This invention relates to an image forming apparatus forming an image on a sheet.
In an image forming apparatus such as a printer and a copier, there is an apparatus which forms an image on a sheet by an electrophotographic system. In the electrophotographic system, after a toner image has been transferred to the sheet, the toner image is fixed on the sheet by being conveyed to a fixing unit which heats and presses the sheet. In a case where a narrow sheet width sheet is continuously conveyed to the fixing unit, because of heat transmission to the sheet, a so-called sheet non-passing portion temperature rise by which a temperature rise at a sheet non-passing portion becomes larger than the temperature rise at a sheet passing portion occurs at a fixing nip portion at which the sheet is heated and pressed.
The sheet non-passing portion temperature rise at the fixing nip portion causes unevenness in a film feed speed in a fixing unit of a film heating method described in Japanese Patent Laid-Open H04-204980. Further, since the sheet non-passing portion temperature rise also causes ununiform expansion of a pressing roller of the fixing unit, there is a problem of degradation of a printing quality, such as occurrence of wrinkles of the sheet and defective fixing of the toner, which needs to be tackled.
Hitherto, when the narrow sheet width sheet is conveyed to the fixing nip portion, as a countermeasure to the sheet non-passing portion temperature rise, control by which a sheet feed interval is widened so as to decrease temperature at the nip portion by extending a time during which the sheet does not exist at the nip portion is performed. However, depending on a configuration of the apparatus, sometimes, it is possible to judge the sheet width only in two sizes of a normal size and a small size. In this case, when it is judged as the small size, the sheet feed interval is set by assuming the minimum width sheet usable for the apparatus so as to prevent the degradation of the printing quality due to the sheet non-passing portion temperature rise.
Accordingly, in a case where the sheet width of the sheet actually used is small but relatively large, the sheet feed interval is unnecessarily widened so that productivity of printing is decreased.
According to one aspect of the present invention, an image forming apparatus includes an image forming unit configured to form a toner image on a sheet, a sheet conveyance unit configured to convey the sheet toward the image forming unit in a sheet conveyance direction, a fixing unit including a rotary member pair configured to form a nip portion and a heating element configured to heat the nip portion, the fixing unit being configured to fix the toner image on the sheet by heating the sheet on which the toner image is formed at the nip portion, a sheet width detection unit configured to output a first signal and a second signal, the sheet width detection unit being configured to output the first signal in a case where a sheet length in a width direction orthogonal to the sheet conveyance direction is equal to or larger than a first threshold value, the sheet width detection unit being configured to output the second signal in a case where the sheet length in the width direction is less than the first threshold value, a sheet length detection unit configured to output an output value corresponding to a sheet length in the sheet conveyance direction, and a control unit configured to perform a first mode, a second mode, and a third mode in a job continuously conveying a plurality of sheets, the first mode being a mode in which the sheet conveyance unit is controlled so that an arrival time from a passage of a trailing edge of a preceding sheet through the nip portion to an arrival of a leading edge of a succeeding sheet succeeding to the preceding sheet at the nip portion becomes a first time, the second mode being a mode in which the sheet conveyance unit is controlled so that the arrival time becomes a second time, the third mode being a mode in which the sheet conveyance unit is controlled so that the arrival time becomes a third time, the second time being longer than the first time, the third time being longer than the second time. The control unit is configured to perform the first mode in a case where the sheet width detection unit outputs the first signal, and configured to perform the third mode in a case where the sheet width detection unit outputs the second signal and the sheet length detection unit outputs the output value not corresponding to a length, in the sheet conveyance direction, of a sheet size information specified by the job, and configured to perform the second mode in a case where the sheet width detection unit outputs the second signal and the sheet length detection unit outputs the output value corresponding to the length, in the sheet conveyance direction, of the sheet size information.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Hereinafter, exemplary embodiments of this disclosure will be described with reference to attached drawings.
General Arrangement of Image Forming Apparatus
At first, with reference to
The photosensitive member drum 22Y, whose outer peripheral surface of an aluminum cylinder is coated with an organic photo conductive layer, is rotatably driven counter-clockwise by a driving force of a drive motor, not shown. The charge unit 23Y uniformly charges the surface of photosensitive member drum 22Y. Based on the job, the control unit 304 controls a laser scanner 24Y so that the surface of photosensitive member drum 22Y is selectively exposed with an irradiated laser beam. Herewith, an electrostatic latent image to form an image based on the job is formed on the surface of photosensitive member drum 22Y. The electrostatic latent image formed on the photosensitive member drum 22Y is developed as the toner image of yellow by the developing unit 26Y. To be noted, the developing units 26Y, 26M, 26C, and 26K are respectively capable of coming into contact with and being separated from the photosensitive member drums 22Y, 22M, 22C, and 22K by a contact/separation mechanism, not shown.
The intermediate transfer member 30 is an endless belt made of resin, and disposed in a state being in contact with the photosensitive member drums 22Y, 22M, 22C, and 22K. The intermediate transfer member 30 is rotatably driven clockwise by a driving force of a drive motor, not shown, along with rotation of the photosensitive member drums 22Y, 22M, 22C, and 22K. The toner image of yellow on the surface of the photosensitive member drum 22Y is transferred to the intermediate transfer member 30 by being applied with a voltage by the primary transfer unit 31Y. By a series of the processes as described above, the toner images of Y, M, C, and K are transferred to the intermediate transfer member 30 in sequence (primary transfer). Toners remained on the photosensitive member drums 22Y, 22M, 22C, and 22K are respectively collected by cleaning units 27Y, 27M, 27C, and 27K.
The sheet S stacked on the feed cassette 20 is fed to the image forming engine 1A by a feed roller 21 and a retard roller 28, constituting a sheet feed unit. The sheet feed unit of this embodiment is constituted by the feed cassette 20, the feed roller 21, and the retard roller 28. The sheet fed from the feed cassette 20 is conveyed by a registration roller pair 29 to a transfer nip portion formed by the secondary transfer roller 32 and an inner roller 34 in a timing synchronizing with the image formation at the image forming engine 1A. The registration roller pair 29 is freely rotatably disposed between the feed roller 21 and the image forming engine 1A with respect to a sheet conveyance direction. Further, the registration roller pair 29 is capable of correcting a skew of the sheet S by bringing the sheet S into contact with a nip portion of the registration roller pair 29 with the registration roller pair 29 stopping rotation. The control unit 304 judges a size of the sheet S based on detection results of a sheet length sensor 15 and a sheet width sensor 16 disposed downstream of the registration roller pair 29 in the sheet conveyance direction. A sheet length detection unit of this embodiment is the sheet length sensor 15, and a sheet width detection unit is the sheet width sensor 16. Thereafter, in a state where the sheet S is nipped by the secondary transfer roller 32 and the intermediate transfer member 30 which is brought into pressure contact with the secondary transfer roller 32 by the inner roller 34, the voltage is applied to the secondary transfer roller 32, and the toner image on the intermediate transfer member 30 is transferred to the sheet S (secondary transfer). The sheet S on which the toner image has been transferred is conveyed to the fixing unit 50. To be noted, the charge unit 33 is for charging the toner remained on the intermediate transfer member 30 after the secondary transfer. The toner remained on the intermediate transfer member 30 is charged in the reverse of an original polarity by the charge unit 33, collected electrostatically by the primary transfer unit 31 on the photosensitive member drum 22, and finally removed by the cleaning unit 27.
The fixing unit 50, serving as a fixing unit of this embodiment, fixes the toner on the sheet S by pressing and heating the sheet S, and a detail configuration will be described later. The sheet S with the toner fixed is discharged to a sheet discharge tray 56 by sheet discharge rollers 54 and 55, and the printing operation ends. In this embodiment, a sheet conveyance unit conveying the sheet is constituted by the feed roller 21, the retard roller 28, the registration roller pair 29, the secondary transfer roller 32, the intermediate transfer member 30, and the sheet discharge rollers 54 and 55. To be noted, in this embodiment, a process speed at the image forming engine 1A is set at 132 mm/second, and a sheet feed interval from the feed cassette 20 is set at 24 ppm (pages per minute) in a case longitudinally feeding an A4 size.
Next, with reference to
Each unit of a mechanism which forms the image on the sheet by the image forming process described in
Job information (including such as a print start command, print mode information such as monochrome and color, setting information such as sheet size information, an image signal of a print object) is input to the control unit 304. The control unit 304 controls to bring each unit of the printer 1 to execute an image forming operation forming the toner image on the sheet. To be noted, it is possible for a user to input the setting information and the print start command from a setting screen 210 (refer to
In this embodiment, a size selection button 211 is disposed in the setting screen 210.
Next, with reference to
At first, the aspect of the detection of a sheet length in the sheet conveyance direction by the sheet length sensor 15 will be described. When the job is started at the printer 1, the sheet is fed from the feed cassette 20. A conveyance speed of the sheet S is adjusted to synchronize with a timing of the image formation at the image forming engine 1A by controlling, for example, the feed interval from the feed cassette 20 and the like. The lever member disposed at a detection position of the sheet length sensor 15 which is disposed downstream of the registration roller pair 29 in the sheet conveyance direction is brought down by a leading edge of the sheet S. Thereafter, the sheet length sensor 15 outputs the ON signal during a time until a trailing edge of the sheet S has passed through the detection position of the sheet length sensor 15. Accordingly, in a case where the conveyance speed of the sheet S is kept constant, the sheet length sensor 15 outputs an output value corresponding to the length of the sheet S in the conveyance direction. The output value of the sheet length sensor 15 is input to the control unit 304. The control unit 304 obtains the length of the sheet S in the sheet conveyance direction from duration of the ON signal of the sheet length sensor 15 and the conveyance speed of the sheet S (for example, the process speed at the image forming engine 1A). Sheet throughput is maintained by starting a feed of a succeeding sheet in a timing when a predetermined time has passed after the leading edge or trailing edge of the proceeding sheet antecedently fed from the feed cassette 20 passed through the sheet length sensor 15. Further, it is acceptable that the control unit 304 starts the feed of the succeeding sheet succeeding to the proceeding sheet fed from the feed cassette 20 corresponding to the length of the sheet S in the sheet conveyance direction. As described above, it is possible to perform a feedback control of an arrival time from when the trailing edge of the preceding sheet has passed through the nip portion N (refer to
Next, a length of the sheet in the width direction orthogonally intersecting with the sheet conveyance direction will be described. The lever members disposed at detection positions of the sheet width sensors 16A and 16B disposed downstream of the registration roller pair 29 in the sheet conveyance direction are brought down by the leading edge of the sheet S. As shown in
Next, with reference to
The heater 63 is constituted by a resistance heating element of silver palladium alloy and the like disposed on a ceramic board of alumina and the like, and the resistance heating element is coated with an over coat glass so that insulation and wear resistance properties of the resistance heating element are improved. The heater 63 is disposed inside the fixing film 64, and a layer of the over coat glass comes into contact with an inner peripheral surface of the fixing film 64. To be noted, so as to improve lubricity with the fixing film 64, a small quantity of lubricant such as heat resistance grease is coated on a surface of the heater 63. On a surface opposite a sliding surface, on which the heater 63 and the fixing film 64 come into contact with each other, of the heater 63, a thermistor 66 is disposed. Based on a detection signal of the thermistor 66, the control unit 304 controls, via the fixing control unit 320 (refer to
The fixing film 64 is formed as a composite layer film includes a base layer which is cylindrically formed by a metal thin tube blank of such as stainless steel and kneaded matter of a heat resistance resin such as polyimide and a thermally conductive filler such as graphite and a releasing layer coating or tube-covering a surface of the base layer, directly or via a primer layer. The releasing layer is formed of PFA (p-fluorophenylalanine), PTFE (polytetrafluoroethylene), FEP (fluorinated ethylene-propylene copolymer), and the like. The fixing film 64 used in this embodiment is coated with PFA on the surface of the base layer formed by polyimide, and a total film thickness and a circumferential length are respectively 70 μm and 57 mm. The pressing roller 52 consists of an elastic layer 61, which is formed by foaming a heat resistance rubber, such as a silicon rubber and a fluoro rubber having an insulating property, on a core metal 60 made of iron and the like, and the elastic layer is coated with a RTV (room temperature vulcanizing) silicone rubber having an adhesive property. Further, the pressing roller 52 consists of a releasing layer 62 which is formed by covering, or by applying a coating method, with a tube dispersing a conductive agent such as carbon in PFA, PTFE, FEP, and the like. In this embodiment, the silicon rubber is used for the elastic layer 61, an outer diameter and a roller hardness of the pressing roller 52 are respectively 18 mm and 48° (Asker-C, weight load 600 g). The pressing roller 52 is pressed by a pressing member, not shown, with pressure of 180 N (newtons) so as to form the nip portion N extending between both edges in an axial direction with the fixing film 64 in between. Further, the pressing roller 52 is rotatably driven from the edge in the axial direction by a rotational driving unit, not shown, in an arrow direction in
The heater holder 65 is formed by a liquid crystal polymer, a phenol resin, PPS (polyphenylene sulfide), PEEK (polyetheretherketone), and the like, and supports the heater 63. The fixing film 64 is externally fitted to the heater holder 65 with a margin, and disposed freely rotatably. The sheet S passes through the nip portion N formed between the pressing roller 52 and the fixing film 64. Heat supplied from the heater 63 heats the sheet S at the nip portion N via the fixing film 64. An unfixed toner T carried on the sheet S is melted by the heat received from the heated fixing film 64 and the pressure at the nip portion N, and fixed on the sheet S. The fixing control unit 320 includes a temperature control program to control a temperature of the heater 63, and the control unit 304 performs control so that the temperature of the heater 63 is brought to the desired target temperature based on a detected temperature of the thermistor 66. As a control method, a PID (proportional integral and differential) control consisting of a proportional term, an integral term, and a differential term is preferred. An energization time of the heater 63 in a cycle is determined by the PID control, and an output power to the heater 63 is determined by driving a heater energization time control circuit, not shown. In this embodiment, the output power to the heater 63 is updated in every 100 milliseconds as a control cycle.
In the fixing unit 50, a length of a resistance heating layer of the heater 63 in the axial direction of the fixing film 64 is set at a length at which a fixability of the toner to the sheet at edges of the maximum size sheet usable by the printer 1 is ensured. On the other hand, in a case where the sheet with a small length in the width direction (narrow width sheet) passes through the nip portion N, it occurs that the heat is not transmitted to the sheet, and accumulated to cause a high temperature in each of the heater 63, the fixing film 64, the pressing roller 52, and the like. A phenomenon in which a temperature rise at a sheet non-passing portion in the nip portion N (sheet non-passing portion) becomes larger than a temperature rise at a sheet passing portion is referred to as a sheet non-passing portion temperature rise. Regarding the sheet non-passing portion temperature rise, the shorter the sheet length in the width direction is, the larger a difference in heat consumption between the sheet passing portion and the sheet non-passing portion and the larger the temperature rise at the sheet non-passing portion become. When an extent of the sheet non-passing portion temperature rise becomes larger, since the pressing roller 52 of the pressing roller 52 disproportionally expands with the heat and a feed speed of the fixing film 64 deviates, a problem such as wrinkles on the sheet and defective fixing of the toner occurs.
In a conventional printer, so as to prevent the problem caused by the sheet non-passing portion temperature rise, as shown in an operation in a reference example, in a case where the sheet passing through the nip portion N is the small size sheet, control to lengthen a feed interval of the sheet, so-called control to decrease the throughput, is performed. At this point, a sheet conveyance operation in the reference example will be described. Based on the input job information, the control unit 304 controls to bring each unit of the printer 1 to execute the image forming operation. When the image forming engine 1A starts the image formation at the predetermined process speed, the feed of the sheet from the feed cassette 20 is started. When the sheet passes through the registration roller pair 29, the leading edge of the sheet reaches the detection position of the sheet width sensor 16. At this time, depending on whether or not the lever member of the sheet width sensor 16 is brought down, the control unit 304 judges whether the sheet fed from the feed cassette 20 is a normal size or the small size.
In the example shown in
As described above, by the sheet conveyance operation of the reference example, it is possible to suppress an effect of the sheet non-passing portion temperature rise, but, on the other hand, it involves a problem that causes damage to the printing productivity. On the other hand, by a sheet conveyance operation control of this embodiment, the sheet feed interval from the feed cassette 20 is changed based on the output value of the sheet length sensor 15. With reference to
When the image forming engine 1A starts the image formation with the predetermined process speed, the sheet conveyance from the feed cassette 20 is started. When the sheet passes through the registration roller pair 29, the leading edge of the sheet reaches the detection position of the sheet width sensor 16. At this time, in a case where the lever member of the sheet width sensor 16 is brought down and the ON signal is output, it is judged that the fed sheet is not the small size sheet (STEP S103: NO). In a case where the fed sheet is not the small size sheet, the control unit 304 performs the feed and conveyance of the sheet by setting the sheet feed interval at the feed interval suitable for the normal size sheet (for example, the feed interval suitable for the A4 size sheet is a fourth time) (STEP S106).
On the other hand, in a case where the lever member of the sheet width sensor 16 is not brought down and the OFF signal is output, it is judged that the fed sheet is the small size sheet (STEP S103: YES). In a case where the fed sheet is the small size sheet, the control unit 304 determines the sheet length in the sheet conveyance direction based on the sheet conveyance speed and the output value of the sheet length sensor 15 (STEP S104). At this point, the sheet conveyance speed is, for example, the speed equivalent to the process speed of the image forming engine 1A. Then, it is judged whether or not the sheet length in the conveyance direction determined at STEP S104 is a length corresponding to the sheet length information of the sheet size information (STEP S105). To be noted, in this embodiment, taking into consideration a detection error of the sheet length sensor 15, within 10 mm of the length in the sheet length information of the sheet size information is regarded as corresponding to the length of the sheet length information in the sheet conveyance direction. In a case where the output value of the sheet length sensor 15 is an output value corresponding to the length of the sheet length information in the sheet conveyance direction (STEP S105: YES), it is judged that the length of the fed sheet corresponds to the length (B5 size) of the sheet length information of the sheet size information. Then, by setting the sheet feed interval at the B5 size (for example, a fifth time which is a feed interval longer than the feed interval of the A4 size) (STEP S107), the feed and the conveyance of the sheet are performed. On the other hand, in a case where the output value of the sheet length sensor 15 is not the output value corresponding to the length of the sheet length information in the sheet conveyance direction (STEP S105: NO), it is judged that the length of the fed sheet does not correspond to the length of the sheet length information of the sheet size information. Then, by setting the sheet feed interval at a sixth time (STEP S108) which is a feed interval longer than the feed interval of the B5 size, the feed and the conveyance of the sheet are performed.
As described above, in this embodiment, in a case where, based on the output value of the sheet width sensor 16, it is judged that the small size sheet is fed, the length of the fed sheet in the sheet conveyance direction is judged based on the output value of the sheet length sensor 15. Then, in a case where the judged sheet length in the sheet conveyance direction does not correspond to the length of the sheet size information specified by the job, the sheet feed interval is set at longer than the feed interval of the sheet size specified by the sheet size information. By performing the control as described above, an arrival time between the passage of the trailing edge of the preceding sheet antecedently conveyed to the nip portion N through the nip portion N and an arrival of the leading edge of the succeeding sheet succeeding to the preceding sheet at the nip portion N is changed. In particular, in the case where the lever member of the sheet width sensor 16 is brought down and the ON signal is output, a first mode by which the feed and the conveyance of the sheet from the feed cassette 20 is controlled so that the arrival time becomes a first time (an arrival time suitable for the A4 size) is performed. Further, in the case where the lever member of the sheet width sensor 16 is not brought down and the OFF signal is output, following two modes of controls are performed. In the case where the output value of the sheet length sensor 15 corresponds to the sheet length information, a second mode in which the feed and the conveyance of the sheet from the feed cassette 20 are controlled so that the arrival time becomes a time (second time) longer than the arrival time suitable for the A4 size is performed. On the other hand, in the case where the output value of the sheet length sensor 15 does not correspond to the sheet length information, a third mode in which the feed and the conveyance of the sheet from the feed cassette 20 are controlled so that the arrival time becomes a third time longer than the second time is performed. As described above, corresponding to the output values of the sheet length sensor 15 and the sheet width sensor 16, the printer 1 is capable of performing the first, second, and third modes. Accordingly, in the case where the small size sheet is fed, the feed and the conveyance of the sheet are performed at an interval suitable for the sheet size specified by the sheet size information in the case where the sheet length of the small size sheet corresponds to the length in the sheet conveyance direction of the sheet size information specified by the job.
To be noted, it is acceptable to judge through the job whether or not the sheet length in the sheet conveyance direction corresponds to the sheet length information of the sheet size information. In this case, in a case where the length has changed from a corresponding length to a not corresponding length to the sheet length information during an execution of the job, it is suitable to perform the job by switching the mode from the second mode to the third mode.
From
In the first embodiment, the sheet length in the sheet conveyance direction is determined by defining singly the length in the sheet conveyance direction corresponding to the sheet size information specified by the job. In an alternative embodiment of the first embodiment, the feed and the conveyance of the sheet are controlled with the interval suitable for the length of the actually fed sheet in the sheet conveyance direction by defining the sheet sizes specified by the sheet size information (B5 size and A5 size) doubly.
With reference to
When the image forming engine 1A starts the image formation with the predetermined process speed, the sheet conveyance from the feed cassette 20 is started. When the sheet passes through the registration roller pair 29, the leading edge of the sheet reaches the detection position of the sheet width sensor 16. At this time, in a case where the lever member of the sheet width sensor 16 is brought down and the ON signal is output, it is judged that the fed sheet is not the small size sheet (STEP S203: NO). In a case where the fed sheet is not the small size sheet, the control unit 304 performs the feed and conveyance of the sheet by setting the sheet feed interval at the normal size (for example, the feed interval suitable for the A4 size sheet) (STEP S206).
On the other hand, in a case where the lever member of the sheet width sensor 16 is not brought down and the OFF signal is output, it is judged that the fed sheet is the small size sheet (STEP S203: YES). In a case where the fed sheet is the small size sheet, the control unit 304 determines the sheet length in the sheet conveyance direction based on the sheet conveyance speed and the output value of the sheet length sensor 15 (STEP S204). At this point, the sheet conveyance speed is, for example, the speed equivalent to the process speed of the image forming engine 1A. Then, it is judged whether or not the sheet length in the conveyance direction determined at STEP S104 is a length corresponding to the sheet length information of the sheet size information (STEP S205). To be noted, in this embodiment, taking into consideration a detection error of the sheet length sensor 15, within 10 mm of the length in the sheet length information of the sheet size information is regarded as corresponding to the length of the sheet length information in the sheet conveyance direction. In a case where the output value of the sheet length sensor 15 is an output value corresponding to the length of the sheet length information in the sheet conveyance direction (STEP S205: YES), it is judged that the length of the fed sheet corresponds to the length (A5 size) of the sheet length information of the sheet size information. Then, by setting the sheet feed interval at the A5 size (for example, a feed interval longer than the feed interval of the A4 size) (STEP S207), the feed and the conveyance of the sheet are performed. On the other hand, in a case where the output value of the sheet length sensor 15 is not the output value corresponding to the length of the sheet length information in the sheet conveyance direction (STEP S205: NO), it is judged that the length of the fed sheet does not correspond to the length of the sheet length information of the sheet size information. Then, by setting the sheet feed interval at a feed interval longer than the feed interval of the A5 size (STEP S208), the feed and the conveyance of the sheet are performed.
From
In the first embodiment, the sheet length in the sheet conveyance direction is determined by defining singly the length in the sheet conveyance direction corresponding to the sheet size information specified by the job. Incidentally, sheet sizes usable for the printer 1 include a sheet size called an EXE size with the sheet length of 184 mm in the width direction and the sheet length of 267 mm in the sheet conveyance direction. In a case where the EXE size sheet is fed in the job, by the flowchart shown in
With reference to
When the image forming engine 1A starts the image formation with the predetermined process speed, the sheet conveyance from the feed cassette 20 is started. When the sheet passes through the registration roller pair 29, the leading edge of the sheet reaches the detection position of the sheet width sensor 16. At this time, in a case where the lever member of the sheet width sensor 16 is brought down and the ON signal is output, it is judged that the fed sheet is not the small size sheet (STEP S303: NO). In a case where the fed sheet is not the small size sheet, the control unit 304 performs the feed and conveyance of the sheet by setting the sheet feed interval at the feed interval suitable for the normal size sheet (for example, the feed interval suitable for the A4 size sheet) (STEP S306).
On the other hand, in a case where the lever member of the sheet width sensor 16 is not brought down and the OFF signal is output, it is judged that the fed sheet is the small size sheet (STEP S303: YES). To be noted, since the sheet width sensors 16A and 16B are disposed at the distance of 190 mm, in a case where the fed sheet is a sheet with the EXE size, it is also judged that the fed sheet is the small size sheet. In a case where the fed sheet is the small size sheet, the control unit 304 determines the sheet length in the sheet conveyance direction based on the sheet conveyance speed and the output value of the sheet length sensor 15 (STEP S304). At this point, the sheet conveyance speed is, for example, the speed equivalent to the process speed of the image forming engine 1A. Then, it is judged whether or not the sheet length in the sheet conveyance direction determined at STEP S304 is a length corresponding to the sheet length information of the sheet size information (STEP S305).
To be noted, in this embodiment, taking into consideration the detection error of the sheet length sensor 15, within 20 mm of the length in the sheet length information of the sheet size information is regarded as corresponding to the length of the sheet length information in the sheet conveyance direction. Herewith, it becomes possible to judge whether or not the sheet length in the sheet conveyance direction is a length corresponding to the B5 and EXE size sheets. In a case where the output value of the sheet length sensor 15 is an output value corresponding to the length of the sheet length information in the sheet conveyance direction (STEP S305: YES), it is judged that the length of the fed sheet corresponds to the length (B5 or EXE size) of the sheet length information of the sheet size information. Then, by setting the sheet feed interval at the B5 size or the EXE size (for example, a feed interval longer than the feed interval of the A4 size) (S307), the feed and the conveyance of the sheet are performed. On the other hand, in a case where the output value of the sheet length sensor 15 is not the output value corresponding to the length of the sheet length information in the sheet conveyance direction (STEP S305: NO), it is judged that the length of the fed sheet does not correspond to the length of the sheet length information of the sheet size information. Then, by setting the sheet feed interval at a feed interval longer than the feed interval of the B5 or EXE size (STEP S308), the feed and the conveyance of the sheet are performed.
As described above, in this embodiment, an arrival time between the passage of the trailing edge of the preceding sheet antecedently conveyed to the nip portion N through the nip portion N and an arrival of the leading edge of the succeeding sheet succeeding to the preceding sheet at the nip portion N is changed. In particular, in the case where the lever member of the sheet width sensor 16 is brought down and the ON signal is output, a first mode in which the feed and the conveyance of the sheet from the feed cassette 20 are controlled so that the arrival time becomes a first time (an arrival time suitable for the A4 size) is performed. Further, in the case where the lever member of the sheet width sensor 16 is not brought down and the OFF signal is output, following two modes of controls are performed. In the case where the output value of the sheet length sensor 15 corresponds to the sheet length information (B5 or EXE size), a second mode in which the feed and the conveyance of the sheet from the feed cassette 20 are controlled so that the arrival time becomes a time (second time) longer than the arrival time suitable for the A4 size is performed. On the other hand, in the case where the output value of the sheet length sensor 15 does not correspond to the sheet length information (B5 or EXE size), a third mode in which the feed and the conveyance of the sheet from the feed cassette 20 are controlled so that the arrival time becomes a third time which is longer than the second time is performed.
Accordingly, in the case where the small size sheet is fed, the feed and the conveyance of the sheet are performed at an interval suitable for the sheet size specified by the sheet size information in the case where the sheet length of the small size sheet corresponds to the length in the sheet conveyance direction of the sheet size information specified by the job. Further, also in a case where the size of the small size sheet is similar to the size of the sheet size information specified by the job, the feed and the conveyance of the sheet are performed at an interval suitable for the size specified by the sheet size information. Herewith, it is possible to achieve the suppression of the effect of the sheet non-passing portion temperature rise, and, since the sheet gap is not widened more than necessary, it is possible to improve the printing productivity. Further, also in a case where a sheet with a size similar to the size of the sheet specified by the sheet size information is fed, it is possible to achieve both the suppression of the effect of the sheet non-passing portion temperature rise and the improvement of the printing productivity.
Embodiment(s) of the present invention can also be realized by a computer of a system or apparatus that reads out and executes computer executable instructions (e.g., one or more programs) recorded on a storage medium (which may also be referred to more fully as a ‘non-transitory computer-readable storage medium’) to perform the functions of one or more of the above-described embodiment(s) and/or that includes one or more circuits (e.g., application specific integrated circuit (ASIC)) for performing the functions of one or more of the above-described embodiment(s), and by a method performed by the computer of the system or apparatus by, for example, reading out and executing the computer executable instructions from the storage medium to perform the functions of one or more of the above-described embodiment(s) and/or controlling the one or more circuits to perform the functions of one or more of the above-described embodiment(s). The computer may comprise one or more processors (e.g., central processing unit (CPU), micro processing unit (MPU)) and may include a network of separate computers or separate processors to read out and execute the computer executable instructions. The computer executable instructions may be provided to the computer, for example, from a network or the storage medium. The storage medium may include, for example, one or more of a hard disk, a random-access memory (RAM), a read only memory (ROM), a storage of distributed computing systems, an optical disk (such as a compact disc (CD), digital versatile disc (DVD), or Blu-ray Disc (BD)™), a flash memory device, a memory card, and the like.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2020-108953, filed Jun. 24, 2020, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2020-108953 | Jun 2020 | JP | national |