The present application claims priority to and incorporates by reference the entire contents of Japanese priority document 2007-002392 filed in Japan on Jan. 10, 2007.
1. Field of the Invention
The present invention relates to an image forming apparatus capable of retracting a image writing unit that includes an optical system unit containing optical components from a write position to a retract position, and a holding unit supported by a supporting unit while holding the optical system unit in a movable manner.
2. Description of the Related Art
Such an image forming apparatus is known as described in, for example, Japanese Patent No. 2849978. The image forming apparatus holds, on its opening and closing door that opens and closes a maintenance opening of a chassis, a image writing unit that writes a latent image to a image carrier such as a photosensitive element by scanning with write light. By retracting the image writing unit from inside the chassis according to opening of the opening and closing door, a processing unit that has been hidden behind the image writing unit is exposed. With this structure, the image writing unit is pulled out of the chassis according to opening of the opening and closing door, and the processing unit is exposed out of the maintenance opening, providing improved maintenance. Besides this structure, the detachable image writing unit exposed to the outside may be pulled out from the maintenance opening as necessary, so that devices having been hidden behind the image writing unit are exposed. The maintenance can be improved even with this structure.
On the other hand, the optical system unit of the image writing unit easily degrades write accuracy due to temperature increase. When the temperature in the apparatus increases as a rotating polygon mirror for deflecting the write light is driven, a lens and mirrors are thermally expanded, causing the light path of the write light to slightly fluctuate. In an image forming apparatus described in Japanese Patent Laid-open No. 2002-318522, an intake fan for taking the outside air into the chassis is coupled to an optical system unit through ducts, so that the optical system unit is cooled by airflow. At the connecting parts of the ducts and the optical system unit, the ducts cover the outer surface of the optical system unit, and the airflow inside the ducts cools the optical system unit while moving along and being in contact with the outer surface of the unit. The cooling can suppress degradation in write accuracy due to temperature increase in the optical system unit.
However, pulling the ducts in the chassis causes difficulties in downsizing the apparatus.
Cooling the optical system unit is possible without using the ducts, by fixing the optical system unit at the right front of the intake fan with, for example, a metal frame so as to receive the airflow directly through the intake fan.
In the image forming apparatus described in Japanese Patent No. 2849978 and those allowing their late image writing devices to be movable and detachable, use of such a cooling system has been difficult due to the following reason. Specifically, an optical system unit that performs light scan with a precise pitch such as a several tens of micrometer order is required to perform high-accuracy positioning in the chassis of the image forming apparatus. Thus, to allow the image writing unit to be movable or detachable, it is desirable to use an image writing unit capable of holding an optical system unit to be freely movable on a holding unit. This is because, when setting the image writing unit to its write position, the optical system unit can be positioned in the chassis by causing the optical system unit to freely move on a holding unit with its predetermined hitting portion hitting a blocking portion in the chassis. In this structure, however, the optical system unit is surrounded by the holding unit, causing difficulties in allowing the airflow from the intake fan to directly hit the optical system unit.
It is an object of the present invention to at least partially solve the problems in the conventional technology.
An image forming apparatus according to one aspect of the present invention includes an image carrier on which a latent image is formed; an image writing unit that writes the latent image on a surface of the image carrier with a write light output in a state in which the image writing unit is set in a write position; a supporting unit that supports the image writing unit in such a manner that the image writing unit is retractable from the write position; a developing device that develops the latent image formed on the image carrier to obtain a visible image; a chassis that contains the image carrier, the image writing unit, and the developing device; and either one of an air intake unit that generates intake air by sending air into the chassis from outside and an air exhaust unit that generates exhaust air by sending air from inside of the chassis to the outside. The image writing unit includes an optical system unit containing an optical system element in a unit case and a holding unit that holds the optical system unit in a movable manner, the holding unit being supported by the supporting unit. The image writing unit causes, upon being set in the write position, the optical system unit to be movable and positions the optical system unit, with a hitting portion of the optical system unit hitting a blocking portion in the chassis. The holding unit includes, in the state in which the image writing unit is set in the write position, a portion defining an opening that faces either one of the air intake unit and the air exhaust unit. The air intake unit blows the intake air to the optical system unit through the opening, or the air exhaust unit draws the exhaust air around the optical system unit through the opening.
The above and other objects, features, advantages and technical and industrial significance of this invention will be better understood by reading the following detailed description of presently preferred embodiments of the invention, when considered in connection with the accompanying drawings.
Exemplary embodiments of the present invention are explained in detail below with reference to the accompanying drawings. The following describes an embodiment of an electrophotographic printer (hereinafter, “a printer”) serving as an image forming apparatus, to which the present invention is applied.
A basic structure of the printer will now be described.
The charging unit 4K uniformly charges a surface of the photosensitive element 2K, which is rotated in a clockwise direction in the figure by a driving unit (not shown). The uniformly charged surface of the photosensitive element 2K is subjected to exposure scanning with laser light L, so as to carry a static latent image for K. This static latent image for K is developed to be a K toner image by the developing device 5K using a K toner (not shown), and intermediately transferred to an intermediate transfer belt 16 described later.
The drum cleaning unit 3K removes transfer residual toner adhered to the surface of the photosensitive element 2K having undergone the intermediate transfer process. The neutralizing unit neutralizes residual charges on the photosensitive element 2K having been cleaned. By removing the charge as such, the surface of the photosensitive element 2K is initialized to be ready for the next image formation. As to the other processing units (1Y, 1M, and 1C), (Y, M, and C) toner images are respectively formed on the photosensitive elements (2Y, 2M, and 2C), and intermediately transferred to the intermediate transfer belt 16 described later.
The developing device 5K includes a vertically long hopper unit 6K that contains a K toner (not shown), and a developing unit 7K. In the hopper unit 6K are provided an agitator 8K that is rotationally driven by a driving unit (not shown), a stirring paddle 9K that is rotationally driven vertically below the hopper unit 6K by a driving unit (not shown), a toner supplying roller 10K that is rotationally driven vertically below the stirring paddle 9K by a driving unit (not shown).
The K toner in the hopper unit 6K moves toward the toner supplying roller 10K by its own weight, while being agitated by rotational drive of the agitator 8K and the stirring paddle 9K. The toner supplying roller 10K includes a metal cored bar and a roller section that includes resin foam applied on a surface of the cored bar. The toner supplying roller 10K rotates, with the K toner in the hopper unit 6K adhered to the surface of the roller section.
In the developing unit 7K of the developing device 5K include a developing roller 11K that rotates while being in contact with the photosensitive element 2K and the toner supplying roller 10K, and a thinning blade 12K that brings its tip into contact with a surface of the developing roller 11K. The K toner adhered to the toner supplying roller 10K in the hopper unit 6K is supplied to the surface of the developing roller 11K at a contact portion between the developing roller 11K and the toner supplying roller 10K. The K toner thus supplied is regulated regarding its thickness on the surface of the roller, when passing through a contact portion between the roller and the thinning blade 12K according to the rotation of the developing roller 11K. The K toner of the regulated thickness is then adhered to a static latent image for K on the surface of the photosensitive element 2K at a developing area, i.e., a contact portion between the developing roller 11K and the photosensitive element 2K. With the adhesion, the static latent image for K can be developed to be a K toner image.
Although the foregoing describes the processing unit for K referring to
In
Vertically below the processing units 1Y, 1M, 1C, and 1K is provided a transfer unit 15 that causes the endless intermediate transfer belt 16 to be stretched and endlessly move in a counterclockwise direction in the figure. The transfer unit 15 serving as a transfer means includes not only the intermediate transfer belt 16, but also a driving roller 17, a following roller 18, four primary transfer rollers 19Y, 19M, 19C, and 19K, a secondary transfer roller 20, a belt cleaning unit 21, and a cleaning backup roller 22.
The intermediate transfer belt 16 is stretched by the driving roller 17, the following roller 18, the cleaning backup roller 22, and the primary transfer rollers 19Y, 19M, 19C, and 19K, all provided inside the loop of the intermediate transfer belt 16. Further, the intermediate transfer belt 16 is endlessly moved by a rotational force of the driving roller 17, which is rotationally driven in the counterclockwise direction in the figure by a driving unit (not shown), in the same direction as the rotation of the driving roller 17.
The primary transfer rollers 19Y, 19M, 19C, and 19K nip the endlessly moved intermediate transfer belt 16 with the photosensitive elements 2Y, 2M, 2C, and 2K. With the nipping, primary transfer nips for Y, M, C, and K are formed where an upper surface of the intermediate transfer belt 16 comes in contact with the photosensitive elements 2Y, 2M, 2C, and 2K.
To the primary transfer rollers 19Y, 19M, 19C, and 19K, a primary transfer bias is applied by a transfer biasing power source (not shown), thereby generating transfer fields between electrostatic latent images on the photosensitive elements 2Y, 2M, 2C, and 2K and the primary transfer rollers 19Y, 19M, 19C, and 19K, respectively. Instead of the primary transfer rollers 19Y, 19M, 19C, and 19K, a transfer charging unit, a transfer brush, or the like may be used.
The Y toner image formed on the surface of the photosensitive element 2Y of the processing unit 1Y for Y is advanced to the primary transfer nip for Y according to the rotation of the photosensitive element 2Y. The Y toner image is then transferred from the photosensitive element 2Y to the intermediate transfer belt 16 due to the transfer field and nip pressure. When the intermediate transfer belt 16 having the Y toner image primary-transferred thereto passes through the primary transfer nips for M, C, and K according to its endless movement, M, C, and K toner images on the photosensitive elements 2M, 2C, and 2K are sequentially superimposed on the Y toner image and primary-transferred. Through the primary transfer of the superposition, the four toner images are formed on the intermediate transfer belt 16.
The secondary transfer roller 20 of the transfer unit 15 is provided outside the loop of the intermediate transfer belt 16, and nips the intermediate transfer belt 16 with the following roller 18 provided inside the loop. With the nipping, a secondary transfer nip is formed where the upper surface of the intermediate transfer belt 16 comes in contact with the secondary transfer roller 20. To the secondary transfer roller 20, a secondary transfer bias is applied by a transfer biasing power source (not shown). With the application, a secondary transfer field is formed between the secondary transfer roller 20 and the following roller connected to ground.
Vertically below the transfer unit 15, a paper feed cassette 30 containing a bundle of a plurality of stacked recording sheets P is provided slidably and detachably to the chassis of the printer. The paper feed cassette 30 brings a paper feed roller 30a into contact with the top recording sheet P of the bundle, and sends the recording sheet P to a paper feed path 31 by rotating the paper feed roller 30a in the counterclockwise direction in the figure in a predetermined timing.
Near the end of the paper feed path 31 are provided a pair of resist rollers 32. The pair of resist rollers 32 stop rotating immediately after nipping the recording sheet P sent from the paper feed cassette 30. Further, the pair of resist rollers 32 restarts rotation driving with a timing in synchronization with the four toner images on the intermediate transfer belt 16 in the secondary transfer nip, so as to send the recording sheet P to the second transfer nip.
The four toner images on the intermediate transfer belt 16, closely adhered to the recording sheet P at the secondary transfer nip, are secondary transferred to the recording sheet P at one time due to the secondary transfer field and nip pressure, and then combined with the white color of the recording sheet to become a full-color toner image. The recording sheet P having the full-color toner image formed thereon is self-stripped from the secondary transfer roller 20 and the intermediate transfer belt 16, when passing through the secondary transfer nip. The recording sheet P is then sent to a fixing unit 34 (described later) through a post-transfer conveying path 33.
The intermediate transfer belt 16 having passed through the secondary transfer nip has transfer residual toner thereon that has not been transferred to the recording sheet P. The residual toner is cleaned from the surface of the belt by the belt cleaning unit 21 being in contact with the upper surface of the intermediate transfer belt 16. The cleaning backup roller 22, provided inside the loop of the intermediate transfer belt 16, backs up from inside the loop the belt cleaning unit 21 to clean the belt.
The fixing unit 34 forms a fixing nip between a fixing roller 34a that contains a heat generating source such as a halogen lamp (not shown) and a pressure roller 34b that rotates while being in contact with the fixing roller 34a with a predetermined pressure. The recording sheet P sent in the fixing unit 34 is nipped by the fixing nip so that its surface carrying an unfixed toner image is closely adhered to the fixing roller 34a. Further, the toner in the toner image is softened due to heat and pressure applied thereon, and the full-color image is fixed.
The recording sheet P discharged from the fixing unit 34 passes through a post-fixing conveying path 35, and then reaches a branch point between a paper discharge path 36 and a pre-reverse conveying path 41. Beside the post-fixing conveying path 35 is provided a switching nail 42 that is rotationally driven about a rotational axis 42a. The rotation of the switching nail 42 opens and closes the post-fixing conveying path 35 around its end. At a timing when the recording sheet P is sent from the fixing unit 34, the switching nail 42 stops at a rotational movement point indicated by a solid line in the figure, leaving the end of the post-fixing conveying path 35 opened. This process allows the recording sheet P to advance from the post-fixing conveying path 35 in the paper discharge path 36 and be nipped between a pair of discharge rollers 37.
When a single-sided printing mode is set according to an input operation made to an operation section such as a numeric key (not shown) or a control signal sent from a computer or the like (not shown), the recording sheet P nipped between the pair of discharge rollers 37 is left discharged to the outside of the apparatus. The recording sheet P is then stacked on a sheet stacking section, which is an outer surface section of an upper cover 50 of the chassis.
In a double-sided printing mode, on the other hand, the recording sheet P is transported in the paper discharge path 36 with its top end nipped between the pair of discharge rollers 37. When the tail end of the recording sheet P passes through the post-fixing conveying path 35, the switching nail 42 rotationally moves to a point indicated by a dashed line in the figure, causing the post-fixing conveying path 35 to close around its end. Almost concurrently, the pair of discharge rollers 37 starts a reverse rotation. Accordingly, the recording sheet P is transported with its tail end directed to its head; and advanced in the pre-reverse conveying path 41.
In
The reversing unit 40 includes an outer cover 45 capable of pivoting with respect to the main body of the chassis, and a second pivoting element 46 capable of pivoting with respect to the outer cover 45. Specifically, the outer cover 45 of the reversing unit 40 is supported so as to pivot about the pivot axis 40a provided in the chassis of the main body of the printer. The pivoting movement allows the outer cover 45 to open and close with respect to the chassis together with the second pivoting element 46 held in the outer cover 45. When the outer cover 45 is opened together with the second pivoting element 46 as indicated by dotted lines in
The second pivoting element 46 is supported by the outer cover 45 so as to pivot about a pivot axis (not shown) provided on the outer cover 45, when the outer cover 45 is opened. When the second pivoting element 46 is opened toward the outer cover 45 according to the pivoting movement, the pre-reverse conveying path 41 and the reverse conveying path 44 are vertically divided and exposed to the outside. This process facilitates removal of a paper jammed in the pre-reverse conveying path 41 or the reverse conveying path 44.
The upper cover 50 of the chassis of the printer serves as an opening and closing door of the chassis. Further, the upper cover 50 is supported to be pivotable about an axis member 51 as indicated by arrows in the
The processing units 1Y, 1M, 1C, and 1K are provided above the intermediate transfer belt 16, above which the optical writing unit 70 is further provided. In this layout, to attach and detach the processing units 1Y, 1M, 1C, and 1K via the maintenance opening, the optical writing unit 70 needs to be retracted from directly above the processing units 1Y, 1M, 1C, and 1K. In the printer of this type allowing the upper cover 50 to be opened, to retract the optical writing unit 70, the optical writing unit 70 may be supported with frames in the chassis to be vertically slidable, so as to be detached in the vertical direction. Further, one end of the optical writing unit 70 may be supported with frames in the chassis to be pivotable, so as to be retracted directly from above the processing units or be set directly above the processing units according to its pivoting movement. Furthermore, the optical writing unit 70 may be held on a lower surface of the upper cover 50 capable of opening and closing, so as to be retracted from directly above the processing units or be set directly above the processing units according to opening and closing of the upper cover 50.
In any of the arrangements, crank movement of the optical writing unit 70 capable of sliding or pivoting movement, or crank movement of the upper cover 50 causes an error in relative position between the optical writing unit 70 and the photosensitive elements 2Y, 2M, 2C, and 2K in the chassis. This error degrades accuracy of the write position of the optical writing unit 70. The degradation in accuracy of the write position causes an image blur, an image missing, a shading, and the like. Further, such errors cause color misregistration in the printer including a plurality of processing units.
On the other hand, the optical system unit 71 includes a first reference positioning member 71a formed in a cylinder and provided to protrude from one side surface of a casing of the optical system unit 71. Although not shown in
The retaining opening 52a provided on the first frame of the cover frame 52, and the opening provided on the second frame (not shown) are larger in size than the diameter of the first reference positioning member 71a and the second reference positioning member (not shown) of the optical system unit 71. Accordingly, the optical system unit 71 is held in the cover frame 52 so as to freely move in a clearance between the first reference positioning member 71a and the retaining opening 52a of the first frame and in a clearance between the second reference positioning member and the opening of the second frame.
On one ends of the first and the second frames of the cover frame 52 are formed axis holes 52c. On the other hand, on the main body of the cassis of the printer is provided a standing first side plate 80. Although not shown in
According to the opening and closing operation performed by the upper cover 50, the optical writing unit 70 held on the upper cover moves between a retract position, where the optical writing unit 70 does not face any of the laterally arranged processing units 1Y, 1M, 1C, and 1K, and a write position, where the optical writing unit 70 faces the processing units.
The first and the second frames of the cover frame 52 have hooks (not shown) thereon. When the upper cover 50 is closed, these hooks are engaged with extension pins (not shown) provided on the first side plate 80 and the second side plate of the chassis. With the engagement, pivoting movement of the cover frame 52 is latched.
In
On the other hand, on the upper portion of the first side plate 80 in the chassis is provided a first positioning unit 80b serving as a blocking portion. As shown in
As the first biasing coil spring (not shown) that biases the first reference positioning member 71a, springs may be separately provided for biasing the first reference positioning member 71a in the X direction and in the Z direction respectively, as indicated by an outline arrow in
The first biasing coil spring 54 shown in
In
The second biasing coil spring fixed on the second frame (not shown) of the cover frame 52 biases the second reference positioning member 71b of the optical system unit 71 being in the write position, thereby striking the second reference positioning member 71b on both the X direction regulating contact surface and the Z direction regulating contact surface of the second positioning unit 90b. Accordingly, the other end of the optical system unit 71 in the write position is positioned in both the X and the Z directions.
In the printer having the structure, the optical writing unit 70 is moved from the write position to the retract position according to opening operation performed by the upper cover 50 as necessary, and thus largely detached from the processing units 1Y, 1M, 1C, and 1K containing the photosensitive elements and their surrounding devices. This detachment enables the processing units 1Y, 1M, 1C, and 1K to be exposed, providing improved maintenance for them.
By bringing the reference positioning members of the optical system unit 71 being in the write position into contact with the positioning sections in the chassis with a biasing force of the biasing coil springs, the optical system unit 71 is positioned with respect to the photosensitive elements in the chassis. Accordingly, even with some extent of crank movement of the cover frame 52, which serves as an opening and closing door and moves while holding the optical writing unit 70 to be movable, the optical system unit 71 is positioned at the write position with respect to the photosensitive elements in the chassis. This structure suppresses degradation in accuracy of the write position of the optical system unit 71.
The following describes a characteristic structure of the printer according to the embodiment.
The exhaust fans 96 draw the air in the chassis and discharge it to the outside of the chassis via the outlet group 95a. According to the discharging, air is drawn from the inlet group 95b provided on the front surface of the outer cover 95 into the chassis, thereby generating airflow from the inlet group 95b to the outlet group 95a in the chassis.
Although not shown in
The cover frame 52 serving as a holding unit constitutes a rectangular frame member with the first, the second, the third, and the fourth frames forming no sealed space therein, and holds the optical system unit 71 inside the frame body. Whereas
When the exhaust fans 96 are driven with the components facing each other, the air around the optical system unit 71 held in the cover frame 52 is drawn by the exhaust fans 96 through the first air openings 52f of the first frame 52d. Accordingly, airflow is generated around the optical system unit 71 and actively moves while being in contact with the surface of the unit case, thereby cooling the optical system unit 71 desirably. At the front of the chassis, a part of the air taken in the chassis from the inlet group 95b passes through the second air openings 52g provided on the second frame 52e of the cover frame 52 without being blocked by any members, and reaches an outer surface of the optical system unit 71. The part of the air is then drawn by the airflow generated on the surface of the unit case as the exhaust fans 96 is driven on the rear side in the chassis, and smoothly moves to the first air openings 52f provided on the first frame 52d. As such, a part of the air taken in the chassis from the inlet group 95b reaches the surface of the unit case without being blocked by any members, and is drawn to the first air openings 52f, allowing more active movement of the airflow on the surface of the unit case.
With the structure, degradation in write accuracy due to temperature increase in the optical system unit 71 can be suppressed by cooling the optical system unit 71 desirably, without pulling ducts inside the chassis.
The exhaust fans 96 may serve as intake fans by causing their blades to rotate in a reverse direction of the normal rotational direction. In this case, the inlet group 95b shown in
The following describes printers according to first and second examples that have characteristic structures in addition to that of the printer according to the embodiment. The structures of the printers according to the first and second examples are the same as that of the embodiment if not otherwise specified.
With this structure, the exhaust fans can generate desirable airflow in the air paths 71c by drawing air in the air paths 71c through the first air openings 52f of the first frame 52d. By desirably receiving the air, drawn into the chassis from the inlet group of the outer cover (not shown) through the second air openings 52g of the second frame 52e and through the airflow inlets of the air paths 71c, the movement of the airflow in the air paths 71c can be facilitated desirably.
In the same manner as the printer according to the embodiment does, the printer according to the first embodiment example uses the photosensitive elements (2Y, 2M, 2C, and 2K) serving as image carriers that carry latent images on the peripheries of their rotatable cylinders (drum sections). Further, paths for the airflow from the inlet group (not shown in
As described in the embodiment, a chassis serving as a supporting unit is used that supports the optical writing unit 70 to be pivotable between the write position and the retract position according to the pivoting movement of the upper cover (50). Further, the extension direction of the paths for the airflow is directed in a straight line along the axis direction of the pivoting movement of the optical writing unit 70. With this structure, the optical writing unit 70 can constantly pivot with its orientation parallel to the extension direction of the air paths 71c.
The air path 71d has a smaller cross section (volume) at its center part in the airflow direction than at its both ends. Thus, cooling effect can be improved for the center part by accelerating the flow velocity at the center part to be faster than that at the both ends. Cooling effect can also be improved for the center parts of the air paths (71c) with the same structure.
As in the embodiment, the upper cover 50 constituting a part of the chassis and serving as an opening-and-closing cover is directly fixed to the optical writing unit 70. Further, an outer surface section of the upper cover 50 serves as a sheet stacking section on which the recording sheets P having undergone the printing process are staked.
As shown in
The airflow in the air paths 71c moves while being in touch with the lower surface of the upper cover 50 and the upper surface of the unit case, thereby cooling the upper cover 50 from its lower side and the optical system unit 71 from its upper surface. With this structure, even when the heat is accumulated due to the large volume of the recording sheets P heated through the fixing process and stacked on the sheet stacking section, heat transfer from the upper cover 50 to the optical system unit 71 can be suppressed by cooling the upper cover 50.
The airflow inlets of the air paths 71c face the second air openings provided on the second frame (not shown) of the cover frame 52. The airflow outlets of the air paths 71c face the first air openings 52f provided on the first frame 52d, as shown in
With the upper cover unit closed, a pivoting end of the upper cover 50 is placed over a left plate 98 constituting a part of the chassis, causing a space to be formed in between. This space is inevitably formed to allow a latching unit (not shown) of the upper cover unit to have crank movement to some extent and engage with a latching unit (not shown) used to latch the upper cover unit at the closed position. Through the space, the outside air is drawn into the chassis little by little as the exhaust fans (not shown) are driven.
When a small amount of the airflow drawn through the space is moved smoothly from the rear side to the front side of the outer case, occurrence of a turbulent flow is induced. As a result, the airflow originally used for cooling is inactivated. Thus, in the printer, a fourth frame 52h of the cover frame 52 serves as a facing member that faces a space between the upper cover 50 with the maintenance opening of the upper portion of the chassis closed and an upper end of the left plate 98 constituting a portion of the chassis and being close to the upper cover 50. With this structure, the fourth frame 52h can block the smooth the movement of the airflow drawn through the space, preventing degradation in cooling performance due to the occurrence of the turbulent flow.
The foregoing describes a printer of a one-component developer system that develops a latent image with a one-component developer mainly including toner without magnetic carrier. The present invention can also be applied to an image forming apparatus of a two-component developer system that uses a two-component developer including magnetic carrier and toner.
The printer according to the embodiment uses the cover frame 52 serving as a holding unit that constitutes a frame body forming no sealed space therein, and that holds the optical system unit 71 inside the frame body having thereon the first air openings 52f and the second air openings 52g. With this structure, inactivation of the air around the optical system unit 71 is reduced and cooling performance of the optical system unit 71 is improved, compared with a holding unit containing the optical system unit 71 in its inner sealed space.
Further, the printer according to the first embodiment example uses, as the unit case of the optical system unit 71, a unit case through which the tubular air paths 71c penetrate such that their inner walls contact the outside air of the case and their outer walls contact the inside air of the case. With this structure, the optical system unit 71 can be cooled from the inside.
In the printer according to the first embodiment example, the optical system unit 71 is held in the cover frame 52 such that the airflow inlets at one ends of the air paths 71c in the airflow direction face the second air openings 52g of the second frame 52e and that the airflow outlets at the other ends of the air paths 71c face the first air openings 52f of the first frame 52d. With this structure, the air in the air paths 71c is drawn through the first air openings 52f of the first frame 52d with the exhaust fans, so that desirable airflow can be generated in the air paths 71c. Further, the air drawn into the chassis from the inlet group 95b of the outer cover is received into the air paths 71c through the second air openings 52g of the second frame 52e and the airflow inlets of the air paths 71c, thereby facilitating the movement of the airflow in the air paths 71c desirably.
In the printers according to the embodiment and the first and second embodiment examples, the cover frame 52 has thereon not only the first air openings 52f serving as the first openings facing the exhaust fans 96 serving as air exhaust units with the optical writing unit 70 set in the write position, but also the second air openings 52g serving as the second openings not facing the exhaust fans 96. Further, the optical system unit 71 is held in the cover frame 52 such that the airflow inlets of the air paths 71c face the second air openings 52g and the airflow outlets of the air paths 71c face the first air openings 52f. With this structure, the air moved from near the inlet group 95b to the second air openings 52g of the second frame 52e is received into the air paths 71c smoothly, thereby facilitating the movement of the airflow in the air paths 71c. Further, the airflow discharged from the airflow outlets of the air paths 71c is received into the first air openings 52f of the first frame 52d smoothly, thereby facilitating the movement of the airflow in the air paths 71c.
In the printers according to the embodiment and the first and second embodiment examples, the photosensitive elements (2Y, 2M, 2C, and 2K) are provided. Further, as a transfer unit, the transfer unit 15 is used that superimposes toner images on the surfaces of the photosensitive elements and transfers them to the intermediate transfer belt 16 serving as a transfer member. With this structure, the toner images on the photosensitive elements are superimposed, so that a multi-color image is formed.
In the printers according to the embodiment and the first and second embodiment examples, on the outer cover 95 constituting a part of the chassis is provided the inlet group 95b that takes air into the chassis, before the air to be discharged by the exhaust fans 96 to the outside of the chassis. This structure prevents degradation in discharging performance when air cannot be taken into the chassis. Further, the exhaust fans 96 can serve as intake fans by being reversely rotated, and the inlet group 95b can serve as an outlet group, thereby preventing degradation in discharging performance when air cannot be discharged from inside the chassis.
In the printers according to the first and second embodiment examples, the photosensitive elements 2Y, 2M, 2C, and 2K are used that carry latent images on the peripheries of their rotatable cylinders. Further, the airflow paths from the inlet group 95b to the exhaust fans 96 through the second air openings 52g, the air paths 71c, and the first air openings 52f are provided in straight lines along the rotational axis direction of the photosensitive elements. With this structure, the movement of the airflow in the air paths 71c can be more activated, compared with a structure in which the paths are curved. Further, even when the exhaust fans 96 rotate reversely so as to serve as intake fans, the same advantage can be achieved because the airflow paths from the fans to the outlet group through the first air openings 52f, the air paths 71c, and the second air openings 52g are arranged in straight lines.
In the printers according to the first and second embodiment examples, as the supporting unit, a chassis is used that supports the optical writing unit 70 to be pivotable between the write position and the retract position. Further, the extension direction of the airflow paths provided in straight lines is oriented along the axis direction of the pivoting movement of the optical writing unit 70. With this structure, the optical writing unit 70 can pivot with its orientation constantly parallel to the extension direction of the air paths 71c.
In the printers according to the embodiment and the first and second embodiment examples, the upper cover 50 constituting a part of the chassis and serving as an opening-and-closing cover is fixed to the optical writing unit 70, and the maintenance opening of the chassis is opened and closed by opening and closing the upper cover 50 together with the optical writing unit 70. This structure allows the optical writing unit 70 to pivot from the write position to the retract position according to the opening and closing operation performed by the upper cover 50.
Further, the printer according to the second embodiment example includes a facing member that faces a space between the upper cover 50 with the maintenance opening of the chassis closed, and the left plate constituting a portion of the chassis and being close to the upper cover 50. With this structure, the smooth movement of the airflow drawn through the space can be blocked by the fourth frame 52h as described, enabling to prevent degradation in cooling performance due to the occurrence of the turbulent flow.
In the printer according to the second embodiment example, a portion of the cover frame 52 serves as the facing member. This structure allows cost reduction, compared with a structure in which the cover frame 52 and the facing member are separately provided.
In the printers according to the embodiment and the first and second embodiment examples, the upper cover 50 constituting a part of the chassis is fixed to the optical writing unit 70, and the maintenance opening of the chassis is opened and closed according to the movement of the optical writing unit (image writing unit) 70 between the write position and the retract position. Further, the outer surface section of the upper cover 50 serves as the sheet stacking section having thereon the stacked recording sheets, i.e., the recording sheets P, to which toner images are transferred from the photosensitive elements. This structure allows cost reduction, compared with a structure in which the sheet stacking section is separately provided from the outer cover including the upper cover 50.
In the printer according to the second embodiment example, the air paths 71c are provided that allow the airflow received through the airflow inlets at one ends to contact the upper cover 50 and the optical system unit 71, thereby discharging the airflow toward the airflow outlets at the other ends. Further, the optical system unit 71 is held in the cover frame 52 such that the airflow inlets of the air paths 71c face the second air openings 52g of the second frame 52e and that the airflow outlets of the air paths 71c face the first air openings 52f of the first frame 52d. With this structure, even when a large volume of the recording sheets P heated through the fixing process are stacked on the sheet stacking section and heat is accumulated on the upper cover 50, heat transfer from the upper cover 50 to the optical system unit 71 can be suppressed by cooling the upper cover 50.
As described above, according to one aspect of the present invention, by retracting a image writing unit from the write position as necessary, a device hidden in the back of the image writing unit is exposed, so that the maintenance is improved.
Furthermore, as the image writing unit is set to the write position, the image writing unit freely moves above a holding unit while causing a hitting portion of its optical system unit to hit a blocking portion in the chassis of the image forming apparatus. This structure enables desirable positioning of the optical system unit.
Moreover, with the image writing unit set in the write position, an air intake unit or an air exhaust unit faces the optical system unit through the openings provided on the holding unit. In this way, the airflow taken into the chassis by the air intake unit is directly blown to the optical system unit through the openings, or the air inactivated around the optical system unit is directly drawn into the air exhaust unit through the openings. By such blowing and drawing, the airflow can be brought into contact with the surface of the optical system unit, thereby cooling the optical system unit. Accordingly, degradation in write accuracy due to temperature increase in the optical system unit is suppressed without pulling the duct in the chassis. This structure suppresses degradation in write accuracy, while downsizing the apparatus by omitting the duct.
Although the invention has been described with respect to specific embodiments for a complete and clear disclosure, the appended claims are not to be thus limited but are to be construed as embodying all modifications and alternative constructions that may occur to one skilled in the art that fairly fall within the basic teaching herein set forth.
Number | Date | Country | Kind |
---|---|---|---|
2007-002392 | Jan 2007 | JP | national |