 as a discharging unit discharges the sheet P on which the image has been fixed by the fixing roller pair 5 onto a discharge tray 7. A sheet conveying apparatus 103 conveys the sheet on which the toner image has been transferred by the secondary transfer unit 3 to the discharging roller pair 11 as a discharging unit through the fixing roller pair 5.
The image forming operation of the image forming apparatus 100 constructed as mentioned above will now be described.
When the image forming operation is started, first, the exposing apparatus 6 irradiates the laser beam based on the image information which is transmitted from a personal computer (not shown) or the like and sequentially exposes the surfaces of the photosensitive drums a to d whose surfaces have uniformly charged to a predetermined polarity and a predetermined electric potential, thereby forming electrostatic latent images onto the photosensitive drums. After that, the electrostatic latent images are developed and visualized by toner.
For example, first, the laser beam based on an image signal of a yellow component color of the original is irradiated onto the photosensitive drum a through a polygon mirror or the like of the exposing apparatus 6, thereby forming the yellow electrostatic latent image onto the photosensitive drum a. The yellow electrostatic latent image is developed by yellow toner from the developing unit, thereby visualizing as a yellow toner image.
Subsequently, in association with the rotation of the photosensitive drum a, when the toner image reaches a first transfer unit where the photosensitive drum a and the intermediate transfer belt 2 are come into contact with each other, the yellow toner image on the photosensitive drum a is transferred to the intermediate transfer belt 2 by the primary transfer bias applied to the transfer charging unit 2a (primary transfer).
Subsequently, when the portion which holds the yellow toner image on the intermediate transfer belt 2 is moved, a magenta toner image formed on the photosensitive drum b until this point of time by a method similar to that mentioned above is transferred to the intermediate transfer belt 2 on the yellow toner image. Similarly, as the intermediate transfer belt 2 is moved, the cyan toner image and the black toner image are overlaid and transferred onto the yellow toner image and the magenta toner image by the primary transfer unit. Thus, a full-color toner image is formed on the intermediate transfer belt 2.
In parallel with the toner image forming operation, the sheets P enclosed in a sheet feeding cassette 4 are picked up and fed one by one by a pickup roller 8 and reach a registration roller 9. After timing was matched by the registration roller 9, the sheets are conveyed to the secondary transfer unit 3. In the secondary transfer unit 3, the toner images of the four colors on the intermediate transfer belt 2 are transferred onto the sheet P in a lump by a secondary transfer bias which is applied to a secondary transfer roller 3a as a transfer unit (secondary transfer).
Subsequently, the sheet P on which the toner images have been transferred as mentioned above is guided by conveying guides 20 and 51 provided between the secondary transfer unit 3 and the fixing roller pair 5 and conveyed to the fixing roller pair 5 constructed by a fixing roller 5a and a pressing roller 5b. By the fixing roller pair 5, the toner of the respective colors is heated and pressed, so that the toner is fused, color-mixed, and fixed as a full-color image onto the sheet P. After that, the sheet P to which the image has been fixed is discharged onto the discharge tray 7 by the discharging and conveying roller pair 11 provided downstream of the fixing roller pair 5.
As illustrated in
A fixing entrance sensor R as a sheet detecting unit for detecting the sheet P which entered the conveying path 53 is arranged around the flag 50. A first loop detecting sensor S1 and a second loop detecting sensor S2 which are detecting units for the loop control for detecting the loop of the sheet P which is formed in the conveying path 53 due to a difference between the sheet conveying speed of the secondary transfer unit 3 (secondary transfer roller 3a) and that of the fixing roller pair 5 are also arranged.
As illustrated in
In
When the detection signal is input from the fixing entrance sensor R which has detected the sheet P, first, the conveyance control unit 52 (CPU 17) constructed as mentioned above starts the timer 14. Further, after that, the conveyance control unit 52 (CPU 17) controls the sheet conveying speed of the fixing roller pair 5 by controlling the rotational speed of the fixing motor M according to the signals from the first and second loop detecting sensors S1 and S2, thereby keeping the loop state of the sheet P constant between the secondary transfer unit 3 and the fixing roller pair 5.
The loop control operation of the conveyance control unit 52 as mentioned above will now be described.
When the sheet P on which the toner images of the four colors on the intermediate transfer belt 2 have been transferred in a lump by the secondary transfer unit 3 as already mentioned above enters the conveying path 53, first, the flag 50 is pressed and rotated as illustrated in
Subsequently, the sheet P reaches the fixing nip of the fixing roller pair 5 whose sheet conveying speed has been preset to a sheet conveying speed Vf1 (low speed) lower than a sheet conveying speed Vt of the secondary transfer unit 3. At this time, the rotational speed of the fixing motor M is equal to M1 as shown in (b) in a timing chart of
Since the motion of a front edge of the sheet P is unstable while the sheet P reaches the fixing nip as mentioned above, the flag 50 vibrates finely according to the sheet P. Thus, the first and second loop detecting sensors S1 and S2 repeat the on/off operations as shown in (c) and (d) for a short time. Therefore, the first and second loop detecting and masking circuits Q1 and Q2 are turned off for such a period of time as shown in (e) and (f), thereby preventing the detection signals from the first and second loop detecting sensors S1 and S2 from being input to the conveyance control unit 52.
Thereafter, when the sheet P is nipped to the fixing roller pair 5, in the conveying path 53 between the secondary transfer unit 3 and the fixing roller pair 5, the loop is formed in the sheet P due to the difference between the sheet conveying speed of the secondary transfer unit 3 and that of the fixing roller pair 5. In this instance, generally, although the normal loop is formed in the sheet, there is also a case where the reverse loop is formed depending on the state of the curl of the sheet P.
After that, since a sheet conveying speed Vf of the fixing roller pair 5 has been preset to the speed Vf1 lower than the sheet conveying speed Vt of the secondary transfer unit 3, the sheet P gradually increases the loop and a length of loop soon reaches L1 as illustrated in
At this time, as shown in (e) in
For this period of time (Tq1 to Tq2), when the first loop detecting sensor S1 outputs an ON signal, the ON signal is input to the conveyance control unit 52. Although the loop is continuously detected for the period of time (Tq1 to Tq2) for convenience of description of a masking interval in the embodiment, the loop can be also detected for a predetermined time from the turn-on of the timer 14, that is, from the turn-on of the fixing entrance sensor R. The period of time (Tq1 to Tq2) corresponds to the predicting time of the invention. That is, a time which is necessary until the count value passes through Tq1 and reaches Tq2 after the timer 14 started the counting operation is set to a reference which is used when discriminating whether the loop formed in the sheet is the normal loop or the reverse loop. If the first loop detecting sensor S1 is turned on within such a time, it is determined that the normal loop has been formed in the sheet. If it is OFF, it is determined that the reverse loop has been formed in the sheet.
As shown in the flowchart of
If the first loop detecting sensor S1 is ON as mentioned above (YES in S102), the conveyance control unit 52 determines that the normal loop has been formed. Thereafter, the conveyance control unit 52 makes the loop control based on the signal from the second loop detecting sensor S2 (S104).
Subsequently, as illustrated in
After that, the fixing motor M is controlled based on the signal from the second loop detecting sensor S2. Thus, as shown in (b) in
After that, as illustrated in (d) in
By repeating such control, the loop amount of the sheet P between the secondary transfer unit 3 and the fixing roller pair 5 can be held to almost L2 as shown in (a) in
On the other hand, for example, when the sheet P is curled or the like, in the state just after the sheet was nipped to the fixing roller pair 5, there is a case where a loop in the opposite orientation is formed as illustrated in
After that, since the sheet conveying speed Vf of the fixing roller pair 5 has been preset to the speed Vf1 lower than the sheet conveying speed Vt of the secondary transfer unit 3, the sheet P gradually forms a large loop.
As mentioned above, the sheet P does not form the loop toward the side (normal loop) which is formed by a nip angle φ between the secondary transfer unit 3 and the fixing roller pair 5 but the loop is largely formed in the direction shown by an arrow Y while keeping the orientation of the loop Lf to the non-image surface.
On the other hand, although the first loop detecting and masking circuit Q1 is held in the OFF state as shown in (e) in
However, if the sheet has formed the reverse loop, the first loop detecting sensor S1 is OFF as illustrated in
When the rotational speed of the fixing motor M is switched to Mh as mentioned above, the sheet conveying speed of the fixing roller pair 5 increases from Vf1 to Vfh. After that, the sheet P is conveyed at the sheet conveying speed Vfh for a setting time Te as a recovery time of the invention from the timer 14 (S103). At this time, a condition of the set values of Tq1 and Tq2 is the timing when the first loop detecting sensor S1 is certainly turned on at the time of the normal loop. The values of Tq1 and Tq2 have been set in the memory 18. The setting time Te has previously been obtained by experiments or the like.
After the elapse of the setting time Te, the rotational speed of the fixing motor M is returned to M1. Thus, the sheet conveying speed Vf of the fixing roller pair 5 is again returned to the speed Vf1 (rotational speed M1 of the fixing motor M) lower than the sheet conveying speed Vt of the secondary transfer unit 3.
If the sheet P is conveyed for the setting time Te at the sheet conveying speed Vfh higher than the sheet conveying speed Vt of the secondary transfer unit 3, the loop amount of the sheet P decreases. As illustrated in
In the embodiment, as illustrated in
Therefore, when the sheet P is conveyed for the setting time Te at the sheet conveying speed Vfh, as illustrated in
Consequently, the sheet P forms the normal loop. A condition of the set value of Te at this time is the timing of forming such a shallow reverse loop state that the loop can be reversed in the normal loop orientation without stretching the sheet P between the secondary transfer unit 3 and the fixing roller pair 5. The value of Te has been preset in the memory 18.
The reversed loop soon reaches the second loop detecting sensor S2 as illustrated in
As mentioned above, after the fixing entrance sensor R detected the sheet, if the first loop detecting sensor S1 does not detect the loop of the sheet P, the sheet conveying speed of the fixing roller pair 5 is controlled so as to reduce the loop amount of the sheet.
Thus, the occurrence of the reverse loop of the sheet P between the secondary transfer unit 3 and the fixing roller pair 5 can be prevented. Consequently, the increase in size is avoided and the curled sheet can be conveyed at low costs without causing the defective image such as image rubbing or the like. A degree of freedom of the layout construction of the conveying path 53 in the image forming apparatus 100 and the component parts and the like of the image forming apparatus 100 can be raised.
Although the case of controlling the sheet conveying speed of the fixing roller pair 5 for the loop control has been described above, it is sufficient that a difference between the sheet conveying speed of the fixing roller pair 5 and that of the secondary transfer unit 3 can be controlled. Therefore, if the first loop detecting sensor S1 does not detect the loop of the sheet P, it is sufficient to control the sheet conveying speed of at least one of the fixing roller pair 5 and the secondary transfer unit 3.
The above description has been made on the assumption that in order to decrease the reverse loop of the sheet P, the setting time Te during which the fixing roller pair 5 is driven at the sheet conveying speed Vfh higher than that of the secondary transfer unit 3 is determined based on the count value of the timer 14 which has previously been calculated. However, if the decrease in the reverse loop of the sheet P can be detected, for example, a change position detecting unit which can detect the loop shape of the sheet may be provided between the fixing roller pair 5 and the secondary transfer unit 3. In such a case, the sheet conveying speed of the fixing roller pair 5 is changed to Vf1 (rotational speed Mh of the fixing motor M) for the time set based on the detection of the loop of the sheet P by the change position detecting unit.
Although the first loop detecting sensor S1 for discriminating whether the loop of the sheet is the normal loop or the reverse loop and the second loop detecting sensor S2 for making the loop control have been provided on the normal loop side in the embodiment, the first loop detecting sensor S1 can also function as a second loop detecting sensor S2 in common. That is, the first loop detecting sensor S1 has a role of discriminating whether the loop of the sheet is the normal loop or the reverse loop and a role of making the loop detection for switching the sheet conveying speed of the fixing roller pair 5 to one of the high speed and the low speed (role of the second loop detecting sensor S2). With such a construction, an effect of reducing the costs is obtained.
The first loop detecting sensor S1 can also function as a fixing entrance sensor R in common.
In
As illustrated in
Subsequently, the sheet P reaches the fixing nip of the fixing roller pair 5 whose sheet conveying speed has been preset to Vf1 lower than the sheet conveying speed Vt of the secondary transfer unit 3. At this time, the rotational speed of the fixing motor M is equal to M1 as shown in (b) in a timing chart of
After that, the sheet P is nipped by the fixing roller pair 5 and the loop is formed in the sheet P in the conveying path 53 between the secondary transfer unit 3 and the fixing roller pair 5. At this time, if the sheet P is curled, the reverse loop is formed in a manner similar to that in the foregoing first embodiment (refer to
On the other hand, as shown in (e) in
However, in this case, the first loop detecting sensor S3 is OFF as shown in (c) in
After that, the fixing motor M is driven at the rotational speed Mh and the sheet P is conveyed from the fixing roller pair 5 at the sheet conveying speed Vfh for the setting time Te from the timer 14. After the sheet was conveyed for the setting time Te, the sheet conveying speed Vf of the fixing roller pair 5 is again returned to the speed Vf1 (rotational speed M1 of the fixing motor M) lower than the sheet conveying speed Vt of the secondary transfer unit 3.
Although the loop Le is in the loop state of the slightly opposite side (refer to
A condition of the set value of Te at this time is the timing of forming such a shallow reverse loop state that the loop can be reversed in the normal loop orientation without stretching the sheet P between the secondary transfer unit 3 and the fixing roller pair 5. The value of Te has been preset in the memory 18.
The reversed loop reaches the second loop detecting sensor S2. Thereafter, by repeating the operating steps similar to those in the normal loop, the loop amount of the sheet P between the secondary transfer unit 3 and the fixing roller pair 5 can be held to L2 and the conveyance of the sheet P is stabilized.
Thus, according to the embodiment, in a manner similar to the foregoing first embodiment, even if the reverse loop occurs, the occurrence of the defective image such as image rubbing or the like can be prevented. Further, since the first loop detecting sensor S3 also functions as a fixing entrance sensor (sheet detecting unit), the further reduction of the costs and space can be realized.
The third embodiment of the invention will now be described.
In
In the case of the construction of the embodiment 3, for example, a large effect is obtained when the upstream sheet conveying unit 91 is the fixing unit and the downstream sheet conveying unit 92 is the discharging and conveying unit. In other words, since the sheet just after the fixing is in the high-temperature state, the toner on the image surface is in the fused state. In this instance, if the image surface is come into contact with a guide 93, a temperature change state on an image rubbing trace and a temperature change state at a position other than the guide contact position differ, so that a glossiness variation occurs.
For such a problem, by constructing as shown in the embodiment 3, the occurrence of the reverse loop of the sheet P can be prevented. Therefore, the occurrence of the image rubbing trace and the glossiness variation can be prevented.
The embodiment is not limited to the above construction but, for example, the counting operation of the counter for discriminating the reverse loop can be also started based on the timing for feeding out the sheet by the registration roller 9 in place of the fixing entrance sensor.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2006-135891, filed May 15, 2006, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2006-135891 | May 2006 | JP | national |