The present application claims priority under 35 U.S.C. § 119 to Japanese Patent Application No. 2017-004810, filed on Jan. 16, 2017. The contents of this application are incorporated herein by reference in their entirety.
The present disclosure relates to an image forming apparatus that forms an image.
In an electrographic image forming apparatus such as a copier, a printer, or a facsimile machine, a toner image is formed on an image bearing member (photosensitive drum) in a manner that an electrostatic latent image formed on the image bearing member is developed by supplying toner to the electrostatic latent image. When the toner image is transferred to a sheet and subjected to specific fixing processing, an image is formed on the sheet.
An image forming apparatus according to one aspect of the present disclosure includes: a housing; a photosensitive drum having a circumferential surface and supported to the housing in rotatable manner about an axis of the photosensitive drum, the circumferential surface of the photosensitive drum being a circumferential surface on which an electrostatic latent image is to be formed and a developer image is to be carried; a cleaning member supported to the housing and configured to clean the circumferential surface of the photosensitive drum while in contact with the circumferential surface of the photosensitive drum; and a movement mechanism configured to reciprocate the photosensitive drum in an axial direction of the photosensitive drum. The movement mechanism includes: a first cam member fixed to the photosensitive drum and configured to rotate about the axis of the photosensitive drum together with the photosensitive drum in an integral manner; and a second cam member disposed opposite to the first cam member in the axial direction of the photosensitive drum and configured to rotate about the axis of the photosensitive drum at a rotational speed different from that of the first cam member, a position of the second cam member being restricted in the axial direction of the photosensitive drum. The first cam member includes: a first cam portion having a ring shape extending around the axis of the photosensitive drum in a first rotational direction in which the first cam member rotates with a specific width in a first radial direction in rotation of the first cam member, the first cam portion protruding toward the second cam member such as to have a height varying in the first rotational direction; a second cam portion having a ring shape extending around the axis of the photosensitive drum in the first rotational direction with a specific width in the first radial direction and disposed adjacent to the first cam portion, the second cam portion protruding toward the second cam member such as to have a height varying in the first rotational direction; and a third cam portion having a ring shape extending around the axis of the photosensitive drum in the first rotational direction with a specific width in the first radial direction and disposed adjacent to the second cam portion on an opposite side to the first cam portion in the first radial direction, the third cam portion protruding toward the second cam member such as to have a height varying in the first rotational direction. The second cam member includes: a fourth cam portion having a ring shape extending around the axis of the photosensitive drum in a second rotational direction in which the second cam member rotates with a specific width in a second radial direction in rotation of the second cam member, the fourth cam portion protruding toward the first cam portion of the first cam member such as to have a height varying in the second rotational direction; a fifth cam portion having a ring shape extending around the axis of the photosensitive drum in the second rotational direction with a specific width in the second radial direction and disposed adjacent to the fourth cam portion, the fifth cam portion protruding toward the second cam portion of the first cam member such as to have a height varying in the second rotational direction; and a sixth cam portion having a ring shape extending around the axis of the photosensitive drum in the second rotational direction with a specific width in the second radial direction and disposed adjacent to the fifth cam portion on an opposite side to the fourth cam portion in the second radial direction, the sixth cam portion protruding toward the third cam portion of the first cam member such as to have a height varying in the second rotational direction. The first, second, and third cam portions of the first cam member include: respective first top points located closest to the second cam member at positions different from one another in the first rotational direction; and respective first bottom points located farthest from the second cam member at positions different from one another in the first rotational direction. The fourth, fifth, and sixth cam portions of the second cam member include: respective second top points located closest to the first cam member at positions different from one another in the second rotational direction; and respective second bottom points located farthest from the first cam member at positions different from one another in the second rotational direction. When the first top points of the first, second, and third cam portions respectively come in contact with the second top points of the fourth, fifth, and sixth cam portions along with rotation of the first and second cam members about the axis of the photosensitive drum, the photosensitive drum is positioned at a first position farthest from the second cam member. When the first top points of the first, second, and third cam portions respectively come in contact with the second bottom points of the fourth, fifth, and sixth cam portions along with rotation of the first and second cam members about the axis of the photosensitive drum, the photosensitive drum is positioned at a second position closest to the second cam member.
The following describes an embodiment of the present disclosure with reference to drawings.
The body housing 10 accommodates therein a plurality of processing units that each perform image formation on a sheet. In the present embodiment, the processing units include image forming units 2Y, 2C, 2M, 2Bk, an optical scanning device 23, an intermediate transfer unit 28, and a fixing device 30. The body housing 10 has an upper surface that serves as an exit tray 11. The body housing 10 has a sheet exit port 12 open toward the exit tray 11. A manual feed tray 13 is mounted on a side wall of the body housing 10 in an openable and closable manner. A sheet feed cassette 14 is fitted to a lower part of the body housing 10 in an attachable and detachable manner. The sheet feed cassette 14 accommodates a stack of sheets to be subjected to image formation.
The image forming units 2Y, 2C, 2M, and 2Bk respectively form toner images in colors of for example yellow, cyan, magenta, and black based on image information transmitted from an external device. The image forming units 2Y, 2C, 2M, and 2Bk may be referred collectively to below as image forming units 2Y to 2Bk. The external device is for example a computer. The image forming units 2Y to 2Bk are disposed in tandem at specific regular intervals in a horizontal direction. The image forming units 2Y to 2Bk each include a photosensitive drum 21, a charger 22, a developing device 24, a primary transfer roller 26, a cleaner 27, and a corresponding one of a toner container 25Y, a toner container 25C, a toner container 25M, and a toner container 25Bk. The photosensitive drum 21 has a circumferential surface on which an electrostatic latent image is to be formed and a toner image (developer image) is to be carried. The photosensitive drum 21 has for example a cylindrical shape. The charger 22 charges the circumferential surface of the photosensitive drum 21. The developing device 24 attaches developer to the electrostatic latent image to form the toner image. The toner container 25Y supplies yellow toner to the developing device 24 of the image forming unit 2Y. The toner container 25C supplies cyan toner to the developing device 24 of the image forming unit 2C. The toner container 25M supplies magenta toner to the developing device 24 of the image forming unit 2M. The toner container 25Bk supplies black toner to the developing device 24 of the image forming unit 2Bk. The primary transfer roller 26 primarily transfers a toner image formed on the photosensitive drum 21. The cleaner 27 removes residual toner on the circumferential surface of the photosensitive drum 21.
The optical scanning device 23 forms an electrostatic latent image on the circumferential surface of each of the photosensitive drums 21. The optical scanning device 23 in the present embodiment includes a plurality of light sources and an imaging optical system. The light sources each are provided for a corresponding one of the photosensitive drums 21. The imaging optical system causes light beams emitted from the respective light sources to image and scan the circumferential surfaces of the respective photosensitive drums 21.
The intermediate transfer unit 28 primarily transfers the toner images formed on the respective photosensitive drums 21. The intermediate transfer unit 28 includes a transfer belt 281, a drive roller 282, and a driven roller 283. The transfer belt 281 circulates while in contact with the circumferential surfaces of the respective photosensitive drums 21. The transfer belt 281 is wound around the drive roller 282 and the driven roller 283. The transfer belt 281 is pressed against the circumferential surfaces of the respective photosensitive drums 21 by the primary transfer rollers 26. The toner images on the respective photosensitive drums 21 are primarily transferred to a part of the transfer belt 281 in a superposed manner. Through the above, a full color toner image is formed on the transfer belt 281.
A secondary transfer roller 29 is disposed opposite to the drive roller 282. The secondary transfer roller 29 and the drive roller 282 form a secondary transfer nip part T with the transfer belt 281 therebetween. The full color toner image on the transfer belt 281 is secondarily transferred to a sheet when the sheet passes through the secondary transfer nip part T. Toner not transferred to the sheet and remaining on the circumferential surface of the transfer belt 281 is collected by a belt cleaner 284. The belt cleaner 284 is disposed opposite to the driven roller 283.
The fixing device 30 includes a fixing roller 31 and a pressure roller 32. The fixing roller 31 includes a heat source therein. The pressure roller 32 forms a fixing nip part N in cooperation with the fixing roller 31. The fixing device 30 applies heat and pressure at the fixing nip part N to the sheet to which the full color toner image has been transferred through the secondary transfer nip part T. In a manner as above, the fixing device 30 performs fixing to melt the toner and attach the toner to the sheet. The sheet subjected to fixing is ejected onto the exit tray 11 from the sheet exit port 12.
A sheet conveyance path through which a sheet is conveyed is formed in the interior of the body housing 10. The sheet conveyance path includes a main conveyance path P1, a reversed sheet conveyance path P2, and a manually fed sheet conveyance path 3P. The main conveyance path P1 extends in an up-and-down direction from near a lower part to near an upper part of the body housing 10 via the secondary transfer nip part T and the fixing device 30. The main conveyance path P1 has a downstream end connected to the sheet exit port 12. The reversed sheet conveyance path P2 extends from a most downstream end to near an upstream end of the main conveyance path P1. A sheet is reversed and conveyed in the reversed sheet conveyance path P2 in duplex printing. In addition, the manually fed sheet conveyance path P3 extends above the sheet feed cassette 14. The manually fed sheet conveyance path P3 extends from the manual feed tray 13 to the upstream end of the main conveyance path P1.
The sheet feed cassette 14 includes a sheet accommodation section that accommodates a stack of sheets. A pickup roller 151 and a sheet feed roller pair 152 are disposed near an upper right part of the sheet feed cassette 14. The pickup roller 151 picks up a topmost sheet from the stack of sheets one at a time. The sheet feed roller pair 152 feeds the sheet picked up by the pickup roller 151 to the upstream end of the main conveyance path P1. Note that a sheet loaded on the manual feed tray 13 is also fed to the upstream end of the main conveyance path P1 through the manually fed sheet conveyance path P3. A registration roller pair 153 is disposed upstream of the secondary transfer nip part T in the main conveyance path P1. The registration roller pair 153 feeds the sheet toward the secondary transfer nip part T at a specific timing.
Description will be given further in detail of configuration around one of the photosensitive drums 21 of the image forming units 2Y to 2Bk with reference to
Referring to
The drum unit 210 includes a unit housing 210H (housing). The unit housing 210H is made from a resin material. The unit housing 210H is a box that supports the photosensitive drum 21, the charger 22, and the cleaner 27. Referring to
The photosensitive drum 21 has a cylindrical shape. An electrostatic latent image is to be formed on the circumferential surface of the photosensitive drum 21 and a toner image is to be carried thereon. The body housing 10 includes a drum shaft 21G (see
Note that when the drum unit 210 is fitted to the body housing 10, rotational drive force of a non-illustrated motor (drive mechanism) disposed in the body housing 10 is transmitted to the photosensitive drum 21. As a result, the photosensitive drum 21 is rotated about the drum shaft 21G (about the axis of the drum shaft 21G).
Referring to
The cleaner 27 includes a cleaning blade 271 (cleaning member). The cleaning blade 271 is a plate-shaped elastic member that is supported by the unit housing 210H and in contact with the circumferential surface of the photosensitive drum 21. The cleaning blade 271 cleans the circumferential surface of the photosensitive drum 21.
The drum unit 210 further includes a movement mechanism 21T (see
The first cam gear 211 is a rotary gear fixed at a flange of the photosensitive drum 21. The first cam gear 211 has an outer circumferential part (first gear portion 211H in
The second cam gear 212 is disposed opposite to the first cam gear 211 and aligned therewith in an axial direction of the second cam gear 212 that is aligned with the axial direction of the photosensitive drum 21. The second cam gear 212 is a rotary gear supported by the unit right wall 210H2 in a rotatable manner. The second cam gear 212 has an outer circumferential part (second gear portion 212H in
The first and second intermediate gears 211G and 212G (see
The second intermediate gear 212G is disposed adjacent to the first intermediate gear 211G in an axial direction thereof. The second intermediate gear 212G meshes with the gear teeth of the second cam gear 212. The second intermediate gear 212G has teeth of which number is different from that of the teeth of the first intermediate gear 211G. The first and second intermediate gears 211G and 212G are connected together by means of a non-illustrated engaging claw. In the above configuration, the first intermediate gear 211G rotates about the parallel axis together with the second intermediate gear 212G.
When the photosensitive drum 21 is rotated by rotational drive force generated by the non-illustrated motor, the first cam gear 211 rotates together with the photosensitive drum 21. When the first cam gear 211 is rotated, the rotational drive force is transmitted from the first cam gear 211 to the first intermediate gear 211G. In so doing, the second intermediate gear 212G rotates together with the first intermediate gear 211G. The second cam gear 212 to which the rotational drive force is transmitted from the second intermediate gear 212G rotates in the same direction as a direction in which the first cam gear 211 rotates at a rotational speed that is slightly different from that of the first cam gear 211. That is, transmission of rotation of the photosensitive drum 21 to the second cam gear 212 from the first cam gear 211 via the first and second intermediate gears 211G and 212G causes the second cam gear 212 to rotate at a rotational speed different from that of the first cam gear 211.
When the first and second cam gears 211 and 212 rotate at respective rotational speeds slightly different from each other, the cam portions of the first cam gear 211 mesh with the cam portions of the second cam gear 212 at a specific cycle. As described above, the second cam gear 212 is restricted in position in the axial direction thereof. In the above configuration, the second cam gear 212 pushes the first cam gear 211 leftward at a specific cycle according to meshing between the respective cam portions of the first and second cam gears 211 and 212. Note that the photosensitive drum 21 is urged rightward by a non-illustrated pushing spring disposed between the unit left wall 210H1 and the drum unit 210. The photosensitive drum 21 is reciprocated in the axial direction thereof by cyclic pushing force of the second cam gear 212 and urging force of the pushing spring.
Along with reciprocation of the photosensitive drum 21, a contact point of the cleaning blade 271 in contact with the photosensitive drum 21 moves in the axial direction of the photosensitive drum 21. In the above configuration, foreign matter and agglomerated developer (toner) caught between the cleaning blade 271 and the circumferential surface of the photosensitive drum 21 are removed. As a result, a situation in which scratch formation or eccentric abrasion in the circumferential direction is caused on the circumferential surface of the photosensitive drum 21 can be prevented.
Note that the spur gear on the outer circumferential part of the first cam gear 211 has 36 teeth and the spur gear on the outer circumferential part of the second cam gear 212 has 33 teeth, as examples in the present embodiment. Furthermore, a spur gear on the outer circumferential part of the first intermediate gear 211G has 13 teeth and a spur gear on the outer circumferential part of the second intermediate gear 212G has 12 teeth. In the present embodiment, relative rotation of the first and second cam gears 211 and 212 is achieved by differentiating the number of the gear teeth between the first intermediate gear 211G and the second intermediate gear 212G. In the above configuration, stable reciprocation of the photosensitive drum 21 can be achieved. The first and second cam gears 211 and 212 and the first and second intermediate gears 211G and 212G each are a profile shifted gear that appropriately meshes with corresponding gears according to difference in the number of teeth.
The photosensitive drum 21 plies in the axial direction thereof one time during 71.5 rotations thereof about the drum shaft 21G. Reciprocation of the photosensitive drum 21 in a long cycle as above can prevent image displacement when compared to a configuration in which the photosensitive drum 21 plies in a short cycle during printing. Specifically, when ten sheets are printed successively in a configuration in which the photosensitive drum 21 reciprocates in a short cycle of for example one reciprocation per 15 rotations, the position of the photosensitive drum 21 in the axial direction thereof significantly differs between in printing on the first sheet and in printing on the fifth sheet. As a result, significant image defect such as image displacement is liable to occur. However, reciprocation in a long cycle such as above (specific cycle) can prevent occurrence of image defect.
Meanwhile, in a configuration in which the first and second cam gears 211 and 212 are in contact at one point with each other, discontinuous and abrupt movement of the photosensitive drum 21 in the axial direction thereof is liable to be caused particularly along with a fall of the first cam gear 211 (inclination relative to the axial direction thereof). As a result, significant image displacement may occur. It is unfavorable that in meshing between the first and second cam gears 211 and 212, sliding pushing force in a radial direction thereof is applied to contact parts between the respective cam portions. In a situation in which the sliding pushing force in the radial direction thereof is applied to the contact parts between the respective cam portions in meshing between the first and second cam gears 211 and 212, the cam portions may relatively displace in the radial direction thereof cyclically (shaft wobbling) to cause image displacement of an image formed on the circumferential surface of the photosensitive drum 21. In order to solve the above problems, the first and second cam gears 211 and 212 each include a plurality of (three) cam portions in the present embodiment.
The first gear portion 211H of the first cam gear 211 and the second gear portion 212H of the second cam gear 212 each have a substantially ring shape. The first and second gear portions 211H and 212H each have gear teeth. The number of the gear teeth of the first gear portion 211H is different from that of the gear teeth of the second gear portion 212H. The first cam gear 211 has first grooves 211P in addition to the first, second, and third cam portions 211A, 211B, and 211C. The first, second, and third cam portions 211A, 211B, and 211C and the first grooves 211P form the first side surface 211S.
The first cam portion 211A is disposed the most inward of the three cam portions of the first cam gear 211 in a radial direction of the first cam gear 211. The first cam portion 211A is a band-shaped protrusion protruding toward the second cam gear 212 such as to have a height varying in a rotational direction (first rotational direction) of the first cam gear 211. In other words, the first cam portion 211A has a specific width in a radial direction in rotation of the first cam gear 211 (first radial direction). The first cam portion 211A has a ring shape extending in the first rotational direction around the drum shaft 21G.
The second cam portion 211B is disposed in middle among the corresponding three cam portions. In other words, the second cam portion 211B is disposed outside the first cam portion 211A in the first radial direction in an adjacent manner. The second cam portion 211B is a band-shaped protrusion protruding toward the second cam gear 212 such as to have a height varying in the rotational direction (first rotational direction) of the first cam gear 211. In other words, the second cam portion 211B has a specific width in the radial direction in rotation of the first cam gear 211 (first radial direction). The second cam portion 211B has a ring shape extending in the first rotational direction around the drum shaft 21G.
The third cam portion 211C is disposed the most outward of the corresponding three cam portions in the radial direction of the first cam gear 211. In other words, the third cam portion 211C is disposed on an opposite side of the second cam portion 211B to the first cam portion 211A in the first radial direction such as to be adjacent to the second cam portion 211B. The third cam portion 211C is a band-shaped protrusion protruding toward the second cam gear 212 such as to have a height varying in the rotational direction (first rotational direction) of the first cam gear 211. In other words, the third cam portion 211C has a specific width in the radial direction in rotation of the first cam gear 211 (first radial direction). The third cam portion 211C has a ring shape extending in the first rotational direction around the drum shaft 21G.
The first grooves 211P each are a ring-shaped recess located in a corresponding one of a part between the first and second cam portions 211A and 211B and a part between the second and third cam portions 211B and 211C. The first grooves 211P each have a specific width in the first radial direction.
The first, second, and third cam portions 211A, 211B, and 211C in the present embodiment each have an upper surface (cam surface) that is continuously curved in the first rotational direction. When the curved surfaces are viewed in the first radial direction while being moved in the first rotational direction, the curved surfaces each form a sine waveform (see
In the above configuration, the first cam portion 211A has a top point 211A1 (first top point) and a bottom point 211A2 (first bottom point). The second cam portion 211B has a top point 211B1 (first top point) and a bottom point 211B2 (first bottom point). The third cam portion 211C also has a top point 211C1 (first top point) and a bottom point 211C2 (first bottom point). As illustrated in
The second cam gear 212 has second grooves 212P in addition to the fourth, fifth, and sixth cam portions 212A, 212B, and 212C. The fourth, fifth, and sixth cam portions 212A, 212B, and 212C and the second grooves 212P form the second side surface 212T.
The fourth cam portion 212A is disposed the most inward of the corresponding three cam portions of the second cam gear 212 in a radial direction of the second cam gear 212. The fourth cam portion 212A is a band-shaped protrusion protruding toward the first cam gear 211 such as to have a height varying in a rotational direction of the second cam gear 212 (second rotational direction). In other words, the fourth cam portion 212A has a specific width in the radial direction in rotation of the second cam gear 212 (second radial direction). The fourth cam portion 212A has a ring shape extending in the second rotational direction around the drum shaft 21G.
The fifth cam portion 212B is disposed in middle among the corresponding three cam portions. In other words, the fifth cam portion 212B is disposed outside the fourth cam portion 212A in the second radial direction in an adjacent manner. The fifth cam portion 212B is a band-shaped protrusion protruding toward the first cam gear 211 such as to have a height varying in the rotational direction of the second cam gear 212 (second rotational direction). In other words, the fifth cam portion 212B has a specific width in the radial direction in rotation of the second cam gear 212 (second radial direction). The fifth cam portion 212B has a ring shape extending in the second rotational direction around the drum shaft 21G.
The sixth cam portion 212C is disposed the most outward among the corresponding three cam portions in the radial direction of the second cam gear 212. In other words, the sixth cam portion 212C is disposed on an opposite side of the fifth cam portion 212B to the fourth cam portion 212A in the second radial direction such as to be adjacent to the fifth cam portion 212B. The sixth cam portion 212C is a band-shaped protrusion protruding toward the first cam gear 211 such as to have a height varying in the rotational direction of the second cam gear 212 (second rotational direction). In other words, the sixth cam portion 212C has a specific width in the radial direction in rotation of the second cam gear 212 (second radial direction). The sixth cam portion 212C has a ring shape extending in the second rotational direction around the drum shaft 21G.
The second grooves 212P each are a ring-shaped recess. One of the second grooves 212P is located between the fourth and fifth cam portions 212A and 212B in the second radial direction. The other second groove 212P is located between the fifth and sixth cam portions 212B and 212C in the second radial direction. The second grooves 212P each have a specific width in the second radial direction.
The fourth, fifth, and sixth cam portions 212A, 212B, and 212C in the present embodiment each have an upper surface (cam surface) that is continuously curved in the second rotational direction. When the curved surfaces are viewed in the second radial direction while being moved in the second rotational direction, the curved surfaces each form a sine waveform (see
In the above configuration, the fourth cam portion 212A has a top point 212A1 (second top point) and a bottom point 212A2 (second bottom point). The fifth cam portion 212B has a top point 212B1 (second top point) and a bottom point 212B2 (second bottom point). The sixth cam portion 212C also has a top point 212C1 (second top point) and a bottom point 212C2 (second bottom point). As illustrated in
Description will be given next of reciprocation of the photosensitive drum 21 along with rotation of the first and second cam gears 211 and 212.
As the first and second cam gears 211 and 212 rotate about the axis of the photosensitive drum 21, the top points 211A1, 211B1, and 211C1 of the first cam gear 211 come in contact with the top points 212A1, 212B1, and 212C1 of the second cam gear 212, respectively, in the present embodiment. As a result, the photosensitive drum 21 is positioned at a first position separate the most leftward from the second cam gear 212. Note that
By contrast, when the first and second cam gears 211 and 212 are rotated from the state shown in
When the above configuration of the drum unit 210 is adopted to each of the image forming units 2Y to 2Bk, displacement of respective color images can be prevented. As a result, color registration error of a full color image finally formed on a sheet can be prevented.
As described above, rotation of the first and second cam gears 211 and 212 moves the photosensitive drum 21 in the axial direction thereof in a reciprocal manner according to the present embodiment. In the above configuration, the contact point of the cleaning blade 271 in contact with the photosensitive drum 21 moves in the axial direction of the photosensitive drum 21. As a result, foreign matter and agglomerated developer caught between the cleaning blade 271 and the circumferential surface of the photosensitive drum 21 can be removed. A situation in which scratch formation or eccentric abrasion in the circumferential direction is caused on the circumferential surface of the photosensitive drum 21 can be prevented accordingly. The first and second cam gears 211 and 212 come in contact with each other at least three points in the rotational direction between the top points of the first cam gear 211 and the corresponding top or bottom points of the second cam gear 212 in reciprocation of the photosensitive drum 21. In the above configuration, the posture of the first and second cam gears 211 and 212 can be maintained stably when compared with a configuration in which the first and second cam gears are in one-point contact between a top point and a bottom point. Sliding pushing force in a tangent direction (see arrows DA in
The top points and the bottom points of the first and second cam gears 211 and 212 are located at respective positions that equally divide the corresponding cam gears in the present embodiment. In the above configuration, the posture of the first and second cam gears 211 and 212 can be maintained further stably in reciprocation of the photosensitive drum 21. The cam surfaces of the respective cam portions each are a curved surface continuous in the rotational direction. In the above configuration, the first and second cam gears 211 and 212 can smoothly come in contact with each other while rotating.
The first cam gear 211 has the first grooves 211P and the second cam gear 212 has the second grooves 212P in the present embodiment. In the above configuration, side parts of the cam portions of the respective cam members can be prevented from coming in contact with one another, resulting in that hindrance to rotation of the first and second cam gears 211 and 212 can be obviated.
The rotational drive force is transmitted from the first cam gear 211 to the second cam gear 212 via the first and second intermediate gears 211G and 212G in the present embodiment. In the above configuration, difference in the number of gear teeth between the first and second intermediate gears 211G and 212G causes the second cam gear 212 to rotate at a rotational speed different from that of the first cam gear 211. As a result, reciprocation of the photosensitive drum 21 can be achieved stably.
Referring to
As illustrated in
An embodiment of the present disclosure has been described so far. However, the present disclosure is not limited to the above embodiment and the following alterations are possible.
(1) The first and second cam gears 211 and 212 each include three ring-shaped cam portions adjacent to one another in the radial direction in the above embodiment, which however should not be taken to limit the present disclosure. The cam gears may each include additional one or more concentric cam portions.
(2) Each of the cam portions of the first and second cam gears 211 and 212 has a single top point and a single bottom point in the above embodiment, which however should not be taken to limit the present disclosure. The cam portions each may have two or more top points and bottom points. The profile of the curved surface of each of the cam portions is not limited to the sine waveform and may have another waveform.
Number | Date | Country | Kind |
---|---|---|---|
2017-004810 | Jan 2017 | JP | national |