The present invention relates to an image forming apparatus for forming an image on paper and outputting the same, particularly to a paper ejection control for ejection to a stacking section.
Some of the image forming apparatuses for forming an image on paper in a printer, copying machine and printer, and for outputting it are provided with a stacker for loading a large amount of output paper with an image formed thereon. The stacker proper incorporates a stacking section equipped with an elevation function for elevating the stacked surface in response to the amount of loading. It has a capacity of loading, for example, 5,000 sheets of the paper with an image formed thereon.
Incidentally, in shortrun printing industry, post-processing of binding by drilling and stitching is performed by an offline post-processor 504, as shown in
[Patent Document 1]
Two jobs can be together subjected to post-processing; however, no mention is made of the problem that may be caused when various sheets of recording paper having been recorded in a plurality of jobs are present on the stacking section.
As shown in
In the meantime, a large number of small jobs where each job consists of 1 page or a few pages are executed continuously, and the outputs of these jobs are loaded collectively. Such a configuration of data-center form is also practiced. For example, as shown in
In view of the prior art problems and requirements described above, it is an object of the present invention is to provide an image forming apparatus capable of loading a large volume of paper in the form conforming to the subsequent processing requirements.
The above object can be attained by the following structure.
An image forming apparatus, comprises:
Further, the above object may be attained by the following preferable structure.
The structure of item 1 is an image forming apparatus for forming an image on paper and outputting it, comprising:
According to the aforementioned structure, the setting of whether or not the mixed stacking should be enabled is accepted from a user, wherein the sheets of paper of two or more jobs are loaded on the stacking section 80 in a mixed form; then, control is provided to determine whether or not ejection of paper of the next job to the stacking section 80 is disabled or not, in response to the state of detection on whether or not paper remains in the stacking section 80, and the state of the setting of whether or not the mixed stacking should be enabled.
For example, when starting the image formation of the next job, evaluation is made to determine whether or not the paper of the preceding job remains in the stacking section 80. If paper still remains in the stacking section 80 and the setting has been made not to enable the mixed stacking, execution of the image formation processing of the next job is postponed, or the destination of paper ejection is switched over to another stacking section or paper ejection tray, thereby disabling the paper to be ejected to the stacking section 80 with paper remaining therein. When execution of the image formation processing of the next job is postponed, image formation processing of the next job should be started upon removal of the paper from the stacking section 80.
When the output paper of the preceding job is not remaining in the stacking section 80 or a setting has been made to enable mixed stacking, the ejection of paper of the next job into the stacking section 80 with paper remaining therein is not disabled; ejection of paper to the stacking section 80 is enabled.
It is possible to arrange such a configuration that, when there are a plurality of stacking sections 80, setting of whether the mixed stacking is enabled or disabled is provided for each stacking section 80. In this case, arrangements should be made in such a way as to determine if the ejection of paper to the stacking section 80 is disabled or not, based on the setting of the mixed stacking for the stacking section 80 specified as the destination of output in the next job and the stacking of sheets in the stacking section 80. It should be noted that the job means a set of work serving as a unit when a user requests the image forming apparatus to perform processing.
The structure of item 2 is an image forming apparatus for forming an image on paper and outputting it, comprising:
According to the aforementioned structure, the setting of whether the mixed stacking is enabled or disabled can be provided for each job. When the paper of the preceding job is stacked on the stacking section 8, control is provided in such a way as to determine if ejection of the paper of the next job to the stacking section 80 is disabled or not, in response to the setting of the mixed stacking in the preceding job and the setting of the mixed stacking in the next job.
The setting for each job should be provided, for example, when registering or reserving the job. When there are a plurality of stacking section, evaluation is made to determine if ejection of paper to the stacking section is disabled or not, based on the setting of the mixed stacking in the next job; the stacking of paper in the stacking section specified as the output destination by this job; and the setting of mixed stacking in the destination job where paper is loaded in the stacking section.
The structure of item 3 is an image forming apparatus described in item 2, wherein, when the aforementioned mixed stacking is enabled by both the preceding job and next job, the paper ejection control section 111 enables paper of the next job to be ejected to the stacking section 80.
According to the aforementioned structure, even if the paper of the preceding job remains in the stacking section 80, the paper of the next job can be ejected to the same stacking section 80 as that of the preceding job, if mixed stacking is enabled by both the preceding job and the next job. Since the paper can be ejected if mixed stacking is enabled by both the preceding job and the next job, the current setting of the mixed stacking in any of the jobs is observed.
The structure of item 4 is an image forming apparatus described in item 2, wherein, when the mixed stacking is not enabled by the preceding job, the control section disables the ejection of the paper of the next job to the stacking section 80, at least while the paper of the preceding job is loaded in the stacking section 80.
According to the aforementioned structure, when the preceding job with paper remaining in the stacking section 80 does not enable mixed stacking, ejection of paper of the subsequent job to the stacking section 80 is disabled. In this case, ejection is disabled, regardless of whether the subsequent job enables mixed stacking or not. It is preferred to arrange such a configuration that paper ejection is enabled upon removal of the paper of the preceding job from the stacking section 80.
The structure of item 5 is an image forming apparatus described in item 2, wherein, when the mixed stacking is not enabled by the next job, the control section disables the ejection of the paper of the next job to the stacking section 80, at least while the paper of the preceding job is loaded in the stacking section 80.
According to the aforementioned structure, when paper of the preceding job remains in the stacking section 80 and the next job does not enable mixed stacking, ejection of paper of the subsequent job to the stacking section 80 is disabled. In this case, ejection is disabled, regardless of whether the preceding job enables mixed stacking or not. It is preferred to arrange such a configuration that paper ejection is enabled upon removal of the paper of the preceding job from the stacking section 80.
The structure of item 6 is an image forming apparatus described in one of the items 1, 2, 3, 4 and 5, comprising reporting sections (220 and 110) for reporting that the aforementioned control section has disabled ejection of the paper of the next job to the stacking section 80 when the control section has done so.
According to the aforementioned structure, a report is issued to notify that the paper of the next job cannot be ejected to the stacking section 80 because the paper of the preceding job remains in the stacking section 80, when such inability of ejection has occurred. In this case, any method of reporting—display of a message, sounding of a buzzer or display of a problem solution (removal of paper from stacking section)—can be used.
The structure of item 7 is an image forming apparatus described in one of the items 1, 2, 3, 4, 5 and 6, wherein the aforementioned setting acceptance sections 220, 110 and 120 receives from the external apparatus 3 the information on the setting of whether mixed stacking is enabled or not.
According to the aforementioned structure, the information on the setting of whether mixed stacking is enabled or not can be received from the external apparatus (3). In this case, the external apparatus 3 can be of any type. The setting can be made from an external computer or the like via the network such as LAN (Local Area Network), communications line and communications cable. For example, when the print job is received from an external computer, information denoting the enable/disable status of mixed stacking together with the print data is received from the printer driver of the computer apparatus, whereby the setting of mixed stacking is accepted.
The structure of item 8 is an image forming apparatus described in one of the items 1, 2, 3, 4, 5, 6 and 7, wherein the image forming operation of the next job is disabled, thereby disabling the ejection of paper to the stacking section 80.
According to the aforementioned structure, even when there is only one stacking section 80 or change of the stacking section 80 at the destination of ejection is disabled, ejection of paper to the relevant stacking section is disabled by disabling the image forming operation.
According to the image forming apparatus of the present invention, a user is allowed to select between enabling and disabling of the mixed stacking wherein the paper of the next job is ejected to the same stacking section when the paper of the preceding job remains in that stacking section. Thus, mixed stacking is disabled when the stacked sheets of paper is used for bookbinding by an offline post-processor. The mixed stacking is enabled, when continuous execution of many small jobs, each of which consists of one or a few pages, for example, in the case of creating a direct mail, and the outputs of these many jobs are collectively stacked. This arrangement provides suitable stacking of paper conforming to each of different forms of usage, and ensures compatibility with different stacking requirements.
When the enable/disable status of mixed stacking can be set for each job, minute setting of the enable/disable status of mixed stacking is possible. Especially when the job is reserved, it is possible to set the enable/disable status of the mixed stacking in the reserved job, independently of the setting of the mixed stacking in other jobs during image formation at that time. The advantages of reservation can be utilized for the form of stacking.
The following describes the embodiments of the present invention with reference to drawings:
The image forming apparatus 10 comprises an automatic document conveyance apparatus 20, a reading section 30, a printing section 40 and a stacker apparatus 80 capable of accommodating a large volume of paper with an image formed thereon. The automatic document conveyance apparatus 20 feeds each of the documents loaded on the document accommodation tray 21 to the reading position of the reading section 30. For the double-sided document, one side is read first, and the document is then reversed and fed again into the reading section 30.
The automatic document conveyance apparatus 20 comprises a sheet feed roller 22 for feeding the documents 2 placed on the document accommodation tray 21, sequentially starting from the topmost one; a contact roller 23 for feeding the document kept in close contact with a contact glass 31; and a guide roller 24 for guiding the document fed by the sheet feed roller 22, along the contact roller 23. It further includes:
The reading section 30 reads the document fed in by the automatic document conveyance apparatus 20 and outputs the corresponding image data. The reading section 30 also includes:
When reading the document fed in by the automatic document conveyance apparatus 20, the exposure scanning section 35 moves to the reading position below the contact glass 31 and stops there to read the document fed by the contact roller 23 thereover. When reading the document placed on a platen glass 32, the exposure scanning section 35 travels from left to right along the bottom surface of the platen glass 32, thereby reading the document remaining at rest.
The printing section 40 forms an image conforming to the image data on paper based on electrophotographic process. The printing section 40 has a laser unit 42 for outputting a laser beam that turns on and off in response to the image data. The printing section 40 is also provided with a photoconductor 43 for forming an electrostatic latent image, a charging device 44 arranged around it, a developing apparatus 45, a transfer apparatus 46, a separation apparatus 47 and a cleaning apparatus 48.
The photoconductor 43 forms a cylindrical form and is rotated in a predetermined direction (marked by arrow A in the drawing) by the drive section (not illustrated). The charging device 44 uniformly charges the photoconductor 43 through corona discharging. The surface of the photoconductor 43 charged uniformly can be scanned by the laser beam that turns on and off in response to the image data, whereby an electrostatic latent image is formed on the surface of the photoconductor 43. The electrostatic latent image formed on the surface of the photoconductor 43 is made visible as a toner image by the developing apparatus 45.
The transfer apparatus 46 transfers the toner image of the surface of the photoconductor onto paper by applying an electric field. The separation apparatus 47 separates paper from the photoconductor 43 by electric charge elimination. After transfer, the cleaning apparatus 48 removes and collects the toner remaining on the photoconductor 43 by scraping with a blade or the like. The collected toner is fed back to the developing apparatus 45 through the path (not illustrated). The fixing apparatus 49 fixes the toner image onto paper by applying pressure and heat.
The toner separation section 60 has a plurality of sheet feed cassettes 61. They normally accommodate sheets of paper having different size and type. The first sheet feed roller 62 feeds the sheets of paper held in the sheet feed cassette 61, sequentially starting from the topmost one, and sends them to the sheet conveyance section 70. The sheet feed path from the high-volume sheet feed tray 90 is omitted from the drawing.
The sheet conveyance section 70 comprises:
The stacking apparatus 80 incorporates a stacking section having an elevation function of elevating the stacked surface in response to the amount of stacking. For example, it has a capacity of stacking 5,000 sheets of paper with an image formed thereon. When paper is not loaded, the stacking section 81 is located at the topmost position, and is lowered as sheets of paper are loaded. When the loaded paper is removed, the stacking section 81 goes upward. The bottom of the stacking section 81 is provided with a wheel. When the door on the side of the stacking apparatus 80 is opened, the stacking section 81 can be pulled out to carry paper to the post-processor or the like.
A sub-plate 82 that allows stacking of the sheets of paper with an image formed thereon is provided on the top of the stacking apparatus 80. The stacking apparatus 80 is capable of selecting whether paper should be stacked on the stacking section 81 or sub-plate 82. A user is allowed to select the stacking section 81 or sub-plate 82 as a destination of paper ejection for each job.
The potential detecting means 220 receives various operations of a user and displays various type of formation to the user. It also has a function of setting acceptance section. An operation display section 220 includes:
The printing section 40 has a laser unit 42 and a printer control section 230. The printer control section 230 has a function of administrative control of the rotation of a polygon mirror; application of power to the charging device 44, transfer apparatus 46 and separation apparatus 47; rotation of the photoconductor 43; and the operations of the developing apparatus 45, cleaning apparatus 48, fixing apparatus 49, sheet feed section 60 and sheet conveyance section 70.
The stacking apparatus 80 comprises a stacker control section 240 for controlling the operation of the elevator of the stacking section 81; and a stacker residual paper detecting section 241 for detecting if paper is stacked on the stacking section 81 or not. The stacker residual paper detecting section 241 consists of, for example, a reflection type light sensor and an actuator for blocking light of this light sensor by displacement, depending on whether paper is stacked or not. The stacker residual paper detecting section 241 can adopt any detection method so long as stacking of paper can be detected.
The aforementioned ADF control section 200, scanner control section 210, operation section 220, printer control section 230 and stacker control section 240 consist of the circuits where the CPU, ROM and RAM are the major components. Various forms of control are executed according to the program stored in the ROM.
The main control section 100 provides administrative control of the operation of the image forming apparatus 10. The main control section 100 comprises a read processing section 101, DRAM control section 102, compression/extension section 103, image memory 104, write processing section 105, program memory 106, system memory 107, nonvolatile memory 108 and I/O port 109 and image control CPU 110.
The read processing section 101 applies processing of enlargement and mirror imaging, and binary processing by error diffusion to the image data outputted by the reading section 30. The compression/extension section 103 compresses the binarized image data and decompressed the once compressed data to restore the original image data. The image memory 104 performs the function as a page memory 104a capable of storing the non-compressed image data in units of page and the function as a compressed data memory 104b for storing the compressed image data.
The write processing section 105 sends the image data, read from the image memory 104 and decompressed thereafter, to the laser unit 42 at timed intervals conforming to the operation of the printer 40. The DRAM control section 102 controls the read/write and refresh timing with respect to the image memory 104 consisting of a dynamic RAM. It also controls the timing of compressing the image data and storing it in the image memory 104, and reading the compressed data from the image memory 104 and decompressing it.
The image control CPU 110 is a central processor unit for controlling the entire operation of the copying apparatus 10. It controls the image data flow and performs the functions of managing the reservation, registration and execution of a job. The program memory 106 stores the program executed by the image control CPU 110. The system memory 107 is a work memory for various data items on a temporary basis during the execution of the program. The nonvolatile memory 108 stores the user data and system data that should be stored even after the power has been turned off. The I/O port 109 is connected with various sensors and LEDs.
A print controller 120 receives print data from an external apparatus 3 such as a personal computer through the LAN and network, and performs the function of expanding it into a raster image data.
The image forming apparatus 10 provides a copying function by a combination of:
In the processing of scanning the document, the data is read from the line image sensor 36 of the reading section 30 and is sent to the control section 101, DRAM control section 102, compression/extension section 103 (compress), DRAM control section 102 and compressed data memory 104b, in that order. In the processing of image formation, the data is sent from the compressed data memory 104b to the DRAM control section 102, compression/extension section 103, DRAM control section 102, write processing section 105 and laser unit 42, in that order. Paper is fed under the control of the printer control section 230 and is ejected to the stacking apparatus 80 after the image has been transferred and fixed in position.
The printer function is achieved by a combination of the processing of document input wherein the print data is received and expanded into image data, and is then compressed and stored into the compressed data memory 104b; and the processing of image formation described above. In the processing of document input, data is sent to the application program and printer driver of the external apparatus 3, DRAM control section 102 compression/extension section 103 (compress), DRAM control section 102 and compressed data memory 104b, in that order.
Use of the compressed data memory 104b serving an intermediary allows the image forming apparatus 10 to read or input the document of the next job during execution of image formation of the current job, and to reserve and register the job. For example, when there are many copies to be taken, the document is read once for each page of the document, but processing of image formation is repeated by the number of times equivalent to the copies required. This arrangement allows the reading section 30 to be unoccupied during execution of the image formation, so that the next job can be reserved and registered.
The image forming apparatus 10 is capable of setting, for each job, the information on whether mixed stacking is enabled or not, the mixed stacking being the mode of stacking wherein sheets of paper of the current job and other jobs are loaded on the stacking apparatus 80 in a mixed form. The image forming apparatus 10 has the control function of determining if the ejection of the paper of the next job to the stacking apparatus 80 should be disabled or not, in conformity to the setting of mixed stacking in each of that job and the preceding job and the presence/absence of paper on the stacking apparatus 80, when starting the processing of image formation of the next job.
Execution of the image formation of the next job is postponed until the paper of the preceding job is removed from the stacking apparatus 80, whereby ejection of paper to the stacking apparatus 80 is disabled.
The function of a setting acceptance section for accepting the setting of whether mixed stacking is enabled or not is achieved by the operation display section 220 and image control CPU 110. When accepting the setting from the external apparatus 3, the print controller 120 also performs the function as a setting acceptance section partly.
The image control CPU 110 has a function of the paper ejection control section 111 for determining if ejection of paper of the next job to the stacking apparatus 80 is disabled or not. The image control CPU 110 of the operation display section 220 provides the function of reporting means for reporting that ejection of paper of the next job to the stacking apparatus 80 is disabled, whenever this ejection has been actually disabled.
When the Output Setting button 302 on the basic screen 300 is pressed, the output setting shown in
The information on the setting of mixed stacking status (enable/disable status) is added to the print data sent from the printer driver to the image forming apparatus 10. The image forming apparatus 10 identifies the current setting of stacking in the current print job, based on this additional information.
It is also possible to make such arrangements that setting of mixed stacking enable/disable status is provided as a default. In this case, “Mixed stacking: Disabled” is displayed as a default setting, when the select screen given in
If paper still remains in the stacking section 81 of the stacking apparatus 80 (Y in Step S401), evaluation is made to see if the setting the mixed stacking status for the current job (next job) is “Enabled” or not (Step S402). If the status is “Disabled” (N in Step S402), the start of the image formation for this job is postponed, thereby disabling ejection of paper for this job to the stacking section 81 (Step S404). Further, the message of removing the paper of the preceding job from the stacking section 81 of the stacking apparatus 80 is displayed on the operation display section 220 (Step S405). This arrangement allows the user to recognize that execution of the job is being suspended in order to prevent the sheets of paper involved in two or more jobs, from being stacked in one and the same stacking section. The user is also informed of what action should be taken. For example, an action message such as “Remove paper from the stacker” appears on the screen.
When the mixed stacking of the current job is “Disabled” (Y in Step S402), a decision is made on whether or not the mixed stacking of the preceding job is set to “Enabled” (Step S403). If the mixed stacking of the preceding job is set to “Disabled”, ejection of paper to the stacking section 81 in the image formation of the current job is disabled, in the similar manner to the above (Step S404). This situation is displayed in the form of a message (Step S405).
If the mixed stacking of the preceding job is set to “Enabled” (Y in Step S403), the processing of image formation of this job is started, and the paper with the image formed thereon is ejected to the stacking section 81 (Step S406).
If paper is removed from the stacking section 81 after paper ejection has been removed (N in Step S401), processing of the image formation of the job having been suspended is started, and ejection of paper to the stacking section 81 starts (Step S406).
Incidentally, when it is possible to set to a stacking section of the ejection destination different for each job, the following paper ejection should be controlled: In Step S401, evaluation is made to determine whether or not paper remains in the stacking section designated as an ejection destination of the current job. In Step S403, evaluation should be made on the preceding job where the paper ejection destination is designated to the same stacking section as that of the current job.
The setting of the mixed stacking of the preceding job is stored in the system memory 107 at least until the start of processing of image formation in the next job where the same stacking section is set as the ejection destination, or until removal of paper from the stacking section as an ejection destination of the preceding job.
A plurality of stacking sections 81 can be provided. The following describes the case where the first and second stacking sections are provided:
The second stacking section is also provided with a stacker residual paper detecting section.
When the mixed stacking is disabled and there is recording paper of the preceding job in the first stacking section, the presence/absence of recording paper in the second stacking section is detected by the stacker residual paper detecting section. If there is no recording paper, paper is ejected to the second stacking section. In the meantime, if recording paper is present in the second stacking section as well, ejection is disabled. If there are a third and subsequent stacking sections, the same processing can be applied.
As shown in
When printing work as in a data center is to be performed, as shown in
The above has described the embodiment of the present invention with reference to drawings. A specific configuration is not restricted to those shown in the embodiments. The present invention includes the modification and addition that have been made without departing from the spirit of the present invention. For example, in the aforementioned embodiment, the enable/disable status of the mixed stacking is set for each job. It is also possible to make such arrangements that the enable/disable status of the mixed stacking can be set for each operation of the apparatus in the configuration setting or initialization. In this case, assume that paper remains in the stacking section designated as the paper ejection destination of that job when starting the processing of image formation of a certain job, and the mixed stacking is set to “Disabled” in the apparatus. Then it is also possible to arrange such a configuration that ejection of paper to that stacking section is disabled in such a case; and otherwise, ejection of paper is enabled.
In the above description of the embodiment, an example of a digital multifunction device is used for explanation of an image forming apparatus. A printer or a printing press, for example, can be used only if an image is formed on paper and is outputted.
Number | Date | Country | Kind |
---|---|---|---|
JP2004-004942 | Jan 2004 | JP | national |