Embodiments described herein relate generally to an image forming apparatus and methods related thereto.
An ATM (Automatic Teller Machine) is an automatic transaction apparatus operated by a customer to perform transaction such as cash accounting. The ATM includes a printer that issues a receipt on which transaction details are recorded. The printer prints the transaction details on the sheet while conveying the sheet, which is a print medium, towards the discharge port. A discharge port of the sheet is located on a front surface side of the ATM. The customer receives a receipt discharged from the discharge port.
However, a customer may touch the receipt before printing is finished, and as a result, the sheet may not be normally discharged. For example, if the customer pulls out the sheet with hand, printing disorder may occur. Alternatively, if the discharge of the sheet from the discharge port is hindered by the hand touching the sheet, a sheet jam may occur at the inner side of the discharge port.
In accordance with an embodiment, an image forming apparatus comprises an image forming section configured to form an image on a sheet; a sheet discharge port through which the sheet is discharged; a sheet conveyance roller configured to convey the sheet to the sheet discharge port; a movable sheet guide, arranged in such a manner that an imaginary line connecting a portion contacting the sheet of the sheet conveyance roller with the sheet discharge port passes through a cross-sectional area, configured to be capable of moving in a direction away from a surface of the sheet; and a guide sensor configured to detect movement of the movable sheet guide.
Hereinafter, a printer mounted in an ATM is described in detail as an example of an image forming apparatus according to an embodiment with reference to the accompanying drawings. In each drawing, the same components are denoted with the same reference numerals.
The printer 1 is a thermal printer that prints an image on a sheet S which is the print medium under the action of heat. A printing system thereof may be either a heat sensitive system or a thermal transfer system. In the case of the heat sensitive system, a thermal sheet is used as the sheet S which is the print medium, and in the case of the thermal transfer system, an ink ribbon is used.
The printer 1 includes a sheet supply section 3, a printing section 4 for printing an image such as transaction details on the sheet S, a cutting section 5 for cutting the sheet S on which the image is printed, a sheet conveyance section 6 for conveying the sheet S towards the discharge port 2, and a discharge section 7 for discharging the sheet S from the printer 1 as the receipt R. The sheet S passes the sheet supply section 3, the printing section 4, the cutting section 5 and the sheet conveyance section 6 in this order, and is then discharged from the discharge port 2 at the tip of the discharge section 7. The sheet supply section 3 includes a guide roller 31 for applying tension to the sheet S, and guides 32 and 33 for guiding the sheet S to the printing section 4. A base end side of the sheet S is wound in a roll and stored in a hopper (not shown). The sheet S is replenished by storing the roll of a new sheet S in the hopper and guiding the tip of the sheet S pulled out of the roll to the printing section 4 via the guide roller 31 and the guides 32 and 33.
The printing section 4 is an example of an image forming section that forms an image on the sheet S. The printing section 4 includes a thermal head 41 as a print head (image forming head) and a platen roller 42. In the thermal head 41, heat generation elements for forming dots are formed, for example, in a line. The thermal head 41 is arranged in such a manner that a portion where the heat generation elements are arranged faces the platen roller 42 across the sheet S, and is biased towards the platen roller 42 by a biasing device 43 such as a spring.
In the platen roller 42, a portion in contact with the sheet S is formed of resin such as rubber. The platen roller 42 is connected to a motor 44 which is an example of a drive device via a power transmission device such as a gear or a rotation belt, for example (not shown in
The cutting section 5 includes a cutter 51. The cutter 51 includes a fixed cutter 52 and a movable cutter 53. A blade of the movable cutter 53 moves forward and backward with respect to a blade of the fixed cutter 52 by a driving force from a motor 54 which is an example of the drive device. The cutter 51 moves the blade of the movable cutter 53 forward and backward to cut the rear end of the printed sheet S. The cutter 51 may be either a cutter of a full cutting system for completely cutting the sheet S or a cutter of a partial cutting system for partially cutting the sheet S. In the case of the partial cutting system, the customer finally cuts out the remaining uncut part. The customer cuts out the sheet S by pulling the sheet S forward or cuts out the sheet S using an edge of the discharge port 2 by pulling the sheet S diagonally. Furthermore, the cutter 51 which is an automatic cutter may be omitted and a manual cutter may be provided. A lower edge of the discharge port 2 is formed in a jagged shape as the manual cutter, and the customer cuts out the sheet S using the jag.
The sheet conveyance section 6 includes, for example, a conveyance roller 61 as a sheet conveyance roller. The conveyance roller 61 includes a drive roller 62 and a driven roller 63 vertically arranged so as to contact each other. The drive roller 62 and the driven roller 63 rotate to sandwich the sheet S to convey the sheet S. The sheet S is guided from the cutting section 5 to the sheet conveyance section 6 by a fixed sheet guide 55. The drive roller 62 is connected to a motor 64 which is an example of the drive device via a power transmission device (not shown) such as a gear or a rotation belt, for example. The motor 64 is, for example, a stepping motor. The drive roller 62 is rotated by a driving force from the motor 64. The driven roller 63 is driven under the action of friction generated by the rotation of the drive roller 62. The drive roller 62 rotates in synchronization with the conveyance of the sheet S by the platen roller 42.
A movable sheet guide 8 and a fixed sheet guide 81 are arranged between the discharge port 2 and a place where the conveyance roller 61 and the sheet S contact each other, i.e., a position where the drive roller 62 and the driven roller 63 sandwich the sheet S. A space between the movable sheet guide 8 arranged on the upper side and the fixed sheet guide 81 arranged on the lower side forms a conveyance path of the sheet S towards the discharge section 7. The fixed sheet guide 81 supports the sheet S conveyed in a sandwiched manner by the drive roller 62 and the driven roller 63 on an upper surface thereof and guides the sheet S towards the discharge section 7. A distance from a position where the drive roller 62 and the driven roller 63 sandwich the sheet S to the discharge port 2 is, for example, 10 mm to 20 mm. The movable sheet guide 8 functions as a sensor for detecting a discharge abnormality caused by the customer pulling the sheet S (receipt R) during printing and a discharge abnormality that the sheet S is jammed at the inner side of the discharge port 2. A guide sensor 80 detects the position of the movable sheet guide 8.
The movable sheet guide 8 has an elongated shape as shown in
A cylindrical rotation axis 83 and an oval stopper 84 of the movable sheet guide 8 are respectively formed on the side surfaces of both ends thereof. The cylindrical rotation axis 83 is fitted to, for example, a cylindrical support member (not shown) provided on a printer main body side. The movable sheet guide 8 is rotatable in a circumferential direction (a direction indicated by an arrow) around the rotation axis 83, as shown in
The home position of the movable sheet guide 8 is set to a position far away from the upper surface of the sheet S. Alternatively, the home position may be in contact with the upper surface of the sheet S. The movable sheet guide 8 is arranged in such a manner that a bottom surface 85a on the rear side is parallel to, for example, an upper surface of the fixed sheet guide 81 located below. A bottom surface 85b on the front side is inclined in a direction away from the fixed sheet guide 81. The bottom surface 85b on the front side is formed to extend, for example, in a horizontal direction. Of course, shapes and angles of the bottom surfaces 85a and 85b are not limited.
The discharge section 7 includes a tapered discharge guide 71. The opening at the tip of the discharge guide 71 is the discharge port 2 and is a rectangular opening when viewed from the front surface side (customer side) of the ATM. Any size of the rectangular discharge port 2 can be used as long as it is larger than the cross section of the sheet S, and for example, the width thereof is 50 mm to 80 mm and the height thereof is 5 mm to 10 mm. The discharge guide 71 is integrally formed with the vertically inclined plate 72. In the discharge section 7, both ends of the inclined plate 72 are fixed to the printer main body. The discharge guide 71 and the inclined plate 72 each are made of, for example, a resin material such as plastic.
The fixed sheet guide 81 extends to the vicinity of the vertically inclined plate 72 of the discharge section 7. As shown in
As shown in
Next, a block diagram in
A head control circuit 94 controls the printing operation of the thermal head 41. The control section 9 transmits control signals such as arrangement information of dots of an image to be printed, a latch signal, a strobe signal, etc. to the head control circuit 94 based on information relating to the printing job received from the control section that controls the transaction operation of the ATM. A platen control circuit 95 controls operations such as start and stop of the motor 44. The control section 9 transmits a control signal to the platen control circuit 95 so as to rotate the platen roller 42 in synchronization with the printing operation of the thermal head 41. A conveyance control circuit 96 controls operations such as start and stop of the motor 64 for driving the drive roller 62 to rotate. The control section 9 transmits a control signal to the conveyance control circuit 96 so as to rotate the drive roller 62 in synchronization with the rotation of the platen roller 42. A cutting control circuit 97 controls operations such as start and stop of the motor 54. The control section 9 transmits a control signal to the cutting control circuit 97 so as to cut the rear end of the sheet S after the printing is terminated.
The guide sensor 80 detects a position of the movable sheet guide 8 and transmits the detection result to the control section 9. The guide sensor 80 detects whether the movable sheet guide 8 is at the home position or the movable sheet guide 8 has moved upward. The guide sensor 80 is an optical sensor or a contact sensor. Alternatively, the guide sensor 80 may quantitatively detect a position of the movable sheet guide 8 after movement by measuring a movement distance when the movable sheet guide 8 has moved upward.
The communication interface 98 is connected to the control section for controlling the transaction operation of the ATM. The control section 9 of the printer 1 performs communication such as data transmission and reception via the communication interface 98. A sheet sensor 99 detects whether or not there is a sheet S in the vicinity of the printing section (sheet pinching section) formed by the thermal head 41 and the platen roller 42 (not shown in
Next, with reference to
If the transaction is completed by an operation performed by the customer, the control section that controls the transaction operation of the ATM generates a printing job for printing a receipt R. The printer 1 receives the information relating to the printing job via the communication interface 98 and transmits the control signals to the control circuits 94 to 97 to start the printing job (Act 10). Specifically, the printer 1 feeds the sheet S to the downstream side while printing an image on the sheet S by cooperation of the thermal head 41 and the platen roller 42. Furthermore, the printer 1 rotates the drive roller 62 of the sheet conveyance section 6 to feed the sheet S towards the discharge section 7. The fed sheet S is sequentially discharged from the discharge port 2. If the printing by the printing section 4 is completed, the printer 1 moves the blade of the movable cutter 53 of the cutting section 5 forward and backward to cut the rear end of the sheet S. Then, the conveyance roller 61 of the sheet conveyance section 6 feeds the rear end of the sheet S towards the discharge port 2. In the case of the partial cutting system, since a part of the rear end of the sheet S is still uncut, the customer pulls out the sheet S (receipt R) by hand to cut out it.
If the movable sheet guide 8 is not moved upward and a series of operations is normally performed (No in Act 11), the printing job is completed (Act 12). However, before the printing is completed, the customer may touch the sheet S (receipt R) by hand in some cases, which causes a discharge abnormality of the sheet S. The discharge abnormality of the sheet S is typically either a discharge abnormality caused by the customer pulling the sheet S (refer to
For example, if the customer pulls the sheet S (receipt R) by hand during printing, as shown in
The guide sensor 80 detects that the movable sheet guide 8 has moved upward, and transmits the detection result to the control section 9. The control section 9 receives the detection result from the guide sensor 80 and transmits the control signals to the control circuits 94 to 97 to interrupt the execution of the printing job (Act 13).
Here, when the customer releases the sheet S or reduces a pulling force, the state in which the movable sheet guide 8 is lifted is released, and the sheet S and the movable sheet guide 8 are lowered, for example, by their own weight. The movable sheet guide 8 is stopped at the home position by the stopper 84. The guide sensor 80 detects that the movable sheet guide 8 has returned to the home position (Yes in Act 14), and transmits the detection result to the control section 9. The control section 9 receives the detection result from the guide sensor 80 and transmits the control signals to the control circuits 94 to 97 to restart the printing job (Act 15).
If the customer does not release the sheet S or does not reduce the pulling force, the control section 9 transmits an error signal to the control section that controls the transaction operation of the ATM (Act 17), for example, if a set time period elapses (Yes in Act 16). The control section that controls the transaction operation of the ATM informs the customer by, for example, displaying “receipt issuance error” on an operation screen. At the same time, it is preferable to notify the store clerk of the occurrence of the receipt issuance error. The set time period is set, for example, in a range of 5 to 15 seconds. Of course, the set time period is not limited.
As another case, after the printing job is started (Act 10), for example, if the customer touches the sheet S by hand, which interferes with the discharge of the sheet S from the discharge port 2, as schematically shown in
As described above, when the sheet S is pulled by hand, the printing job can be resumed if the customer releases the sheet S and the movable sheet guide 8 returns to the home position. However, if the sheet S jams at the inner side of the discharge port 2, the movable sheet guide 8 hardly returns to the home position. Therefore, after that, the set time period elapses (Yes in Act 16), and the error signal is transmitted to the control section that controls the transaction operation of the ATM (Act 17). The jam of the sheet S at the inner side of the discharge port 2 may occur due to factors other than the touch on the sheet S by the hand of the customer.
According to the above-described embodiment, the movable sheet guide 8 is provided between the conveyance roller 61 and the discharge port 2 and it is detected that the movable sheet guide 8 has left the home position and moved upward. With such a configuration, it is possible to detect the discharge abnormality caused by the customer pulling the sheet S which is the print medium by hand and the discharge abnormality that the sheet S jams at the inner side of the discharge port 2. As a result, it is possible to create the receipt R while minimizing the consumption of the sheet S. In particular, the printing job is resumed when the movable sheet guide 8 returns to the home position, thereby improving the effect.
The movable sheet guide 8 may have a shape as shown in
Furthermore, the movable sheet guide 8 may be arranged not only on the upper surface side of the sheet S but also on the upper and lower sides as shown in
The printer 1 is not limited to a thermal printer, but may be another type of printer such as an inkjet printer. Furthermore, although the printer 1 is described as an example of the image forming apparatus, the image forming apparatus is not limited to the printer 1. Of course, it is not limited to ATM.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the invention. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the invention. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the invention.
Number | Date | Country | Kind |
---|---|---|---|
JP2018-100200 | May 2018 | JP | national |
This application is a Continuation of application Ser. No. 16/416,302 filed on May 20, 2019, the entire contents of which are incorporated herein by reference. This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2018-100200, filed on May 25, 2018, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5615876 | Yergenson | Apr 1997 | A |
7322760 | Campanini | Jan 2008 | B2 |
3070371 | Campanini | Dec 2011 | A1 |
9440469 | Zhang et al. | Sep 2016 | B2 |
20090035044 | Yoshioka | Feb 2009 | A1 |
20140197268 | Zhang et al. | Jul 2014 | A1 |
20150001780 | Kasuga | Jan 2015 | A1 |
20160355035 | Campanini | Dec 2016 | A1 |
20170253057 | Zhang et al. | Sep 2017 | A1 |
20170362045 | Masuda | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
2980000 | Apr 2017 | EP |
2009-292622 | Dec 2009 | JP |
2018196921 | Dec 2018 | JP |
Entry |
---|
Japanese Office Action for Japanese Patent Application No. 2018-100200 dated Nov. 11, 2021. |
Non-Final Office Action for U.S. Appl. No. 16/416,302 dated Jan. 27, 2021. |
Final Office Action for U.S. Appl. No. 16/416,302 dated Aug. 3, 2021. |
U.S. Appl. No. 16/416,302, filed May 20, 2019. |
Number | Date | Country | |
---|---|---|---|
20220055854 A1 | Feb 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16416302 | May 2019 | US |
Child | 17517695 | US |