The present invention relates to an image forming apparatus.
Image forming apparatuses, such as copying machines and printers, include a feeder unit that feeds a sheet and a separating unit that separates a sheet to be fed by the feeder unit one by one and an image forming unit that forms an image on the sheet separated and conveyed to the image forming unit.
In general, a plurality of roller pairs are provided between the separating unit and the image forming unit. However, PTL 1 describes an image forming apparatus having only a registration roller pair (hereinafter simply referred to as a “resist roller pair”) between a separating unit and an image forming unit (a secondary transfer roller).
PTL 1: Japanese Patent No. 4697320
When a sheet is conveyed using the resist roller pair disposed downstream of the separating unit, the conveyance speed by the resist roller pair is decreased since the resist roller pair is subjected to the load applied by the separating unit (hereinafter also referred to as “back tension”). In addition, after the trailing edge of the sheet passes through the separating unit, the back tension disappears. Accordingly, the conveyance speed by the resist roller pair increases.
As described above, if the conveyance speed by the resist roller pair varies, an image transferred by the secondary transfer roller may have a negative impact (image artifacts). In addition, the variation in the conveyance speed of the resist roller pair caused by the back tension is prominent in a configuration in which a conveyance roller other than the resist roller pair is not disposed between the separating unit and the image forming unit.
Accordingly, the present invention provides an image forming apparatus that reduces image artifacts caused by the back tension applied by the separating unit.
According to an aspect of the present invention, an image forming apparatus includes a feeder unit configured to feed a sheet, a separating unit configured to separate the sheets fed by the feeder unit one by one, a conveying unit disposed downstream of the separating unit and configured to convey the sheet, an image forming unit disposed downstream of the conveying unit and configured to convey the sheet while forming an image on the sheet, a drive unit configured to drive the conveying unit, and a control unit configured to control the drive unit. The control unit reduces a conveyance speed of the sheet conveyed by the conveying unit after the conveyed sheet reaches the image forming unit.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Configuration and Operation of Color Image Forming Apparatus
A color laser beam printer 1 serving as an image forming apparatus according to a first embodiment of the present invention is described first with reference to
The printer 1 includes a feeding cassette 24 in a lower section of the apparatus body. A registration roller pair 2 (hereinafter referred to as a “resist roller pair 2”) and a top sensor 3 are disposed above the feeding cassette 24. The resist roller pair 2 conveys a sheet P fed from the feeding cassette 24 in synchronization with an image. The top sensor 3 serves as a detecting unit for detecting the position of the sheet P and the occurrence of jamming.
A scanner unit 4 is disposed above the feeding cassette 24. Four process cartridges 10 (10Y, 10M, 10C, and 10Bk) are disposed above the scanner unit 4. An intermediate transfer unit 5 is disposed above the process cartridges 10 so as to face the process cartridges 10 (10Y, 10M, 10C, and 10Bk). The intermediate transfer unit 5 includes primary transfer rollers 7 (7Y, 7M, 7C, and 7Bk), a drive roller 8, a tension roller 9, and a cleaning unit 11 inside an intermediate transfer belt 6. A secondary transfer roller 12 is disposed on the right of the intermediate transfer unit 5 so as to face the drive roller 8. A fixing unit 13 is disposed above the intermediate transfer unit 5 and the secondary transfer roller 12. An ejection roller pair 14 and an inverse unit 15 are disposed on the upper left of the fixing unit 13. The inverse unit 15 includes a reversing roller pair 16 and a flapper 17 serving as a branching unit.
The image forming operation performed by the printer 1 is described below.
As illustrated in
A sheet P stored in the feeding cassette 24 is picked up by a pickup roller (a feeder roller) 21 and is separated from other sheets P by a feed roller 22 and a separation roller 23. Thereafter, the sheet P is conveyed to the resist roller pair 2.
The leading edge of the sheet P conveyed to the resist roller pair 2 is detected by the top sensor 3 disposed downstream of the resist roller pair 2 in the conveyance direction. If the leading edge is detected by the top sensor 3, the conveyance speed of the resist roller pair 2 is increased or reduced. In this manner, the sheet P is conveyed to a transfer position T2 in synchronization with the position of the toner image formed on the intermediate transfer belt 6. At the transfer position T2, the sheet P is nipped by the intermediate transfer belt 6 and the secondary transfer roller 12 and is conveyed at a constant speed. Thus, the toner image is transferred to the sheet P. Thereafter, the sheet P having the toner image transferred thereonto at the transfer position T2 is conveyed to the fixing unit 13.
The fixing unit 13 fixes the toner image transferred to the sheet P to the sheet P using a pressure roller 13a and a heating roller 13b. The sheet P having the toner image fixed thereto is ejected onto an ejecting tray 25 located in the upper section of the apparatus by the ejection roller pair 14.
The pickup roller 21 serving as the feeder unit feeds the sheet P stored in the feeding cassette 24. When the feeding cassette 24 is mounted in the image forming apparatus and if a feed drive unit is driven, the pickup roller 21 is in contact with one of the sheets P at all times. The pickup roller 21 picks up and feeds the sheet P to a separation nip N formed by the feed roller 22 and the separation roller 23. The feed roller 22 is disposed downstream of the pickup roller 21. The sheet P is conveyed by the feed roller 22 toward the resist roller pair 2.
According to the present embodiment, the feed roller 22 and the separation roller 23 form the separating unit for separating a sheet P from another sheet P. As illustrated in
As illustrated in
The pickup roller 21, the feed roller 22, and the resist roller pair 2 are driven by a motor M1 serving as a drive source. At that time, the driving force supplied from the motor M1 is connected to (turned ON) or disconnected from (turned OFF) the pickup roller 21 and the feed roller 22 using an electromagnetic clutch C serving as a clutch unit (refer to
The intermediate transfer belt 6 of the intermediate transfer unit 5 is rotated in a direction illustrated by an arrow in
The control unit 100 turns on the electromagnetic clutch C at a point in time illustrated in
As illustrated in
After the leading edge reaches the resist roller pair 2, the sheet P is conveyed by the feed roller 22 and the resist roller pair 2. Let Vf be the conveyance speed of the sheet P in the separation nip N, and let Vr1 be the conveyance speed of the sheet P conveyed by the resist roller pair 2. Then, according to the first embodiment, Vf and Vr1 are set so that Vf>Vr1. Accordingly, the loop formed in the sheet P between the separation nip N and the resist roller pair 2 is gradually flattened out due to a speed difference between Vf and Vr1, and the loop enters a mode illustrated in
The top sensor 3 disposed downstream of the resist roller pair 2 detects that the leading edge of the sheet P passes thereby (S2 in
Note that according to the first embodiment, each of the pickup roller 21 and the feed roller 22 includes a one-way gear. Accordingly, even when transfer of a driving force to the pickup roller 21 and the feed roller 22 is stopped, the pickup roller 21 and the feed roller 22 drivenly rotate in accordance with the movement of the sheet P. Consequently, the motor M1 that drives the resist roller pair 2 does not become overloaded.
In addition, the conveyance speed of the sheet P by the resist roller pair 2 is decreased due to the load applied from the separating unit (the back tension) until the trailing edge of the sheet P passes through the separation nip N. The back tension is caused by the torque limiter 26 disposed inside the separation roller 23. If the resist roller pair 2 is affected by the back tension, slight slippage occurs between the resist roller pair 2 and the sheet P. As a result, the conveyance speed of the sheet P conveyed by the resist roller pair 2 is decreased.
The sheet P is conveyed toward the transfer position T2 of the drive roller 8 and the secondary transfer roller 12 by the resist roller pair 2. As illustrated in
According to the first embodiment, the following situation occurs, depending on the length of the sheet P in the conveyance direction: although the leading edge of the sheet P reaches the transfer position T2 and, thus, an image is transferred onto P as the sheet P is being conveyed, the trailing edge of the sheet P does not pass through the separation nip N. In such a situation, the conveyance speed of the sheet P conveyed by the resist roller pair 2 is affected by the back tension. If the trailing edge of the sheet P passes through the separation nip N, the resist roller pair 2 is not affected by the back tension. Accordingly, the conveyance speed of the sheet P conveyed by the resist roller pair 2 increases.
If the conveyance speed of the sheet P conveyed by the resist roller pair 2 increases, the conveyance speed may be too high for the conveyance speed of the sheet P at the transfer position T2. As a result, an excessively large loop may be formed in the sheet P between the resist roller pair 2 and the transfer position T2. If the loop formed in the sheet P becomes excessively large for a loop space allowed for this section of the conveyance path, the sheet P may be brought into contact with a conveyance guide and, thus, the sheet P may wrinkle Alternatively, the sheet P may be brought into contact with the surface of the intermediate transfer belt 6 at a position upstream of the transfer position T2 and, thus, a problem, such as image artifacts, may arise.
According to the first embodiment, to prevent such a problem, after the leading edge of the sheet P reaches the transfer position T2, the control unit 100 controls the motor
M1 so that the number of rotations (the rotational speed) of the resist roller pair 2 is reduced from V2 to V 1. The conveyance speed of the sheet P according to the first embodiment is described in more detail below with reference to
The sheet P in the feeding cassette 24 is picked up by the pickup roller 21 and is conveyed by the feed roller 22 at a speed of Vf. If the leading edge of the sheet P reaches the resist roller pair 2, the sheet P is conveyed by the resist roller pair 2 at a speed of Vr1. At that time, since a loop of the sheet P is formed between the separation nip N and the resist roller pair 2, a decrease in the conveyance speed of the resist roller pair 2 due to the back tension applied from the separation nip N does not occur until the loop is flattened.
Since the conveyance speed Vr1 by the resist roller pair 2 is higher than the conveyance speed Vf by the feed roller 22, the loop of the sheet P is gradually flattened. If the loop of the sheet P is completely flattened, the conveyance speed of the resist roller pair 2 is decreased due to the back tension applied from the separation nip N. Thus, the conveyance speed is changed from Vr1 to Vr2 (refer to
Before the leading edge of the sheet P reaches the transfer position T2, the control unit 100 controls the motor M1 so that the conveyance speed of the sheet P by the resist roller pair 2 is increased from Vr2 to Vr1. As illustrated in
As a result, by increasing the conveyance speed Vr1 of the sheet P conveyed by the resist roller pair 2 to higher than a conveyance speed Vt of the sheet P at the transfer position T2, a loop of the sheet P can be formed. In this manner, an effect of the back tension can be eliminated when a toner image is transferred onto the sheet P.
Note that according to the present embodiment, the conveyance speed of a sheet conveyed by the resist roller pair 2 rotating at a rotational speed of V1 without the back tension is the same as the conveyance speed of the sheet conveyed by the resist roller pair 2 rotating at a rotational speed of V2 with the back tension. However, in reality, the two conveyance speeds are not always the same. The two conveyance speeds may differ from each other depending on the characteristics of the apparatus.
If the trailing edge of the sheet P that is conveyed by the resist roller pair 2 at a speed of Vr2 passes through the separation nip N, the effect of the back tension disappears. Thus, the conveyance speed of the sheet P conveyed by the resist roller pair 2 increases to Vr3.
The conveyance speed Vr3 by the resist roller pair 2 is too high for the conveyance speed Vt at the transfer position T2 and, therefore, an excessively large loop of the sheet P is formed between the resist roller pair 2 and the transfer position T2. The excessively large loop may cause the above-described problem.
To solve such a problem, according to the first embodiment, after the trailing edge of the sheet P passes through the separation nip N, the control unit 100 decreases the conveyance speed by the resist roller pair 2 to Vr1. As illustrated in
The control unit 100 can recognize the length of the conveyed sheet P in the conveyance direction on the basis of the size information input to an operation unit of the image forming apparatus by a user or the size information detected by a length sensor in the feeding cassette 24. In addition, the period of time corresponding to the length of the conveyed sheet P in the conveyance direction can be set to a period of time from the time the top sensor 3 detects the leading edge of the sheet P to the time the trailing edge of the sheet P passes through the resist roller pair 2. The period of time is calculated using the above-described size information.
Note that if the accuracy needs to be improved more, the point in time at which the control unit 100 decreases the rotational speed of the resist roller pair 2 may be calculated on the basis of the point in time at which image formation is started.
In this manner, even when the resist roller pair 2 is not subjected to the back tension from the torque limiter 26, the loop of the sheet P formed between the resist roller pair 2 and the transfer position T2 does not become too large. Accordingly, a negative impact on an image formed on the sheet P at the transfer position T2 can be eliminated.
Subsequently, when the control unit 100 sets the rotational speed of the resist roller pair 2 to V1, the next sheet P2 is conveyed to the resist roller pair 2. The control unit 100 determines whether the next sheet to be fed is present (S9 in
Note that according to the present embodiment, the rotational speed of the resist roller pair 2 rotating after the trailing edge of the sheet P passes through the separation nip N (after the rotational speed is reduced) is the same as the rotational speed of the resist roller pair 2 before the leading edge of the sheet P reaches the transfer position T2. However, the two rotational speeds need not be the same at all times.
While the present embodiment has been described with reference to a technique in which the rotational speed of the resist roller pair 2 is reduced after the trailing edge of the sheet P passes through the separation nip N, the present invention is not limited thereto. For example, the rotational speed of the resist roller pair 2 may reduced after the leading edge of the sheet P reaches the transfer position T2 and immediately before the trailing edge of the sheet P passes through the separation nip N (i.e., after the point in time immediately before the trailing edge passes through the separation nip N).
That is, if a loop of the sheet P is formed between the resist roller pair 2 and the transfer position T2, a point in time at which the rotational speed of the resist roller pair 2 is stated to reduce may be prior to the point in time at which the trailing edge of the sheet P passes through the separation nip N. In such a case, a loop of the sheet P needs to be formed by, for example, setting the conveyance speed of the sheet P conveyed by the resist roller pair 2 rotating with the back tension to higher than the conveyance speed of the sheet P at the transfer position T2. Note that at that time, the difference between the two conveyance speeds needs to be not too large to prevent the loop from becoming too large.
In addition, while the present embodiment has been described with reference to a technique in which the control unit 100 changes the point in time at which the conveyance speed of the sheet P conveyed by the resist roller pair 2 is started to reduce in accordance with the length of the sheet P in the conveyance direction, the present invention is not limited thereto. For example, the control unit 100 may reduce the conveyance speed of the sheet P conveyed by the resist roller pair 2 after a predetermined period of time elapses since the detection of the sheet P by the top sensor 3, regardless of the length of the sheet P. In such a case, the speed of the resist roller pair 2 needs to be set so that the image formation on the sheet P is not affected by a loop formed between the resist roller pair 2 and the transfer position T2. In addition, the point in time at which the speed of the resist roller pair 2 is started to reduce needs to be set so that even when the image forming apparatus conveys a sheet having the largest conveyable length, image formation is not affected by the sheet P being pulled in a direction opposite to each other between the resist roller pair 2 and the transfer position T2.
As described above, according to the first embodiment, the control unit 100 reduces the number of rotations (the rotational speed) of the resist roller pair 2 after the leading edge of the sheet P reaches the resist roller pair 2. In this manner, as in the first embodiment, image artifacts caused by the back tension applied from the separating unit can be reduced in a compact and low-cost image forming apparatus that does not include a conveyance roller pair between the separating unit and the resist roller pair 2.
Note that while the first embodiment has been described above with reference to a configuration in which the separation roller 23 including the torque limiter 26 is employed as the separating unit that separates sheets fed by the feeder unit one by one, the configuration of the present invention is not limited thereto. For example, a configuration using, as a separating unit, a retard roller that is rotatingly driven in a direction opposite to the rotation of the feed roller may be employed. Any configuration that generates a back tension when sheets are separated can be employed. Second Embodiment
A second embodiment is described with reference to
In the first embodiment, driving of the pickup roller 21 and the feed roller 22 is stopped by turning off the electromagnetic clutch C after the leading edge of a sheet has been conveyed by a predetermined distance since detection of the leading edge of the conveyed sheet by the top sensor 3.
According to the second embodiment, the control unit 100 changes a point in time at which the electromagnetic clutch C is turned off in accordance with the length of the sheet in the conveyance direction. More specifically, the control unit 100 performs control so that the point in time at which the electromagnetic clutch C is turned off for a long sheet is later than that for a short sheet.
As illustrated in
In this manner, as illustrated in
Thus, according to the second embodiment, the durability of the resist roller pair 2 can be improved.
A third embodiment is described next with reference to
While the first embodiment has been described with reference to the configuration in which only the resist roller pair 2 serving as a conveying unit is disposed between the separation nip N and the transfer position T2, the configuration of the present invention is not limited thereto.
For example, as illustrated in
According to the third embodiment, a conveyance speed Vh by the conveying roller pair 60 is set to a speed in the range between a conveyance speed Vr1′ by the resist roller pair 2 and the conveyance speed Vf in the separation nip N. That is, according to the third embodiment, the conveyance speed is set so that Vf<Vh<Vr1′.
Even in such a configuration, a negative impact of the back tension in the separation nip N occurs. More specifically, in a mode illustrated in
Note that as illustrated in
A fourth embodiment is described next. Note that description of the configurations and operations in the fourth embodiment that are the same as in the first embodiment are not repeated as appropriate.
The slip ratio between the resist roller pair 2 and the sheet P caused by the back tension applied from the separating unit may vary depending on the properties (e.g., the thickness and the surface nature) of the sheet P. For example, a gloss paper sheet having a surface friction coefficient higher than that of a plain paper sheet has a low slip ratio with respect to the resist roller pair. Accordingly, the effect of a decrease in the speed caused by the back tension is small.
According to the fourth embodiment, by changing the target speed of the resist roller pair 2 in accordance with the properties of a sheet, the sheet can be conveyed while forming a stable loop between the resist roller pair 2 and the transfer position T2.
Note that the control unit 100 can recognize the property information of the sheet on the basis of the size information input to an operation unit of the image forming apparatus by a user or information detected in the feeding cassette 24. Alternatively, the control unit 100 may detect the type of sheet using a sheet type detecting sensor unit 70 described in Japanese Patent Laid-Open No. 2010-260662 (refer to
In addition, examples of the information regarding the type and the properties of a sheet include the surface nature of the sheet and the thickness of the sheet.
While the above embodiments have been described with reference to an electrophotographic image forming process that forms an image on a sheet, the present invention is not limited to an electrophotographic image forming process. For example, an inkjet image forming process that forms an image on a sheet by ejecting ink liquid from a nozzle may be employed. In addition, while the above embodiments have been described with reference to the configuration in which an image is transferred onto a sheet using an intermediate transfer belt, the present invention is not limited thereto. A configuration in which an image is transferred from a conductive drum to a sheet may be employed.
In addition, the above-described first to fourth embodiments may be combined in any way.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2013-017122, filed Jan. 31, 2013, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2013-017122 | Jan 2013 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/000235 | 1/18/2014 | WO | 00 |