1. Technical Field
This disclosure relates generally to an image forming apparatus, and more particularly to an image forming apparatus using a recording head including a liquid ejection head that ejects liquid droplets.
2. Description of the Background
One example of related-art image forming apparatuses such as printers, copiers, plotters, facsimile machines, and multifunction devices having two or more of printing, copying, plotting, and facsimile functions is an inkjet recording device employing a liquid ejection recording method. The inkjet recording device includes a recording head that ejects droplets of a recording liquid such as ink onto a sheet of a recording medium while the sheet is conveyed to form an image on the sheet.
Examples of the inkjet recording device include a serial-type image forming apparatus, in which the recording head ejects liquid droplets while moving in a main scanning direction to form an image on the sheet as the sheet is moved in a sub-scanning direction perpendicular to the main scanning direction, and a line-type image forming apparatus equipped with a line-type recording head that ejects liquid droplets and does so without moving to form an image on the sheet as the sheet is moved in the sub-scanning direction.
A maintenance mechanism that maintains and recovers performance of the recording head is essential for the image forming apparatus employing the liquid ejection recording method. One of the functions of the maintenance mechanism is to discharge bubbles, foreign substances, coagulated ink, and so forth present in the recording head through nozzles in the recording head in order to prevent irregular ejection of the ink from the nozzles in the recording head.
In addition, a full-color image forming apparatus that forms full-color images using the liquid ejection recording method generally includes two separate recording heads, that is, a recording head that ejects black ink droplets (hereinafter referred to as the first recording head) and a recording head that ejects color ink droplets (hereinafter referred to as the second recording head). In such a full-color image forming apparatus, not only black ink but also color ink is ejected for maintenance of the recording heads even when monochrome printing is performed using only the first recording head, causing a waste of color ink and a concomitant cost increase.
In order to solve this problem, various techniques have been proposed. In one example, an image forming apparatus includes a scanning-type carrier which is moved reciprocally back and forth by a drive force; a first carriage that ejects black ink droplets and a second carriage that ejects color ink droplets, each detachably attachable to the carrier; a detector that detects that the carriages attached to the carrier pass through a certain reference position in a direction of movement of the carrier; and a control unit that controls movement of the carrier using as a reference a time when the detector detects the carriages.
Another example of an image forming apparatus includes a first carriage that ejects black ink droplets, a second carriage that ejects color ink droplets, and a scanning element serving as a carrier. Each of the first and second carriages and the carrier has a shielding plate. An interval between the shielding plates respectively provided to the first carriage and the carrier when the first carriage and the carrier are coupled together is different from an interval between the shielding plates respectively provided to the second carriage and the carrier when the second carriage and the carrier are coupled together in a direction of movement of the carrier. Accordingly, which carriage is coupled to the carrier is determined based on a timing detected by an optical sensor that detects movement of the shielding plates.
In yet another approach, an image forming apparatus includes a first carrier to which a first image forming head is replaceably installed, a second carrier to which a second image forming head is replaceably installed, and a connector separatably connectable to each of the first and second carriers. The image forming apparatus further includes a scanner that moves one or both of the first and second carriers connected to the connector in a main scanning direction. The first and second image forming heads eject liquid droplets of the same colors.
However, in the above-described configurations in which the carriages are connected to each other with the carrier or the scanner serving as an intermediate member, the accuracy with which the relative positions of the carriages are secured is decreased due to the use of the intermediate body, thus degrading image quality.
In this disclosure, a novel image forming apparatus including first and second carriages separatably dockable with each other to move the first and second carriages together is provided to achieve higher quality images by accurately setting the relative positions of the first and second carriages docked together.
In one illustrative embodiment, an image forming apparatus includes a first carriage having a recording head that ejects black liquid droplets and is movable in a main scanning direction and a second carriage having a recording head that ejects color liquid droplets and is detachably attachable to the first carriage within a scanning range of the first carriage in the main scanning direction. The second carriage when attached to the first carriage is movable in the main scanning direction together with the first carriage. Attachment and detachment of the second carriage to and from the first carriage are performed based on a predetermined reference position of the first carriage in the main scanning direction.
Additional aspects, features, and advantages of the present disclosure will be more fully apparent from the following detailed description of illustrative embodiments, the accompanying drawings, and the associated claims.
A more complete appreciation of the disclosure and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views and wherein:
In describing illustrative embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this patent specification is not intended to be limited to the specific terminology so selected and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner and achieve a similar result.
Image forming apparatuses hereinafter described form an image on a recording medium, such as paper, string, fiber, cloth, lather, metal, plastics, glass, wood, and ceramics by ejecting liquid droplets onto the recording medium. In this specification, an image refers to both signifying images such as characters and figures, as well as a non-signifying image such as patterns. In addition, ink includes any material which is a liquid when ejected from the recording head, such as a DNA sample, a resist material, and a pattern material. Further, an image formed on the recording medium is not limited to a flat image, but also includes an image formed on a three-dimensional object, a three-dimensional image, and so forth.
A description is now given of a configuration and operation of an inkjet recording device serving as an image forming apparatus 1 according to illustrative embodiments with reference to
The image forming apparatus 1 is a serial-type inkjet recording device, and includes the image forming unit 2, a sheet conveyance unit 3, a sheet roll storage 4, an electrical substrate storage 6, an image reading unit 7 provided at the top thereof, and so forth. It is to be noted that the image reading unit 7 is omitted in
In the image forming unit 2, a guide rod 13 and a guide rail 14 are extended between lateral plates 51 and 52, and a first carriage 15 that ejects black ink droplets is slidably held by the guide rod 13 and the guide rail 14 in a direction indicated by a double-headed arrow A in
A main scanning mechanism that moves the first carriage 15 reciprocally in the main scanning direction includes a drive motor 21 positioned at one end of the image forming apparatus 1 in the main scanning direction, a drive pulley 22 driven by the drive motor 21, a driven pulley 23 provided at the other end of the image forming apparatus 1 in the main scanning direction, and a belt member 24 wound around the drive pulley 22 and the driven pulley 23. A tension spring, not shown, applies tension to the driven pulley 23 to separate the driven pulley 23 from the drive pulley 22. A part of the belt member 24 is fixed to a mount provided to a back surface of the first carriage 15 to guide the first carriage 15 in the main scanning direction.
An encoder sheet, not shown, is provided along the main scanning direction in order to detect a main scanning position of the first carriage 15. The encoder sheet is read by an encoder sensor, not shown, provided to the first carriage 15.
The first carriage 15 has a main scanning range through which it scans, and within this range is a recording range. A sheet S fed from a sheet roll 30 is intermittently conveyed to the recording range by the sheet conveyance unit 3 in a direction perpendicular to the main scanning direction indicated by an arrow B in
An ink cartridge 19 that stores ink of a specific color, that is, yellow (Y), cyan (C), magenta (M), or black (K), to be supplied to sub-tanks included in recording heads provided to the first and second carriages 15 and 16, is detachably attached to the image forming apparatus 1 at the one end of the image forming apparatus 1 in the main scanning direction, that is, a portion outside the main scanning range of the first carriage 15. A maintenance mechanism 18 that performs maintenance and recovery of the recording heads is provided at the other end of the image forming apparatus 1 in the main scanning direction within the main scanning range of the first carriage 15.
The sheet roll 30 is set in the sheet roll storage 4 serving as a sheet feed unit. The sheet roll 30 having different widths can be set in the sheet roll storage 4. Flanges 31 are attached to both ends of a paper core of the sheet roll 30 and are placed on flange bearings 32, respectively. Support rollers, not shown, are provided to the flange bearings 32 to contact outer circumferential surfaces of the flanges 31, respectively, thereby rotating the flanges 31 to feed the sheet S from the sheet roll 30.
The sheet S fed from the sheet roll 30 set in the sheet roll storage 4 is conveyed by conveyance members such as a pair of rollers 33, a drive roller 34, and a driven roller 35 from the back to the front of the image forming apparatus 1 to reach the recording range. In monochrome printing, the first carriage 15 is moved reciprocally in the main scanning direction, and the recording heads of the first carriage 15 are driven to eject black ink droplets onto the sheet S based on image data while the sheet S is intermittently conveyed in the sub-scanning direction. By contrast, in full-color printing, the first and second carriages 15 and 16 are docked together, and the recording heads of the first and second carriages 15 and 16 are together driven to eject ink droplets of the specified color onto the sheet S based on image data. Accordingly, a desired image is formed on the sheet S. The sheet S having the image thereon is then cut to a predetermined length and is discharged to a discharge tray, not shown, provided to the front of the image forming apparatus 1.
A description is now given of a configuration of each of the first and second carriages 15 and 16 according to illustrative embodiments with reference to
The first carriage 15 includes first and second recording heads 101k1 and 101k2 (hereinafter collectively referred to as recording heads 101) each including a liquid ejection head that ejects black ink droplets. The first carriage 15 is moved reciprocally in the main scanning direction along the guide rod 13 by the carriage scanning mechanism. Black ink is supplied from the ink cartridge 19 provided to the image forming apparatus 1 to the sub-tanks integrally formed with the recording heads 101 through a tube 53. Alternatively, replaceable ink cartridges may be attached to the recording heads 101.
The second carriage 16 includes recording heads 102c, 102m, and 102y (hereinafter collectively referred to as recording heads 102), each including a liquid ejection head that ejects ink droplets of a specific color, that is, cyan (C), magenta (M), or yellow (Y). The second carriage 16 is docked with the first carriage 15 to be moved reciprocally in the main scanning direction together with the first carriage 15 by reciprocating movement of the first carriage 15. Ink of the specific color is supplied from the ink cartridge 19 provided to the image forming apparatus 1 to the sub-tanks integrally formed with the recording heads 102 through a tube 54. Alternatively, replaceable ink cartridges may be attached to the recording heads 102.
The first carriage 15 has mounts 55i and 55ii (hereinafter collectively referred to as mounts 55) to place the second carriage 16 thereon, and a cutout 56 is formed between the mounts 55. When the second carriage 16 is placed on the mounts 55 to be docked with the first carriage 15, the color ink droplets are ejected from the recording heads 102 of the second carriage 16 onto the sheet S through the cutout 56, and caps of the maintenance mechanism 18 to be described in detail later are moved up and down within the cutout 56. The mounts 55 respectively have engaging members 57i and 57ii (hereinafter collectively referred to as engaging members 57) each separatably engageable with engaging members 61i and 61ii (hereinafter collectively referred to as engaging members 61) provided to the second carriage 16. Alternatively, a docking mechanism 80 may be used in place of the engaging members 57 and 61 for docking of the second carriage 16 with the first carriage 15.
The first carriage 15 further includes a protrusion 58 that protrudes toward the lateral plate 52 beyond the second carriage 16 when the first carriage 15 is docked with the second carriage 16. The protrusion 58 is used for detecting a reference position of the first carriage 15. Specifically, a position where the protrusion 58 contacts the lateral plate 52 is detected by, for example, detecting a change in a driving current of a main scanning motor, and the first carriage 15 is moved from that position to a direction opposite the lateral plate 52 by a predetermined amount and the resultant position of the first carriage 15 is set as the reference position. A home position of the first carriage 15 can be detected in a manner similar to detection of the reference position of the first carriage 15 as described above, and the home position may be the same as or different from the reference position.
Alternatively, a detection member may be provided to the first carriage 15 in place of the protrusion 58 so that relative positions of the detection member and a reference position provided to the main body of the image forming apparatus 1 are detected to determine the reference position of the first carriage 15. In such a case, the reference position of the first carriage 15 may be determined by, for example, a reference position detector such as a sensor provided to the main body of the image forming apparatus 1, or by matching of a result detected by the encoder sensor that detects the position of the first carriage 15 and a preset reference position.
The maintenance mechanism 18 includes caps 71 that cap the recording heads 101 of the first carriage 15, caps 72 that cap the recording heads 102 of the second carriage 16, a wiper member, not shown, and so forth.
A description is now given of docking of the second carriage 16 with the first carriage 15 with reference to
Upon receiving an instruction to dock the second carriage 16 with the first carriage 15 at step S1, at S2 whether or not the recording heads 101 of the first carriage 15 are capped is confirmed. When the recording heads 101 of the first carriage 15 are capped with the caps 71 (YES at S2), the process proceeds to S3 to remove the caps 71 from the recording heads 101 of the first carriage 15, and then at S4, the reference position of the first carriage 15 is determined. When the recording heads 101 of the first carriage 15 are not capped (NO at S2), the process proceeds directly to S4 so that the reference position of the first carriage 15 is determined. At S5, the first carriage 15 is moved to a docking position (or is left as is at the reference position). At S6, the caps 72 that cap the recording heads 102 of the second carriage 16 are lowered, and then the second carriage 16 is lowered. Alternatively, the caps 72 and the second carriage 16 may be lowered together. At S7, the second carriage 16 is placed on the mounts 55 of the first carriage 15 so that the second carriage 16 is docked with the first carriage 15.
A description is now given of separation of the second carriage 16 from the first carriage 15 with reference to
Upon receiving an instruction to separate the second carriage 16 from the first carriage 15 at step S11, at S12 the reference position of the first carriage 15 with which the second carriage 16 is docked is determined. At S13, the first carriage 15 is moved to a separation position, and at S14 separation of the second carriage 16 from the first carriage 15 is performed. At S15, the second carriage 16 is lifted and the recording heads 102 of the second carriage 16 are capped with the caps 72 to complete separation of the second carriage 16 from the first carriage 15. Thereafter, at S16 the reference position of the first carriage 15 is determined again to move the first carriage 15 to a capping position. At S17, the recording heads 101 of the first carriage 15 are capped with the caps 71. It is to be noted that determination of the reference position of the first carriage 15 after the second carriage 16 is separated from the first carriage 15 may or may not be performed depending on the situation at that time.
With reference to
Upon receiving an instruction to perform monochrome printing at step S101, whether or not the recording heads 101 of the first carriage 15 are capped is determined at S102. When the recording heads 101 are capped (YES at S102), the process proceeds to S103 to remove the caps 71 from the recording heads 101, and then monochrome printing is performed at S104. When the recording heads 101 are not capped (NO at S102), the process proceeds directly to S104 to perform monochrome printing. At S105, whether or not printing is to be continued is confirmed. When printing is to be continued (YES at S105), the process proceeds to S106 to determine whether or not monochrome printing is to be performed. When monochrome printing is to be performed (YES at S106), the process returns to S104 to perform monochrome printing. When full-color printing is to be performed (NO at S106), a print mode is switched to a full-color mode to perform docking of the second carriage 16 with the first carriage 15 and so forth to be described in
With reference to
Upon receiving an instruction to perform full-color printing at step S201, at S202 an instruction to dock the second carriage 16 with the first carriage 15 is received. At S203, whether or not the recording heads 101 of the first carriage 15 are capped is confirmed. When the recording heads 101 of the first carriage 15 are capped with the caps 71 (YES at S203), the process proceeds to S204 to remove the caps 71 from the recording heads 101 of the first carriage 15, and then at S205, the reference position of the first carriage 15 is determined. When the recording heads 101 of the first carriage 15 are not capped (NO at S203), the process proceeds directly to S205 so that the reference position of the first carriage 15 is determined. At S206, the first carriage 15 is moved to the docking position. At S207, the caps 72 that cap the recording heads 102 of the second carriage 16 are lowered, and then the second carriage 16 is lowered. Alternatively, the caps 72 and the second carriage 16 may be lowered together. At S208, the second carriage 16 is placed on the mounts 55 of the first carriage 15 to be docked with the first carriage 15. Then, at S209 the first carriage 15 with which the second carriage 16 is docked is moved reciprocally to perform full-color printing. Thereafter, at S210 whether or not printing is to be continued is confirmed. When printing is to be continued (YES at S210), the process proceeds to S211 to determine whether or not full-color printing is to be performed. When monochrome printing is to be performed (NO at S211), the process proceeds to switch the print mode to the monochrome mode to separate the second carriage 16 from the first carriage 15 as illustrated in
With reference to
As described previously, the capping position where the recording heads 102 of the second carriage 16 are capped with the caps 72 is determined based on the reference position of the first carriage 15. Accordingly, the second carriage 16 is accurately positioned at the capping position, thereby preventing a shift in the relative positions of the recording heads 102 of the second carriage 16 and the caps 72.
In addition, the separation position where the second carriage 16 is separated from the first carriage 15 is the same as the capping position where the recording heads 101 and 102 of the first and second carriages 15 and 16 are capped with the caps 71 and 72, respectively, in the main scanning direction.
Determination of a position for detecting those nozzles through which color ink droplets are not properly ejected from the recording heads 102 of the second carriage 16 is described in detail below with reference to
Clogging of the nozzles of the recording heads 101 and 102 of the first and second carriages 15 and 16 can cause irregularities to appear in the output images. Therefore, the image forming apparatus 1 further includes a clogged nozzle detector 90 serving as an ejection status detector that detects irregular ejection of the ink droplets and a shift in a direction of ejection of the ink droplets due to clogging of the nozzles. A detection position where the clogged nozzle detector 90 detects the clogged nozzles is a position facing the first and second carriages 15 and 16 within the main scanning range of the first and second carriages 15 and 16 in the main scanning direction.
The detection position for detecting the clogged nozzles in the recording heads 102 of the second carriage 16 is determined based on the reference position of the first carriage 15. Accordingly, the detection position can be accurately determined, and a shift in the relative positions of the recording heads 102 and the clogged nozzle detector 90 can be prevented.
As can be appreciated by those skilled in the art, numerous additional modifications and variations are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the disclosure of this patent specification may be practiced otherwise than as specifically described herein. For example, elements and/or features of different illustrative embodiments may be combined with each other and/or substituted for each other within the scope of this disclosure and appended claims.
This patent specification is based on Japanese Patent Application No. 2009-278023, filed on Dec. 7, 2009 in the Japan Patent Office, which is hereby incorporated herein by reference in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2009-278023 | Dec 2009 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5359357 | Takagi et al. | Oct 1994 | A |
6164755 | Yamamoto | Dec 2000 | A |
6357849 | Takizawa et al. | Mar 2002 | B2 |
20100295897 | Naruse et al. | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
9-76481 | Mar 1997 | JP |
9-240097 | Sep 1997 | JP |
2785031 | May 1998 | JP |
2002-127446 | May 2002 | JP |
3332764 | Jul 2002 | JP |
2003-312080 | Nov 2003 | JP |
Entry |
---|
Japanese official action dated Jul. 16, 2013 in corresponding Japanese patent application No. 2009-278023. |
Number | Date | Country | |
---|---|---|---|
20110134187 A1 | Jun 2011 | US |